More from Tony Finch's blog
Recently, Alex Kladov wrote on the TigerBeetle blog about swarm testing data structures. It’s a neat post about randomized testing with Zig. I wrote a comment with an idea that was new to Alex @matklad, so I’m reposing a longer version here. differential testing problems grow / shrink random elements element-wise testing test loop data structure size invariants performance conclusion differential testing A common approach to testing data structures is to write a second reference implementation that has the same API but simpler and/or more obviously correct, though it uses more memory or is slower or less concurrent or otherwise not up to production quality. Then, run the production implementation and the reference implementation on the same sequence of operations, and verify that they produce the same results. Any difference is either a bug in the production implementation (probably) or a bug in the reference implementation (unlucky) or a bug in the tests (unfortunate). This is a straightforward differential testing pattern. problems There are a couple of difficulties with this kind of basic differential testing. grow / shrink The TigerBeetle article talks about adjusting the probabilities of different operations on the data structure to try to explore more edge cases. To motivate the idea, the article talks about adjusting the probabilities of adding or deleting items: If adding and deleting have equal probability, then the test finds it hard to grow the data structure to interesting sizes that might expose bugs. Unfortunately, if the probability of add is greater than del, then the data structure tends to grow without bound. If the probability of del is greater than add, then it tries to shrink from nothing: worse than equal probabilities! They could preload the data structure to test how it behaves when it shrinks, but a fixed set of probabilities per run is not good at testing both growth and shrinkage on the same test run on the same data structure. One way to improve this kind of test is to adjust the probability of add and del dynamically: make add more likely when the data structure is small, and del more likely when it is big. And maybe make add more likely in the first half of a test run and del more likely in the second half. random elements The TigerBeetle article glosses over the question of where the tests get fresh elements to add to the data structure. And its example is chosen so it doesn’t have to think about which elements get deleted. In my experience writing data structures for non-garbage-collected languages, I had to be more deliberate about how to create and destroy elements. That led to a style of test that’s more element-centric, as Alex described it. element-wise testing Change the emphasis so that instead of testing that two implementations match, test that one implementation obeys the expected behaviour. No need to make a drop-in replacement reference implementation! What I typically do is pre-allocate an array of elements, with slots that I can set to keep track of how each element relates to the data structure under test. The most important property is whether the element has been added or deleted, but there might be others related to ordering of elements, or values associated with keys, and so on. test loop Each time round the loop, choose at random an element from the array, and an action such as add / del / get / … Then, if it makes sense, perform the operation on the data structure with the element. For example, you might skip an add action if the element is already in the data structure, unless you can try to add it and expect an error. data structure size This strategy tends to grow the data structure until about 50% of the pre-allocated elements are inserted, then it makes a random walk around this 50% point. Random walks can diverge widely from their central point both in theory and in practice, so this kind of testing is reasonably effective at both growing and (to a lesser extent) shrinking the data structure. invariants I usually check some preconditions before an action, to verify that the data structure matches the expected properties of the chosen element. This can help to detect earlier that an action on one element has corrupted another element. After performing the action and updating the element’s properties, I check the updated properties as a postcondition, to make sure the action had the expected effects. performance John Regehr’s great tutorial, how to fuzz an ADT implementation, recommends writing a checkRep() function that thoroughly verifies a data structure’s internal consistency. A checkRep() function is a solid gold testing tool, but it is O(n) at least and typically very slow. If you call checkRep() frequently during testing, your tests slow down dramatically as your data structure gets larger. I like my per-element invariants to be local and ideally O(1) or O(log n) at worst, so they don’t slow down the tests too much. conclusion Recently I’ve used this pattern to exhibit concurrency bugs in an API that’s hard to make thread-safe. Writing the tests has required some cunning to work out what invariants I can usefully maintain and test; what variety of actions I can use to stress those invariants; and what mix of elements + actions I need so that my tests know which properties of each element should be upheld and which can change. I’m testing multiple implementations of the same API, trying to demonstrate which is safest. Differential testing can tell me that implementations diverge, but not which is correct, whereas testing properties and invariants more directly tells me whether an implementation does what I expect. (Or gives me a useless answer when my tests are weak.) Which is to say that this kind of testing is a fun creative challenge. I find it a lot more rewarding than example-based testing.
I have added syntax highlighting to my blog using tree-sitter. Here are some notes about what I learned, with some complaining. static site generator markdown ingestion highlighting incompatible?! highlight names class names styling code results future work frontmatter templates feed style highlight quality static site generator I moved my blog to my own web site a few years ago. It is produced using a scruffy Rust program that converts a bunch of Markdown files to HTML using pulldown-cmark, and produces complete pages from Handlebars templates. Why did I write another static site generator? Well, partly as an exercise when learning Rust. Partly, since I wrote my own page templates, I’m not going to benefit from a library of existing templates. On the contrary, it’s harder to create new templates that work with a general-purpose SSG than write my own simpler site-specific SSG. It’s miserable to write programs in template languages. My SSG can keep the logic in the templates to a minimum, and do all the fiddly stuff in Rust. (Which is not very fiddly, because my site doesn’t have complicated navigation – compared to the multilevel menus on www.dns.cam.ac.uk for instance.) markdown ingestion There are a few things to do to each Markdown file: split off and deserialize the YAML frontmatter find the <cut> or <toc> marker that indicates the end of the teaser / where the table of contents should be inserted augment headings with self-linking anchors (which are also used by the ToC) Before this work I was using regexes to do all these jobs, because that allowed me to treat pulldown-cmark as a black box: Markdown in, HTML out. But for syntax highlighting I had to be able to find fenced code blocks. It was time to put some code into the pipeline between pulldown-cmark’s parser and renderer. And if I’m using a proper parser I can get rid of a few regexes: after some hacking, now only the YAML frontmatter is handled with a regex. Sub-heading linkification and ToC construction are fiddly and more complicated than they were before. But they are also less buggy: markup in headings actually works now! Compared to the ToC, it’s fairly simple to detect code blocks and pass them through a highlighter. You can look at my Markdown munger here. (I am not very happy with the way it uses state, but it works.) highlighting As well as the tree-sitter-highlight documentation I used femark as an example implementation. I encountered a few problems. incompatible?! I could not get the latest tree-sitter-highlight to work as described in its documentation. I thought the current tree-sitter crates were incompatible with each other! For a while I downgraded to an earlier version, but eventually I solved the problem. Where the docs say, let javascript_language = tree_sitter_javascript::language(); They should say: let javascript_language = tree_sitter::Language::new( tree_sitter_javascript::LANGUAGE ); highlight names I was offended that tree-sitter-highlight seems to expect me to hardcode a list of highlight names, without explaining where they come from or what they mean. I was doubly offended that there’s an array of STANDARD_CAPTURE_NAMES but it isn’t exported, and doesn’t match the list in the docs. You mean I have to copy and paste it? Which one?! There’s some discussion of highlight names in the tree-sitter manual’s “syntax highlighting” chapter, but that is aimed at people who are writing a tree-sitter grammar, not people who are using one. Eventually I worked out that tree_sitter_javascript::HIGHLIGHT_QUERY in the tree-sitter-highlight example corresponds to the contents of a highlights.scm file. Each @name in highlights.scm is a highlight name that I might be interested in. In principle I guess different tree-sitter grammars should use similar highlight names in their highlights.scm files? (Only to a limited extent, it turns out.) I decided the obviously correct list of highlight names is the list of every name defined in the HIGHLIGHT_QUERY. The query is just a string so I can throw a regex at it and build an array of the matches. This should make the highlighter produce <span> wrappers for as many tokens as possible in my code, which might be more than necessary but I don’t have to style them all. class names The tree-sitter-highlight crate comes with a lightly-documented HtmlRenderer, which does much of the job fairly straightforwardly. The fun part is the attribute_callback. When the HtmlRenderer is wrapping a token, it emits the start of a <span then expects the callback to append whatever HTML attributes it thinks might be appropriate. Uh, I guess I want a class="..." here? Well, the highlight names work a little bit like class names: they have dot-separated parts which tree-sitter-highlight can match more or less specifically. (However I am telling it to match all of them.) So I decided to turn each dot-separated highlight name into a space-separated class attribute. The nice thing about this is that my Rust code doesn’t need to know anything about a language’s tree-sitter grammar or its highlight query. The grammar’s highlight names become CSS class names automatically. styling code Now I can write some simple CSS to add some colours to my code. I can make type names green, code span.hilite.type { color: #aca; } If I decide builtin types should be cyan like keywords I can write, code span.hilite.type.builtin, code span.hilite.keyword { color: #9cc; } results You can look at my tree-sitter-highlight wrapper here. Getting it to work required a bit more creativity than I would have preferred, but it turned out OK. I can add support for a new language by adding a crate to Cargo.toml and a couple of lines to hilite.rs – and maybe some CSS if I have not yet covered its highlight names. (Like I just did to highlight the CSS above!) future work While writing this blog post I found myself complaining about things that I really ought to fix instead. frontmatter I might simplify the per-page source format knob so that I can use pulldown-cmark’s support for YAML frontmatter instead of a separate regex pass. This change will be easier if I can treat the html pages as Markdown without mangling them too much (is Markdown even supposed to be idempotent?). More tricky are a couple of special case pages whose source is Handlebars instead of Markdown. templates I’m not entirely happy with Handlebars. It’s a more powerful language than I need – I chose Handlebars instead of Mustache because Handlebars works neatly with serde. But it has a dynamic type system that makes the templates more error-prone than I would like. Perhaps I can find a more static Rust template system that takes advantage of the close coupling between my templates and the data structure that describes the web site. However, I like my templates to be primarily HTML with a sprinkling of insertions, not something weird that’s neither HTML nor Rust. feed style There’s no CSS in my Atom feed, so code blocks there will remain unstyled. I don’t know if feed readers accept <style> tags or if it has to be inline styles. (That would make a mess of my neat setup!) highlight quality I’m not entirely satisfied with the level of detail and consistency provided by the tree-sitter language grammars and highlight queries. For instance, in the CSS above the class names and property names have the same colour because the CSS highlights.scm gives them the same highlight name. The C grammar is good at identifying variables, but the Rust grammar is not. Oh well, I guess it’s good enough for now. At least it doesn’t involve Javascript.
Last year I wrote about inlining just the fast path of Lemire’s algorithm for nearly-divisionless unbiased bounded random numbers. The idea was to reduce code bloat by eliminating lots of copies of the random number generator in the rarely-executed slow paths. However a simple split prevented the compiler from being able to optimize cases like pcg32_rand(1 << n), so a lot of the blog post was toying around with ways to mitigate this problem. On Monday while procrastinating a different blog post, I realised that it’s possible to do better: there’s a more general optimization which gives us the 1 << n special case for free. nearly divisionless Lemire’s algorithm has about 4 neat tricks: use multiplication instead of division to reduce the output of a random number generator modulo some limit eliminate the bias in (1) by (counterintuitively) looking at the lower digits fun modular arithmetic to calculate the reject threshold for (2) arrange the reject tests to avoid the slow division in (3) in most cases The nearly-divisionless logic in (4) leads to two copies of the random number generator, in the fast path and the slow path. Generally speaking, compilers don’t try do deduplicate code that was written by the programmer, so they can’t simplify the nearly-divisionless algorithm very much when the limit is constant. constantly divisionless Two points occurred to me: when the limit is constant, the reject threshold (3) can be calculated at compile time when the division is free, there’s no need to avoid it using (4) These observations suggested that when the limit is constant, the function for random numbers less than a limit should be written: static inline uint32_t pcg32_rand_const(pcg32_t *rng, uint32_t limit) { uint32_t reject = -limit % limit; uint64_t sample; do sample = (uint64_t)pcg32_random(rng) * (uint64_t)limit); while ((uint32_t)(sample) < reject); return ((uint32_t)(sample >> 32)); } This has only one call to pcg32_random(), saving space as I wanted, and the compiler is able to eliminate the loop automatically when the limit is a power of two. The loop is smaller than a call to an out-of-line slow path function, so it’s better all round than the code I wrote last year. algorithm selection As before it’s possible to automatically choose the constantly-divisionless or nearly-divisionless algorithms depending on whether the limit is a compile-time constant or run-time variable, using arcane C tricks or GNU C __builtin_constant_p(). I have been idly wondering how to do something similar in other languages. Rust isn’t very keen on automatic specialization, but it has a reasonable alternative. The thing to avoid is passing a runtime variable to the constantly-divisionless algorithm, because then it becomes never-divisionless. Rust has a much richer notion of compile-time constants than C, so it’s possible to write a method like the follwing, which can’t be misused: pub fn upto<const LIMIT: u32>(&mut self) -> u32 { let reject = LIMIT.wrapping_neg().wrapping_rem(LIMIT); loop { let (lo, hi) = self.get_u32().embiggening_mul(LIMIT); if lo < reject { continue; } else { return hi; } } } assert!(rng.upto::<42>() < 42); (embiggening_mul is my stable replacement for the unstable widening_mul API.) This is a nugatory optimization, but there are more interesting cases where it makes sense to choose a different implementation for constant or variable arguments – that it, the constant case isn’t simply a constant-folded or partially-evaluated version of the variable case. Regular expressions might be lex-style or pcre-style, for example. It’s a curious question of language design whether it should be possible to write a library that provides a uniform API that automatically chooses constant or variable implementations, or whether the user of the library must make the choice explicit. Maybe I should learn some Zig to see how its comptime works.
One of the neat things about the PCG random number generator by Melissa O’Neill is its use of instruction-level parallelism: the PCG state update can run in parallel with its output permutation. However, PCG only has a limited amount of ILP, about 3 instructions. Its overall speed is limited by the rate at which a CPU can run a sequence where the output of one multiply-add feeds into the next multiply-add. … Or is it? With some linear algebra and some AVX512, I can generate random numbers from a single instance of pcg32 at 200 Gbit/s on a single core. This is the same sequence of random numbers generated in the same order as normal pcg32, but more than 4x faster. You can look at the benchmark in my pcg-dxsm repository. skip ahead the insight multipliers trying it out results skip ahead One of the slightly weird features that PCG gets from its underlying linear congruential generator is “seekability”: you can skip ahead k steps in the stream of random numbers in log(k) time. The PCG paper (in section 4.3.1) cites Forrest Brown’s paper, random numbers with arbitrary strides, which explains that the skip-ahead feature is useful for reproducibility of monte carlo simulations. But what caught my eye is the skip-ahead formula. Rephrased in programmer style, state[n+k] = state[n] * pow(MUL, k) + inc * (pow(MUL, k) - 1) / (MUL - 1) the insight The skip-ahead formula says that we can calculate a future state using a couple of multiplications. The skip-ahead multipliers depend only on the LCG multiplier, not on the variable state, nor on the configurable increment. That means that for a fixed skip ahead, we can precalculate the multipliers before compile time. The skip-ahead formula allows us to unroll the PCG data dependency chain. Normally, four iterations of the PCG state update look like, state0 = rng->state state1 = state0 * MUL + rng->inc state2 = state1 * MUL + rng->inc state3 = state2 * MUL + rng->inc state4 = state3 * MUL + rng->inc rng->state = state4 With the skip-ahead multipliers it looks like, state0 = rng->state state1 = state0 * MULs1 + rng->inc * MULi1 state2 = state0 * MULs2 + rng->inc * MULi2 state3 = state0 * MULs3 + rng->inc * MULi3 state4 = state0 * MULs4 + rng->inc * MULi4 rng->state = state4 These state calculations can be done in parallel using NEON or AVX vector instructions. The disadvantage is that calculating future states in parallel requires more multiplications than doing so in series, but that’s OK because modern CPUs have lots of ALUs. multipliers The skip-ahead formula is useful for jumping ahead long distances, because (as Forrest Brown explained) you can do the exponentiation in log(k) time using repeated squaring. (The same technique is used in for modexp in RSA.) But I’m only interested in the first few skip-ahead multipliers. I’ll define the linear congruential generator as: lcg(s, inc) = s * MUL + inc Which is used in PCG’s normal state update like: rng->state = lcg(rng->state, rng->inc) To precalculate the first few skip-ahead multipliers, we iterate the LCG starting from zero and one, like this: MULs0 = 1 MULs1 = lcg(MULs0, 0) MULs2 = lcg(MULs1, 0) MULi0 = 0 MULi1 = lcg(MULi0, 1) MULi2 = lcg(MULi1, 1) My benchmark code’s commentary includes a proof by induction, which I wrote to convince myself that these multipliers are correct. trying it out To explore how well this skip-ahead idea works, I have written a couple of variants of my pcg32_bytes() function, which simply iterates pcg32 and writes the results to a byte array. The variants have an adjustable amount of parallelism. One variant is written as scalar code in a loop that has been unrolled by hand a few times. I wanted to see if standard C gets a decent speedup, perhaps from autovectorization. The other variant uses the GNU C portable vector extensions to calculate pcg32 in an explicitly parallel manner. The benchmark also ensures the output from every variant matches the baseline pcg32_bytes(). results The output from the benchmark harness lists: the function variant either the baseline version or uN for a scalar loop unrolled N times or xN for vector code with N lanes its speed in bytes per nanosecond (aka gigabytes per second) its performance relative to the baseline There are small differences in style between the baseline and u1 functions, but their performance ought to be basically the same. Apple clang 16, Macbook Pro M1 Pro. This compiler is eager and fairly effective at autovectorizing. ARM NEON isn’t big enough to get a speedup from 8 lanes of parallelism. __ 3.66 bytes/ns x 1.00 u1 3.90 bytes/ns x 1.07 u2 6.40 bytes/ns x 1.75 u3 7.66 bytes/ns x 2.09 u4 8.52 bytes/ns x 2.33 x2 7.59 bytes/ns x 2.08 x4 10.49 bytes/ns x 2.87 x8 10.40 bytes/ns x 2.84 The following results were from my AMD Ryzen 9 7950X running Debian 12 “bookworm”, comparing gcc vs clang, and AVX2 vs AVX512. gcc is less keen to autovectorize so it doesn’t do very well with the unrolled loops. (Dunno why u1 is so much slower than the baseline.) gcc 12.2 -march=x86-64-v3 __ 5.57 bytes/ns x 1.00 u1 5.13 bytes/ns x 0.92 u2 5.03 bytes/ns x 0.90 u3 7.01 bytes/ns x 1.26 u4 6.83 bytes/ns x 1.23 x2 3.96 bytes/ns x 0.71 x4 8.00 bytes/ns x 1.44 x8 12.35 bytes/ns x 2.22 clang 16.0 -march=x86-64-v3 __ 4.89 bytes/ns x 1.00 u1 4.08 bytes/ns x 0.83 u2 8.76 bytes/ns x 1.79 u3 10.43 bytes/ns x 2.13 u4 10.81 bytes/ns x 2.21 x2 6.67 bytes/ns x 1.36 x4 12.67 bytes/ns x 2.59 x8 15.27 bytes/ns x 3.12 gcc 12.2 -march=x86-64-v4 __ 5.53 bytes/ns x 1.00 u1 5.53 bytes/ns x 1.00 u2 5.55 bytes/ns x 1.00 u3 6.99 bytes/ns x 1.26 u4 6.79 bytes/ns x 1.23 x2 4.75 bytes/ns x 0.86 x4 17.14 bytes/ns x 3.10 x8 20.90 bytes/ns x 3.78 clang 16.0 -march=x86-64-v4 __ 5.53 bytes/ns x 1.00 u1 4.25 bytes/ns x 0.77 u2 7.94 bytes/ns x 1.44 u3 9.31 bytes/ns x 1.68 u4 15.33 bytes/ns x 2.77 x2 9.07 bytes/ns x 1.64 x4 21.74 bytes/ns x 3.93 x8 26.34 bytes/ns x 4.76 That last result is pcg32 generating random numbers at 200 Gbit/s.
The International Obfuscated C Code Contest has a newly revamped web site, and the Judges have announced the 28th contest, to coincide with its 40th anniversary. (Or 41st?) The Judges have also updated the archive of past winners so that as many of them as possible work on modern systems. Accordingly, I took a look at my 1998 winner to see how much damage time hath wrought. When it is built, my program needs to go through the C preprocessor twice. There are a few reasons: It’s part of coercing the C compiler into compiling OFL, an obfuscated functional language. OFL has keywords l and b, short for let and be, so for example the function for constructing a pair is defined as l pair b (BB (B (B K)) C CI) In a less awful language that might be written let pair = λx λy λf λg (f x y) Anyway, the first pass of the C preprocessor turns a l (let) declaration into a macro #define pair b (BB (B (B K)) C CI) And the second pass expands the macros. (There’s a joke in the README that the OFL compiler has one optimization, function inlining (which is actually implemented by cpp macro expansion) but in fact inlining harms the performance of OFL.) The smaller the OFL interpreter, the more space there is for the program written in OFL. In the 1998 IOCCC rules, #define cost 7 characters, whereas l cost only one. I think the modern rules don’t count C or cpp keywords so there’s less reason to use this stupid trick to save space. Running the program through cpp twice is a horrible abuse of C and therefore just the kind of joke that the IOCCC encourages. (In fact the Makefile sends the program through cpp three times, twice explicitly and once as part of compiling to machine code. This is deliberately gratuitous, INABIAF.) There were a couple of ways this silliness caused problems. Modern headers are sensitive to which version of the C standard is in effect, wrt things like restrict keywords in standard library function declarations. The extra preprocessor invocations needed to be fixed to use consistent -std= options so that the final compilation doesn’t encounter language features from the future. Newer gcc emits #line directives around macro expansions. This caused problems for the declaration l ef E(EOF) which defines ef as a primitive value equal to EOF. After preprocessing this became #define ef E( #line 1213 "stdio.h" (-1) #line 69 "fanf.c" ) so the macro definition got truncated. The fix was to process the #include directives in the second preprocessor pass rather than the first. I vaguely remember some indecision when writing the program about whether to #include in the first or second pass, in particular whether preprocessing the headers twice would lead to trouble. First pass #include seemed to work and was shorter so that was what the original submission did. There’s one further change. The IOCCC Judges are trying to avoid compiler warnings about nonstandard arguments to main. To save a few characters, my entry had int main(int c) { ... } but the argument c isn’t used so I just removed it. The build commands still print “This may take some time to complete”, because in the 1990s if you tried to compile with optimization you would have been waiting a long time, if it completed at all. The revamped Makefile uses -O3, which takes gcc over 30 seconds and half a gigabyte of RAM. Quite a lot for less than 2.5 KiB of C!
More in programming
I started writing this early last week but Real Life Stuff happened and now you're getting the first-draft late this week. Warning, unedited thoughts ahead! New Logic for Programmers release! v0.9 is out! This is a big release, with a new cover design, several rewritten chapters, online code samples and much more. See the full release notes at the changelog page, and get the book here! Write the cleverest code you possibly can There are millions of articles online about how programmers should not write "clever" code, and instead write simple, maintainable code that everybody understands. Sometimes the example of "clever" code looks like this (src): # Python p=n=1 exec("p*=n*n;n+=1;"*~-int(input())) print(p%n) This is code-golfing, the sport of writing the most concise code possible. Obviously you shouldn't run this in production for the same reason you shouldn't eat dinner off a Rembrandt. Other times the example looks like this: def is_prime(x): if x == 1: return True return all([x%n != 0 for n in range(2, x)] This is "clever" because it uses a single list comprehension, as opposed to a "simple" for loop. Yes, "list comprehensions are too clever" is something I've read in one of these articles. I've also talked to people who think that datatypes besides lists and hashmaps are too clever to use, that most optimizations are too clever to bother with, and even that functions and classes are too clever and code should be a linear script.1. Clever code is anything using features or domain concepts we don't understand. Something that seems unbearably clever to me might be utterly mundane for you, and vice versa. How do we make something utterly mundane? By using it and working at the boundaries of our skills. Almost everything I'm "good at" comes from banging my head against it more than is healthy. That suggests a really good reason to write clever code: it's an excellent form of purposeful practice. Writing clever code forces us to code outside of our comfort zone, developing our skills as software engineers. Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you [will get excellent debugging practice at exactly the right level required to push your skills as a software engineer] — Brian Kernighan, probably There are other benefits, too, but first let's kill the elephant in the room:2 Don't commit clever code I am proposing writing clever code as a means of practice. Being at work is a job with coworkers who will not appreciate if your code is too clever. Similarly, don't use too many innovative technologies. Don't put anything in production you are uncomfortable with. We can still responsibly write clever code at work, though: Solve a problem in both a simple and a clever way, and then only commit the simple way. This works well for small scale problems where trying the "clever way" only takes a few minutes. Write our personal tools cleverly. I'm a big believer of the idea that most programmers would benefit from writing more scripts and support code customized to their particular work environment. This is a great place to practice new techniques, languages, etc. If clever code is absolutely the best way to solve a problem, then commit it with extensive documentation explaining how it works and why it's preferable to simpler solutions. Bonus: this potentially helps the whole team upskill. Writing clever code... ...teaches simple solutions Usually, code that's called too clever composes several powerful features together — the "not a single list comprehension or function" people are the exception. Josh Comeau's "don't write clever code" article gives this example of "too clever": const extractDataFromResponse = (response) => { const [Component, props] = response; const resultsEntries = Object.entries({ Component, props }); const assignIfValueTruthy = (o, [k, v]) => (v ? { ...o, [k]: v } : o ); return resultsEntries.reduce(assignIfValueTruthy, {}); } What makes this "clever"? I count eight language features composed together: entries, argument unpacking, implicit objects, splats, ternaries, higher-order functions, and reductions. Would code that used only one or two of these features still be "clever"? I don't think so. These features exist for a reason, and oftentimes they make code simpler than not using them. We can, of course, learn these features one at a time. Writing the clever version (but not committing it) gives us practice with all eight at once and also with how they compose together. That knowledge comes in handy when we want to apply a single one of the ideas. I've recently had to do a bit of pandas for a project. Whenever I have to do a new analysis, I try to write it as a single chain of transformations, and then as a more balanced set of updates. ...helps us master concepts Even if the composite parts of a "clever" solution aren't by themselves useful, it still makes us better at the overall language, and that's inherently valuable. A few years ago I wrote Crimes with Python's Pattern Matching. It involves writing horrible code like this: from abc import ABC class NotIterable(ABC): @classmethod def __subclasshook__(cls, C): return not hasattr(C, "__iter__") def f(x): match x: case NotIterable(): print(f"{x} is not iterable") case _: print(f"{x} is iterable") if __name__ == "__main__": f(10) f("string") f([1, 2, 3]) This composes Python match statements, which are broadly useful, and abstract base classes, which are incredibly niche. But even if I never use ABCs in real production code, it helped me understand Python's match semantics and Method Resolution Order better. ...prepares us for necessity Sometimes the clever way is the only way. Maybe we need something faster than the simplest solution. Maybe we are working with constrained tools or frameworks that demand cleverness. Peter Norvig argued that design patterns compensate for missing language features. I'd argue that cleverness is another means of compensating: if our tools don't have an easy way to do something, we need to find a clever way. You see this a lot in formal methods like TLA+. Need to check a hyperproperty? Cast your state space to a directed graph. Need to compose ten specifications together? Combine refinements with state machines. Most difficult problems have a "clever" solution. The real problem is that clever solutions have a skill floor. If normal use of the tool is at difficult 3 out of 10, then basic clever solutions are at 5 out of 10, and it's hard to jump those two steps in the moment you need the cleverness. But if you've practiced with writing overly clever code, you're used to working at a 7 out of 10 level in short bursts, and then you can "drop down" to 5/10. I don't know if that makes too much sense, but I see it happen a lot in practice. ...builds comradery On a few occasions, after getting a pull request merged, I pulled the reviewer over and said "check out this horrible way of doing the same thing". I find that as long as people know they're not going to be subjected to a clever solution in production, they enjoy seeing it! Next week's newsletter will probably also be late, after that we should be back to a regular schedule for the rest of the summer. Mostly grad students outside of CS who have to write scripts to do research. And in more than one data scientist. I think it's correlated with using Jupyter. ↩ If I don't put this at the beginning, I'll get a bajillion responses like "your team will hate you" ↩
Whether we like it or not, email is widely used to identify a person. Code sent to email is used as authentication and sometimes as authorisation for certain actions. I’m not comfortable with Google having such power over me, especially given the fact that they practically don’t have any support you can appeal to. If your Google account is blocked, that’s it. Maybe you know someone from Google and they can help you, but for most of us mortals that’s not an option.
In his book “The Order of Time” Carlo Rovelli notes how we often asks ourselves questions about the fundamental nature of reality such as “What is real?” and “What exists?” But those are bad questions he says. Why? the adjective “real” is ambiguous; it has a thousand meanings. The verb “to exist” has even more. To the question “Does a puppet whose nose grows when he lies exist?” it is possible to reply: “Of course he exists! It’s Pinocchio!”; or: “No, it doesn’t, he’s only part of a fantasy dreamed up by Collodi.” Both answers are correct, because they are using different meanings of the verb “to exist.” He notes how Pinocchio “exists” and is “real” in terms of a literary character, but not so far as any official Italian registry office is concerned. To ask oneself in general “what exists” or “what is real” means only to ask how you would like to use a verb and an adjective. It’s a grammatical question, not a question about nature. The point he goes on to make is that our language has to evolve and adapt with our knowledge. Our grammar developed from our limited experience, before we know what we know now and before we became aware of how imprecise it was in describing the richness of the natural world. Rovelli gives an example of this from a text of antiquity which uses confusing grammar to get at the idea of the Earth having a spherical shape: For those standing below, things above are below, while things below are above, and this is the case around the entire earth. On its face, that is a very confusing sentence full of contradictions. But the idea in there is profound: the Earth is round and direction is relative to the observer. Here’s Rovelli: How is it possible that “things above are below, while things below are above"? It makes no sense…But if we reread it bearing in mind the shape and the physics of the Earth, the phrase becomes clear: its author is saying that for those who live at the Antipodes (in Australia), the direction “upward” is the same as “downward” for those who are in Europe. He is saying, that is, that the direction “above” changes from one place to another on the Earth. He means that what is above with respect to Sydney is below with respect to us. The author of this text, written two thousand years ago, is struggling to adapt his language and his intuition to a new discovery: the fact that the Earth is a sphere, and that “up” and “down” have a meaning that changes between here and there. The terms do not have, as previously thought, a single and universal meaning. So language needs innovation as much as any technological or scientific achievement. Otherwise we find ourselves arguing over questions of deep import in a way that ultimately amounts to merely a question of grammar. Email · Mastodon · Bluesky
In mid-March we released a big bug fix update—elementary OS 8.0.1—and since then we’ve been hard at work on even more bug fixes and some new exciting features that I’m excited to share with you today! Read ahead to find out what we’ve released recently and what you can help us test in Early Access. Quick Settings Quick Settings has a new “Prevent Sleep” toggle Leo added a new “Prevent Sleep” toggle. This is useful when you’re giving a presentation or have a long-running background task where you want to temporarily avoid letting the computer go to sleep on its normal schedule. We also fixed a bug where the “Dark Mode” toggle would cancel the dark mode schedule when used. We now have proper schedule snoozing, so when you manually toggle Dark Mode on or off while using a timed or sunset-to-sunrise schedule, your schedule will resume on the next schedule change instead of being canceled completely. Vishal also fixed an issue that caused some apps to report being improperly closed on system shutdown or restart and on the lock screen we now show the “Suspend” button rather than the “Lock” button. System Settings Locale settings has a fresh layout thanks to Alain with its options aligned more cleanly and improved links to additional settings. Locale Settings has a more responsive design We’ve also added the phrase “about this device” as a search term for the System page and improved interface copy when a restart is required to finish installing updates based on your feedback. Plus, Stanisław improved stylus detection in Wacom settings preventing a crash when no stylus is found. AppCenter We now show a small label next to the download button for apps which contain in-app purchases. This is especially useful for easily identifying free-to-play games or alt stores like Steam or Heroic Games Launcher. AppCenter now shows when apps have in-app purchases Plus, we now reload app icons on-the-fly as their data is processed, thanks to Italo. That means you’ll no longer get occasionally stuck with an AppCenter which shows missing images for app’s who have taken a bit longer than usual to load. Get These Updates As always, pop open System Settings → System on elementary OS 8 and hit “Update All” to get these updates plus your regular security, bug fix, and translation updates. Or set up automatic updates and get a notification when updates are ready to install! Early Access Our development focus recently has been on some of the bigger features that will likely land for either elementary OS 8.1 or 9. We’ve got a new app, big changes to the design of our desktop itself, a whole lot of under-the-hood cleanup, and the return of some key system services thanks to a new open source project. Monitor We’re now shipping a System Monitor app by default By popular demand—and thanks to the hard work of Stanisław—we have a new system monitor app called “Monitor” shipping in Early Access. Monitor provides usage information for your processor, GPU, memory, storage, network, and currently running processes. You can optionally see system information in the panel with Monitor You can also optionally get a ton of glanceable information shown in the panel. There’s currently a lot of work happening to port Monitor to GTK4 and improve its functionality under the Secure Session, so make sure to report any issues you find! Multitasking The Dock is getting a workspace switcher Probably the biggest change to the Pantheon shell since its early inception, the Dock is getting a new workspace switcher! The workspace switcher works in a familiar way to the one you may have seen in the Multitasking View: Your currently open workspaces are represented as tiles with the icons of apps running on them; You can select a workspace to switch to it; You can drag-and-drop workspaces to rearrange them; And you can use the “+” button to create a new blank workspace. One new trick however is that selecting the workspace you’re already on will launch Multitasking View. The new workspace switcher makes it so much more accessible to multitask with just the mouse and get an overview of your workflows without having to first enter the Multitasking View. We’re really excited to hear what people think about it! You can close apps from Multitasking View by swiping up Another very satisfying feature for folks using touch input, you can now swipe up windows in the Multitasking View to close them. This is a really familiar gesture for those of us with Android and iOS devices and feels really natural for managing a big stack of windows without having to aim for a small “x” button. GTK4 Porting We’ve recently landed the port of Tasks to GTK4. So far that comes with a few fixes to tighten up its design, with much more possible in the future. Please make sure to help us test it thoroughly for any regressions! Tasks has a slightly tightened up design We’re also making great progress on porting the panel to GTK4. So far we have branches in review for Nightlight, Bluetooth, Datetime, and Network indicators. Power, Keyboard, and Quick Settings indicators all have in-progress branches. That leaves just Applications, Sound, and Notifications. So far these ports don’t come with major feature changes, but they do involve lots of cleaning up and modernizing of these code bases and in some cases fixing bugs! When the port is finished, we should see immediate performance gains and we’ll have a much better foundation for future releases. You can follow along with our progress porting everything to GTK4 in this GitHub Project. And More When you take a screenshot using keyboard shortcuts or by secondary-clicking an app’s window handle, we now send a notification letting you know that it was succesful and where to find the resulting image. Plus there’s a handy button that opens Files with your screenshot pre-selected. We’re also testing beaconDB as a replacement for Mozilla Location Services (MLS). If you’re not aware, we relied on MLS in previous versions of elementary OS to provide location information for devices that don’t have a GPS radio. Unfortunately Mozilla discontinued the service last June and we’ve been left without a replacement until now. Without these services, not only did maps and weather apps cease to function, but system features like automatic timezone detection and features that rely on sunset and sunrise times no longer work properly. beaconDB offers a drop-in replacement for MLS that uses Wireless networks, bluetooth devices, and cell towers to provide location data when requested. All of its data is crowd-sourced and opt-in and several distributions are now defaulting to using it as their location services data provider. I’ve set up a small sponsorship from elementary on Liberapay to support the project. If you can help support beaconDB either by sponsoring or providing stumbler data, I’d highly encourage you to do so! Sponsors At the moment we’re at 23% of our monthly funding goal and 336 Sponsors on GitHub! Shoutouts to everyone helping us reach our goals here. Your monthly sponsorship funds development and makes sure we have the resources we need to give you the best version of elementary OS we can! Monthly release candidate builds and daily Early Access builds are available to GitHub Sponsors from any tier! Beware that Early Access builds are not considered stable and you will encounter fresh issues when you run them. We’d really appreciate reporting any problems you encounter with the Feedback app or directly on GitHub.
Via Jeremy Keith’s link blog I found this article: Elizabeth Goodspeed on why graphic designers can’t stop joking about hating their jobs. It’s about the disillusionment of designers since the ~2010s. Having ridden that wave myself, there’s a lot of very relatable stuff in there about how design has evolved as a profession. But before we get into the meat of the article, there’s some bangers worth acknowledging, like this: Amazon – the most used website in the world – looks like a bunch of pop-up ads stitched together. lol, burn. Haven’t heard Amazon described this way, but it’s spot on. The hard truth, as pointed out in the article, is this: bad design doesn’t hurt profit margins. Or at least there’s no immediately-obvious, concrete data or correlation that proves this. So most decision makers don’t care. You know what does help profit margins? Spending less money. Cost-savings initiatives. Those always provide a direct, immediate, seemingly-obvious correlation. So those initiatives get prioritized. Fuzzy human-centered initiatives (humanities-adjacent stuff), are difficult to quantitatively (and monetarily) measure. “Let’s stop printing paper and sending people stuff in the mail. It’s expensive. Send them emails instead.” Boom! Money saved for everyone. That’s easier to prioritize than asking, “How do people want us to communicate with them — if at all?” Nobody ever asks that last part. Designers quickly realized that in most settings they serve the business first, customers second — or third, or fourth, or... Shar Biggers [says] designers are “realising that much of their work is being used to push for profit rather than change..” Meet the new boss. Same as the old boss. As students, designers are encouraged to make expressive, nuanced work, and rewarded for experimentation and personal voice. The implication, of course, is that this is what a design career will look like: meaningful, impactful, self-directed. But then graduation hits, and many land their first jobs building out endless Google Slides templates or resizing banner ads...no one prepared them for how constrained and compromised most design jobs actually are. Reality hits hard. And here’s the part Jeremy quotes: We trained people to care deeply and then funnelled them into environments that reward detachment. And the longer you stick around, the more disorienting the gap becomes – especially as you rise in seniority. You start doing less actual design and more yapping: pitching to stakeholders, writing brand strategy decks, performing taste. Less craft, more optics; less idealism, more cynicism. Less work advocating for your customers, more work for advocating for yourself and your team within the organization itself. Then the cynicism sets in. We’re not making software for others. We’re making company numbers go up, so our numbers ($$$) will go up. Which reminds me: Stephanie Stimac wrote about reaching 1 year at Igalia and what stood out to me in her post was that she didn’t feel a pressing requirement to create visibility into her work and measure (i.e. prove) its impact. I’ve never been good at that. I’ve seen its necessity, but am just not good at doing it. Being good at building is great. But being good at the optics of building is often better — for you, your career, and your standing in many orgs. Anyway, back to Elizabeth’s article. She notes you’ll burn out trying to monetize something you love — especially when it’s in pursuit of maintaining a cost of living. Once your identity is tied up in the performance, it’s hard to admit when it stops feeling good. It’s a great article and if you’ve been in the design profession of building software, it’s worth your time. Email · Mastodon · Bluesky