More from Tony Finch's blog
About half a year ago I encountered a paper bombastically titled “the ultimate conditional syntax”. It has the attractive goal of unifying pattern match with boolean if tests, and its solution is in some ways very nice. But it seems over-complicated to me, especially for something that’s a basic work-horse of programming. I couldn’t immediately see how to cut it down to manageable proportions, but recently I had an idea. I’ll outline it under the “penultimate conditionals” heading below, after reviewing the UCS and explaining my motivation. what the UCS? whence UCS out of scope penultimate conditionals dangling syntax examples antepenultimate breath what the UCS? The ultimate conditional syntax does several things which are somewhat intertwined and support each other. An “expression is pattern” operator allows you to do pattern matching inside boolean expressions. Like “match” but unlike most other expressions, “is” binds variables whose scope is the rest of the boolean expression that might be evaluated when the “is” is true, and the consequent “then” clause. You can “split” tests to avoid repeating parts that are the same in successive branches. For example, if num < 0 then -1 else if num > 0 then +1 else 0 can be written if num < 0 then -1 > 0 then +1 else 0 The example shows a split before an operator, where the left hand operand is the same and the rest of the expression varies. You can split after the operator when the operator is the same, which is common for “is” pattern match clauses. Indentation-based syntax (an offside rule) reduces the amount of punctuation that splits would otherwise need. An explicit version of the example above is if { x { { < { 0 then −1 } }; { > { 0 then +1 } }; else 0 } } (This example is written in the paper on one line. I’ve split it for narrow screens, which exposes what I think is a mistake in the nesting.) You can also intersperse let bindings between splits. I doubt the value of this feature, since “is” can also bind values, but interspersed let does have its uses. The paper has an example using let to avoid rightward drift: if let tp1_n = normalize(tp1) tp1_n is Bot then Bot let tp2_n = normalize(tp2) tp2_n is Bot then Bot let m = merge(tp1_n, tp2_n) m is Some(tp) then tp m is None then glb(tp1_n, tp2_n) It’s probably better to use early return to avoid rightward drift. The desugaring uses let bindings when lowering the UCS to simpler constructions. whence UCS Pattern matching in the tradition of functional programming languages supports nested patterns that are compiled in a way that eliminates redundant tests. For example, this example checks that e1 is Some(_) once, not twice as written. if e1 is Some(Left(lv)) then e2 Some(Right(rv)) then e3 None then e4 Being cheeky, I’d say UCS introduces more causes of redundant checks, then goes to great effort to to eliminate redundant checks again. Splits reduce redundant code at the source level; the bulk of the paper is about eliminating redundant checks in the lowering from source to core language. I think the primary cause of this extra complexity is treating the is operator as a two-way test rather than a multi-way match. Splits are introduced as a more general (more complicated) way to build multi-way conditions out of two-way tests. There’s a secondary cause: the tradition of expression-oriented functional languages doesn’t like early returns. A nice pattern in imperative code is to write a function as a series of preliminary calculations and guards with early returns that set things up for the main work of the function. Rust’s ? operator and let-else statement support this pattern directly. UCS addresses the same pattern by wedging calculate-check sequences into if statements, as in the normalize example above. out of scope I suspect UCS’s indentation-based syntax will make programmers more likely to make mistakes, and make compilers have more trouble producing nice error messages. (YAML has put me off syntax that doesn’t have enough redundancy to support good error recovery.) So I wondered if there’s a way to have something like an “is pattern” operator in a Rust-like language, without an offside rule, and without the excess of punctuation in the UCS desugaring. But I couldn’t work out how to make the scope of variable bindings in patterns cover all the code that might need to use them. The scope needs to extend into the consequent then clause, but also into any follow-up tests – and those tests can branch so the scope might need to reach into multiple then clauses. The problem was the way I was still thinking of the then and else clauses as part of the outer if. That implied the expression has to be closed off before the then, which troublesomely closes off the scope of any is-bound variables. The solution – part of it, at least – is actually in the paper, where then and else are nested inside the conditional expression. penultimate conditionals There are two ingredients: The then and else clauses become operators that cause early return from a conditional expression. They can be lowered to a vaguely Rust syntax with the following desugaring rules. The 'if label denotes the closest-enclosing if; you can’t use then or else inside the expr of a then or else unless there’s another intervening if. then expr ⟼ && break 'if expr else expr ⟼ || break 'if expr else expr ⟼ || _ && break 'if expr There are two desugarings for else depending on whether it appears in an expression or a pattern. If you prefer a less wordy syntax, you might spell then as => (like match in Rust) and else as || =>. (For symmetry we might allow && => for then as well.) An is operator for multi-way pattern-matching that binds variables whose scope covers the consequent part of the expression. The basic form is like the UCS, scrutinee is pattern which matches the scrutinee against the pattern returning a boolean result. For example, foo is None Guarded patterns are like, scrutinee is pattern && consequent where the scope of the variables bound by the pattern covers the consequent. The consequent might be a simple boolean guard, for example, foo is Some(n) && n < 0 or inside an if expression it might end with a then clause, if foo is Some(n) && n < 0 => -1 // ... Simple multi-way patterns are like, scrutinee is { pattern || pattern || … } If there is a consequent then the patterns must all bind the same set of variables (if any) with the same types. More typically, a multi-way match will have consequent clauses, like scrutinee is { pattern && consequent || pattern && consequent || => otherwise } When a consequent is false, we go on to try other alternatives of the match, like we would when the first operand of boolean || is false. To help with layout, you can include a redundant || before the first alternative. For example, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || Some(n) => 0 || None => 0 } Alternatively, if foo is { Some(n) && ( n < 0 => -1 || n > 0 => +1 || => 0 ) || None => 0 } (They should compile the same way.) The evaluation model is like familiar shortcutting && and || and the syntax is supposed to reinforce that intuition. The UCS paper spends a lot of time discussing backtracking and how to eliminate it, but penultimate conditionals evaluate straightforwardly from left to right. The paper briefly mentions as patterns, like Some(Pair(x, y) as p) which in Rust would be written Some(p @ Pair(x, y)) The is operator doesn’t need a separate syntax for this feature: Some(p is Pair(x, y)) For large examples, the penultimate conditional syntax is about as noisy as Rust’s match, but it scales down nicely to smaller matches. However, there are differences in how consequences and alternatives are punctuated which need a bit more discussion. dangling syntax The precedence and associativity of the is operator is tricky: it has two kinds of dangling-else problem. The first kind occurs with a surrounding boolean expression. For example, when b = false, what is the value of this? b is true || false It could bracket to the left, yielding false: (b is true) || false Or to the right, yielding true: b is { true || false } This could be disambiguated by using different spellings for boolean or and pattern alternatives. But that doesn’t help for the second kind which occurs with an inner match. foo is Some(_) && bar is Some(_) || None Does that check foo is Some(_) with an always-true look at bar ( foo is Some(_) ) && bar is { Some(_) || None } Or does it check bar is Some(_) and waste time with foo? foo is { Some(_) && ( bar is Some(_) ) || None } I have chosen to resolve the ambiguity by requiring curly braces {} around groups of alternative patterns. This allows me to use the same spelling || for all kinds of alternation. (Compare Rust, which uses || for boolean expressions, | in a pattern, and , between the arms of a match.) Curlies around multi-way matches can be nested, so the example in the previous section can also be written, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || { Some(0) || None } => 0 } The is operator binds tigher than && on its left, but looser than && on its right (so that a chain of && is gathered into a consequent) and tigher than || on its right so that outer || alternatives don’t need extra brackets. examples I’m going to finish these notes by going through the ultimate conditional syntax paper to translate most of its examples into the penultimate syntax, to give it some exercise. Here we use is to name a value n, as a replacement for the |> abs pipe operator, and we use range patterns instead of split relational operators: if foo(args) is { || 0 => "null" || n && abs(n) is { || 101.. => "large" || ..10 => "small" || => "medium" ) } In both the previous example and the next one, we have some extra brackets where UCS relies purely on an offside rule. if x is { || Right(None) => defaultValue || Right(Some(cached)) => f(cached) || Left(input) && compute(input) is { || None => defaultValue || Some(result) => f(result) } } This one is almost identical to UCS apart from the spellings of and, then, else. if name.startsWith("_") && name.tailOption is Some(namePostfix) && namePostfix.toIntOption is Some(index) && 0 <= index && index < arity && => Right([index, name]) || => Left("invalid identifier: " + name) Here are some nested multi-way matches with overlapping patterns and bound values: if e is { // ... || Lit(value) && Map.find_opt(value) is Some(result) => Some(result) // ... || { Lit(value) || Add(Lit(0), value) || Add(value, Lit(0)) } => { print_int(value); Some(value) } // ... } The next few examples show UCS splits without the is operator. In my syntax I need to press a few more buttons but I think that’s OK. if x == 0 => "zero" || x == 1 => "unit" || => "?" if x == 0 => "null" || x > 0 => "positive" || => "negative" if predicate(0, 1) => "A" || predicate(2, 3) => "B" || => "C" The first two can be written with is instead, but it’s not briefer: if x is { || 0 => "zero" || 1 => "unit" || => "?" } if x is { || 0 => "null" || 1.. => "positive" || => "negative" } There’s little need for a split-anything feature when we have multi-way matches. if foo(u, v, w) is { || Some(x) && x is { || Left(_) => "left-defined" || Right(_) => "right-defined" } || None => "undefined" } A more complete function: fn zip_with(f, xs, ys) { if [xs, ys] is { || [x :: xs, y :: ys] && zip_with(f, xs, ys) is Some(tail) => Some(f(x, y) :: tail) || [Nil, Nil] => Some(Nil) || => None } } Another fragment of the expression evaluator: if e is { // ... || Var(name) && Map.find_opt(env, name) is { || Some(Right(value)) => Some(value) || Some(Left(thunk)) => Some(thunk()) } || App(lhs, rhs) => // ... // ... } This expression is used in the paper to show how a UCS split is desugared: if Pair(x, y) is { || Pair(Some(xv), Some(yv)) => xv + yv || Pair(Some(xv), None) => xv || Pair(None, Some(yv)) => yv || Pair(None, None) => 0 } The desugaring in the paper introduces a lot of redundant tests. I would desugar straightforwardly, then rely on later optimizations to eliminate other redundancies such as the construction and immediate destruction of the pair: if Pair(x, y) is Pair(xx, yy) && xx is { || Some(xv) && yy is { || Some(yv) => xv + yv || None => xv } || None && yy is { || Some(yv) => yv || None => 0 } } Skipping ahead to the “non-trivial example” in the paper’s fig. 11: if e is { || Var(x) && context.get(x) is { || Some(IntVal(v)) => Left(v) || Some(BoolVal(v)) => Right(v) } || Lit(IntVal(v)) => Left(v) || Lit(BoolVal(v)) => Right(v) // ... } The next example in the paper compares C# relational patterns. Rust’s range patterns do a similar job, with the caveat that Rust’s ranges don’t have a syntax for exclusive lower bounds. fn classify(value) { if value is { || .. -4.0 => "too low" || 10.0 .. => "too high" || NaN => "unknown" || => "acceptable" } } I tend to think relational patterns are the better syntax than ranges. With relational patterns I can rewrite an earlier example like, if foo is { || Some(< 0) => -1 || Some(> 0) => +1 || { Some(0) || None } => 0 } I think with the UCS I would have to name the Some(_) value to be able to compare it, which suggests that relational patterns can be better than UCS split relational operators. Prefix-unary relational operators are also a nice way to write single-ended ranges in expressions. We could simply write both ends to get a complete range, like >= lo < hi or like if value is > -4.0 < 10.0 => "acceptable" || => "far out" Near the start I quoted a normalize example that illustrates left-aligned UCS expression. The penultimate version drifts right like the Scala version: if normalize(tp1) is { || Bot => Bot || tp1_n && normalize(tp2) is { || Bot => Bot || tp2_n && merge(tp1_n, tp2_n) is { || Some(tp) => tp || None => glb(tp1_n, tp2_n) } } } But a more Rusty style shows the benefits of early returns (especially the terse ? operator) and monadic combinators. let tp1 = normalize(tp1)?; let tp2 = normalize(tp2)?; merge(tp1, tp2) .unwrap_or_else(|| glb(tp1, tp2)) antepenultimate breath When I started writing these notes, my penultimate conditional syntax was little more than a sketch of an idea. Having gone through the previous section’s exercise, I think it has turned out better than I thought it might. The extra nesting from multi-way match braces doesn’t seem to be unbearably heavyweight. However, none of the examples have bulky then or else blocks which are where the extra nesting is more likely to be annoying. But then, as I said before it’s comparable to a Rust match: match scrutinee { pattern => { consequent } } if scrutinee is { || pattern => { consequent } } The || lines down the left margin are noisy, but hard to get rid of in the context of a curly-brace language. I can’t reduce them to | like OCaml because what would I use for bitwise OR? I don’t want presence or absence of flow control to depend on types or context. I kind of like Prolog / Erlang , for && and ; for ||, but that’s well outside what’s legible to mainstream programmers. So, dunno. Anyway, I think I’ve successfully found a syntax that does most of what UCS does, but much in a much simpler fashion.
Recently, Alex Kladov wrote on the TigerBeetle blog about swarm testing data structures. It’s a neat post about randomized testing with Zig. I wrote a comment with an idea that was new to Alex @matklad, so I’m reposing a longer version here. differential testing problems grow / shrink random elements element-wise testing test loop data structure size invariants performance conclusion differential testing A common approach to testing data structures is to write a second reference implementation that has the same API but simpler and/or more obviously correct, though it uses more memory or is slower or less concurrent or otherwise not up to production quality. Then, run the production implementation and the reference implementation on the same sequence of operations, and verify that they produce the same results. Any difference is either a bug in the production implementation (probably) or a bug in the reference implementation (unlucky) or a bug in the tests (unfortunate). This is a straightforward differential testing pattern. problems There are a couple of difficulties with this kind of basic differential testing. grow / shrink The TigerBeetle article talks about adjusting the probabilities of different operations on the data structure to try to explore more edge cases. To motivate the idea, the article talks about adjusting the probabilities of adding or deleting items: If adding and deleting have equal probability, then the test finds it hard to grow the data structure to interesting sizes that might expose bugs. Unfortunately, if the probability of add is greater than del, then the data structure tends to grow without bound. If the probability of del is greater than add, then it tries to shrink from nothing: worse than equal probabilities! They could preload the data structure to test how it behaves when it shrinks, but a fixed set of probabilities per run is not good at testing both growth and shrinkage on the same test run on the same data structure. One way to improve this kind of test is to adjust the probability of add and del dynamically: make add more likely when the data structure is small, and del more likely when it is big. And maybe make add more likely in the first half of a test run and del more likely in the second half. random elements The TigerBeetle article glosses over the question of where the tests get fresh elements to add to the data structure. And its example is chosen so it doesn’t have to think about which elements get deleted. In my experience writing data structures for non-garbage-collected languages, I had to be more deliberate about how to create and destroy elements. That led to a style of test that’s more element-centric, as Alex described it. element-wise testing Change the emphasis so that instead of testing that two implementations match, test that one implementation obeys the expected behaviour. No need to make a drop-in replacement reference implementation! What I typically do is pre-allocate an array of elements, with slots that I can set to keep track of how each element relates to the data structure under test. The most important property is whether the element has been added or deleted, but there might be others related to ordering of elements, or values associated with keys, and so on. test loop Each time round the loop, choose at random an element from the array, and an action such as add / del / get / … Then, if it makes sense, perform the operation on the data structure with the element. For example, you might skip an add action if the element is already in the data structure, unless you can try to add it and expect an error. data structure size This strategy tends to grow the data structure until about 50% of the pre-allocated elements are inserted, then it makes a random walk around this 50% point. Random walks can diverge widely from their central point both in theory and in practice, so this kind of testing is reasonably effective at both growing and (to a lesser extent) shrinking the data structure. invariants I usually check some preconditions before an action, to verify that the data structure matches the expected properties of the chosen element. This can help to detect earlier that an action on one element has corrupted another element. After performing the action and updating the element’s properties, I check the updated properties as a postcondition, to make sure the action had the expected effects. performance John Regehr’s great tutorial, how to fuzz an ADT implementation, recommends writing a checkRep() function that thoroughly verifies a data structure’s internal consistency. A checkRep() function is a solid gold testing tool, but it is O(n) at least and typically very slow. If you call checkRep() frequently during testing, your tests slow down dramatically as your data structure gets larger. I like my per-element invariants to be local and ideally O(1) or O(log n) at worst, so they don’t slow down the tests too much. conclusion Recently I’ve used this pattern to exhibit concurrency bugs in an API that’s hard to make thread-safe. Writing the tests has required some cunning to work out what invariants I can usefully maintain and test; what variety of actions I can use to stress those invariants; and what mix of elements + actions I need so that my tests know which properties of each element should be upheld and which can change. I’m testing multiple implementations of the same API, trying to demonstrate which is safest. Differential testing can tell me that implementations diverge, but not which is correct, whereas testing properties and invariants more directly tells me whether an implementation does what I expect. (Or gives me a useless answer when my tests are weak.) Which is to say that this kind of testing is a fun creative challenge. I find it a lot more rewarding than example-based testing.
I have added syntax highlighting to my blog using tree-sitter. Here are some notes about what I learned, with some complaining. static site generator markdown ingestion highlighting incompatible?! highlight names class names styling code results future work frontmatter templates feed style highlight quality static site generator I moved my blog to my own web site a few years ago. It is produced using a scruffy Rust program that converts a bunch of Markdown files to HTML using pulldown-cmark, and produces complete pages from Handlebars templates. Why did I write another static site generator? Well, partly as an exercise when learning Rust. Partly, since I wrote my own page templates, I’m not going to benefit from a library of existing templates. On the contrary, it’s harder to create new templates that work with a general-purpose SSG than write my own simpler site-specific SSG. It’s miserable to write programs in template languages. My SSG can keep the logic in the templates to a minimum, and do all the fiddly stuff in Rust. (Which is not very fiddly, because my site doesn’t have complicated navigation – compared to the multilevel menus on www.dns.cam.ac.uk for instance.) markdown ingestion There are a few things to do to each Markdown file: split off and deserialize the YAML frontmatter find the <cut> or <toc> marker that indicates the end of the teaser / where the table of contents should be inserted augment headings with self-linking anchors (which are also used by the ToC) Before this work I was using regexes to do all these jobs, because that allowed me to treat pulldown-cmark as a black box: Markdown in, HTML out. But for syntax highlighting I had to be able to find fenced code blocks. It was time to put some code into the pipeline between pulldown-cmark’s parser and renderer. And if I’m using a proper parser I can get rid of a few regexes: after some hacking, now only the YAML frontmatter is handled with a regex. Sub-heading linkification and ToC construction are fiddly and more complicated than they were before. But they are also less buggy: markup in headings actually works now! Compared to the ToC, it’s fairly simple to detect code blocks and pass them through a highlighter. You can look at my Markdown munger here. (I am not very happy with the way it uses state, but it works.) highlighting As well as the tree-sitter-highlight documentation I used femark as an example implementation. I encountered a few problems. incompatible?! I could not get the latest tree-sitter-highlight to work as described in its documentation. I thought the current tree-sitter crates were incompatible with each other! For a while I downgraded to an earlier version, but eventually I solved the problem. Where the docs say, let javascript_language = tree_sitter_javascript::language(); They should say: let javascript_language = tree_sitter::Language::new( tree_sitter_javascript::LANGUAGE ); highlight names I was offended that tree-sitter-highlight seems to expect me to hardcode a list of highlight names, without explaining where they come from or what they mean. I was doubly offended that there’s an array of STANDARD_CAPTURE_NAMES but it isn’t exported, and doesn’t match the list in the docs. You mean I have to copy and paste it? Which one?! There’s some discussion of highlight names in the tree-sitter manual’s “syntax highlighting” chapter, but that is aimed at people who are writing a tree-sitter grammar, not people who are using one. Eventually I worked out that tree_sitter_javascript::HIGHLIGHT_QUERY in the tree-sitter-highlight example corresponds to the contents of a highlights.scm file. Each @name in highlights.scm is a highlight name that I might be interested in. In principle I guess different tree-sitter grammars should use similar highlight names in their highlights.scm files? (Only to a limited extent, it turns out.) I decided the obviously correct list of highlight names is the list of every name defined in the HIGHLIGHT_QUERY. The query is just a string so I can throw a regex at it and build an array of the matches. This should make the highlighter produce <span> wrappers for as many tokens as possible in my code, which might be more than necessary but I don’t have to style them all. class names The tree-sitter-highlight crate comes with a lightly-documented HtmlRenderer, which does much of the job fairly straightforwardly. The fun part is the attribute_callback. When the HtmlRenderer is wrapping a token, it emits the start of a <span then expects the callback to append whatever HTML attributes it thinks might be appropriate. Uh, I guess I want a class="..." here? Well, the highlight names work a little bit like class names: they have dot-separated parts which tree-sitter-highlight can match more or less specifically. (However I am telling it to match all of them.) So I decided to turn each dot-separated highlight name into a space-separated class attribute. The nice thing about this is that my Rust code doesn’t need to know anything about a language’s tree-sitter grammar or its highlight query. The grammar’s highlight names become CSS class names automatically. styling code Now I can write some simple CSS to add some colours to my code. I can make type names green, code span.hilite.type { color: #aca; } If I decide builtin types should be cyan like keywords I can write, code span.hilite.type.builtin, code span.hilite.keyword { color: #9cc; } results You can look at my tree-sitter-highlight wrapper here. Getting it to work required a bit more creativity than I would have preferred, but it turned out OK. I can add support for a new language by adding a crate to Cargo.toml and a couple of lines to hilite.rs – and maybe some CSS if I have not yet covered its highlight names. (Like I just did to highlight the CSS above!) future work While writing this blog post I found myself complaining about things that I really ought to fix instead. frontmatter I might simplify the per-page source format knob so that I can use pulldown-cmark’s support for YAML frontmatter instead of a separate regex pass. This change will be easier if I can treat the html pages as Markdown without mangling them too much (is Markdown even supposed to be idempotent?). More tricky are a couple of special case pages whose source is Handlebars instead of Markdown. templates I’m not entirely happy with Handlebars. It’s a more powerful language than I need – I chose Handlebars instead of Mustache because Handlebars works neatly with serde. But it has a dynamic type system that makes the templates more error-prone than I would like. Perhaps I can find a more static Rust template system that takes advantage of the close coupling between my templates and the data structure that describes the web site. However, I like my templates to be primarily HTML with a sprinkling of insertions, not something weird that’s neither HTML nor Rust. feed style There’s no CSS in my Atom feed, so code blocks there will remain unstyled. I don’t know if feed readers accept <style> tags or if it has to be inline styles. (That would make a mess of my neat setup!) highlight quality I’m not entirely satisfied with the level of detail and consistency provided by the tree-sitter language grammars and highlight queries. For instance, in the CSS above the class names and property names have the same colour because the CSS highlights.scm gives them the same highlight name. The C grammar is good at identifying variables, but the Rust grammar is not. Oh well, I guess it’s good enough for now. At least it doesn’t involve Javascript.
Last year I wrote about inlining just the fast path of Lemire’s algorithm for nearly-divisionless unbiased bounded random numbers. The idea was to reduce code bloat by eliminating lots of copies of the random number generator in the rarely-executed slow paths. However a simple split prevented the compiler from being able to optimize cases like pcg32_rand(1 << n), so a lot of the blog post was toying around with ways to mitigate this problem. On Monday while procrastinating a different blog post, I realised that it’s possible to do better: there’s a more general optimization which gives us the 1 << n special case for free. nearly divisionless Lemire’s algorithm has about 4 neat tricks: use multiplication instead of division to reduce the output of a random number generator modulo some limit eliminate the bias in (1) by (counterintuitively) looking at the lower digits fun modular arithmetic to calculate the reject threshold for (2) arrange the reject tests to avoid the slow division in (3) in most cases The nearly-divisionless logic in (4) leads to two copies of the random number generator, in the fast path and the slow path. Generally speaking, compilers don’t try do deduplicate code that was written by the programmer, so they can’t simplify the nearly-divisionless algorithm very much when the limit is constant. constantly divisionless Two points occurred to me: when the limit is constant, the reject threshold (3) can be calculated at compile time when the division is free, there’s no need to avoid it using (4) These observations suggested that when the limit is constant, the function for random numbers less than a limit should be written: static inline uint32_t pcg32_rand_const(pcg32_t *rng, uint32_t limit) { uint32_t reject = -limit % limit; uint64_t sample; do sample = (uint64_t)pcg32_random(rng) * (uint64_t)limit); while ((uint32_t)(sample) < reject); return ((uint32_t)(sample >> 32)); } This has only one call to pcg32_random(), saving space as I wanted, and the compiler is able to eliminate the loop automatically when the limit is a power of two. The loop is smaller than a call to an out-of-line slow path function, so it’s better all round than the code I wrote last year. algorithm selection As before it’s possible to automatically choose the constantly-divisionless or nearly-divisionless algorithms depending on whether the limit is a compile-time constant or run-time variable, using arcane C tricks or GNU C __builtin_constant_p(). I have been idly wondering how to do something similar in other languages. Rust isn’t very keen on automatic specialization, but it has a reasonable alternative. The thing to avoid is passing a runtime variable to the constantly-divisionless algorithm, because then it becomes never-divisionless. Rust has a much richer notion of compile-time constants than C, so it’s possible to write a method like the follwing, which can’t be misused: pub fn upto<const LIMIT: u32>(&mut self) -> u32 { let reject = LIMIT.wrapping_neg().wrapping_rem(LIMIT); loop { let (lo, hi) = self.get_u32().embiggening_mul(LIMIT); if lo < reject { continue; } else { return hi; } } } assert!(rng.upto::<42>() < 42); (embiggening_mul is my stable replacement for the unstable widening_mul API.) This is a nugatory optimization, but there are more interesting cases where it makes sense to choose a different implementation for constant or variable arguments – that it, the constant case isn’t simply a constant-folded or partially-evaluated version of the variable case. Regular expressions might be lex-style or pcre-style, for example. It’s a curious question of language design whether it should be possible to write a library that provides a uniform API that automatically chooses constant or variable implementations, or whether the user of the library must make the choice explicit. Maybe I should learn some Zig to see how its comptime works.
One of the neat things about the PCG random number generator by Melissa O’Neill is its use of instruction-level parallelism: the PCG state update can run in parallel with its output permutation. However, PCG only has a limited amount of ILP, about 3 instructions. Its overall speed is limited by the rate at which a CPU can run a sequence where the output of one multiply-add feeds into the next multiply-add. … Or is it? With some linear algebra and some AVX512, I can generate random numbers from a single instance of pcg32 at 200 Gbit/s on a single core. This is the same sequence of random numbers generated in the same order as normal pcg32, but more than 4x faster. You can look at the benchmark in my pcg-dxsm repository. skip ahead the insight multipliers trying it out results skip ahead One of the slightly weird features that PCG gets from its underlying linear congruential generator is “seekability”: you can skip ahead k steps in the stream of random numbers in log(k) time. The PCG paper (in section 4.3.1) cites Forrest Brown’s paper, random numbers with arbitrary strides, which explains that the skip-ahead feature is useful for reproducibility of monte carlo simulations. But what caught my eye is the skip-ahead formula. Rephrased in programmer style, state[n+k] = state[n] * pow(MUL, k) + inc * (pow(MUL, k) - 1) / (MUL - 1) the insight The skip-ahead formula says that we can calculate a future state using a couple of multiplications. The skip-ahead multipliers depend only on the LCG multiplier, not on the variable state, nor on the configurable increment. That means that for a fixed skip ahead, we can precalculate the multipliers before compile time. The skip-ahead formula allows us to unroll the PCG data dependency chain. Normally, four iterations of the PCG state update look like, state0 = rng->state state1 = state0 * MUL + rng->inc state2 = state1 * MUL + rng->inc state3 = state2 * MUL + rng->inc state4 = state3 * MUL + rng->inc rng->state = state4 With the skip-ahead multipliers it looks like, state0 = rng->state state1 = state0 * MULs1 + rng->inc * MULi1 state2 = state0 * MULs2 + rng->inc * MULi2 state3 = state0 * MULs3 + rng->inc * MULi3 state4 = state0 * MULs4 + rng->inc * MULi4 rng->state = state4 These state calculations can be done in parallel using NEON or AVX vector instructions. The disadvantage is that calculating future states in parallel requires more multiplications than doing so in series, but that’s OK because modern CPUs have lots of ALUs. multipliers The skip-ahead formula is useful for jumping ahead long distances, because (as Forrest Brown explained) you can do the exponentiation in log(k) time using repeated squaring. (The same technique is used in for modexp in RSA.) But I’m only interested in the first few skip-ahead multipliers. I’ll define the linear congruential generator as: lcg(s, inc) = s * MUL + inc Which is used in PCG’s normal state update like: rng->state = lcg(rng->state, rng->inc) To precalculate the first few skip-ahead multipliers, we iterate the LCG starting from zero and one, like this: MULs0 = 1 MULs1 = lcg(MULs0, 0) MULs2 = lcg(MULs1, 0) MULi0 = 0 MULi1 = lcg(MULi0, 1) MULi2 = lcg(MULi1, 1) My benchmark code’s commentary includes a proof by induction, which I wrote to convince myself that these multipliers are correct. trying it out To explore how well this skip-ahead idea works, I have written a couple of variants of my pcg32_bytes() function, which simply iterates pcg32 and writes the results to a byte array. The variants have an adjustable amount of parallelism. One variant is written as scalar code in a loop that has been unrolled by hand a few times. I wanted to see if standard C gets a decent speedup, perhaps from autovectorization. The other variant uses the GNU C portable vector extensions to calculate pcg32 in an explicitly parallel manner. The benchmark also ensures the output from every variant matches the baseline pcg32_bytes(). results The output from the benchmark harness lists: the function variant either the baseline version or uN for a scalar loop unrolled N times or xN for vector code with N lanes its speed in bytes per nanosecond (aka gigabytes per second) its performance relative to the baseline There are small differences in style between the baseline and u1 functions, but their performance ought to be basically the same. Apple clang 16, Macbook Pro M1 Pro. This compiler is eager and fairly effective at autovectorizing. ARM NEON isn’t big enough to get a speedup from 8 lanes of parallelism. __ 3.66 bytes/ns x 1.00 u1 3.90 bytes/ns x 1.07 u2 6.40 bytes/ns x 1.75 u3 7.66 bytes/ns x 2.09 u4 8.52 bytes/ns x 2.33 x2 7.59 bytes/ns x 2.08 x4 10.49 bytes/ns x 2.87 x8 10.40 bytes/ns x 2.84 The following results were from my AMD Ryzen 9 7950X running Debian 12 “bookworm”, comparing gcc vs clang, and AVX2 vs AVX512. gcc is less keen to autovectorize so it doesn’t do very well with the unrolled loops. (Dunno why u1 is so much slower than the baseline.) gcc 12.2 -march=x86-64-v3 __ 5.57 bytes/ns x 1.00 u1 5.13 bytes/ns x 0.92 u2 5.03 bytes/ns x 0.90 u3 7.01 bytes/ns x 1.26 u4 6.83 bytes/ns x 1.23 x2 3.96 bytes/ns x 0.71 x4 8.00 bytes/ns x 1.44 x8 12.35 bytes/ns x 2.22 clang 16.0 -march=x86-64-v3 __ 4.89 bytes/ns x 1.00 u1 4.08 bytes/ns x 0.83 u2 8.76 bytes/ns x 1.79 u3 10.43 bytes/ns x 2.13 u4 10.81 bytes/ns x 2.21 x2 6.67 bytes/ns x 1.36 x4 12.67 bytes/ns x 2.59 x8 15.27 bytes/ns x 3.12 gcc 12.2 -march=x86-64-v4 __ 5.53 bytes/ns x 1.00 u1 5.53 bytes/ns x 1.00 u2 5.55 bytes/ns x 1.00 u3 6.99 bytes/ns x 1.26 u4 6.79 bytes/ns x 1.23 x2 4.75 bytes/ns x 0.86 x4 17.14 bytes/ns x 3.10 x8 20.90 bytes/ns x 3.78 clang 16.0 -march=x86-64-v4 __ 5.53 bytes/ns x 1.00 u1 4.25 bytes/ns x 0.77 u2 7.94 bytes/ns x 1.44 u3 9.31 bytes/ns x 1.68 u4 15.33 bytes/ns x 2.77 x2 9.07 bytes/ns x 1.64 x4 21.74 bytes/ns x 3.93 x8 26.34 bytes/ns x 4.76 That last result is pcg32 generating random numbers at 200 Gbit/s.
More in programming
I’ve written about how I don’t love the idea of overriding basic computing controls. Instead, I generally favor opting to respect user choice and provide the controls their platform does. Of course, this means platforms need to surface better primitives rather than supplying basic ones with an ability to opt out. What am I even talking about? Let me give an example. The Webkit team just shipped a new API for <input type=color> which provides users the ability to pick colors with wide gamut P3 and alpha transparency. The entire API is just a little bit of declarative HTML: <label> Select a color: <input type="color" colorspace="display-p3" alpha> </label> From that simple markup (on iOS) you get this beautiful, robust color picker. That’s a great color picker, and if you’re choosing colors a lot on iOS respectively and encountering this particular UI a lot, that’s even better — like, “Oh hey, I know how to use this thing!” With a picker like that, how many folks really want additional APIs to override that interface and style it themselves? This is the kind of better platform defaults I’m talking about. A little bit of HTML markup, and boom, a great interface to a common computing task that’s tailored to my device and uniform in appearance and functionality across the websites and applications I use. What more could I want? You might want more, like shoving your brand down my throat, but I really don’t need to see BigFinanceCorp Green™️ as a themed element in my color or date picker. If I could give HTML an aspirational slogan, it would be something along the lines of Mastercard’s old one: There are a few use cases platform defaults can’t solve, for everything else there’s HTML. Email · Mastodon · Bluesky
Today’s my last day at Carta, where I got the chance to serve as their CTO for the past two years. I’ve learned so much working there, and I wanted to end my chapter there by collecting my thoughts on what I learned. (I am heading somewhere, and will share news in a week or two after firming up the communication plan with my new team there.) The most important things I learned at Carta were: Working in the details – if you took a critical lens towards my historical leadership style, I think the biggest issue you’d point at is my being too comfortable operating at a high level of abstraction. Utilizing the expertise of others to fill in your gaps is a valuable skill, but–like any single approach–it’s limiting when utilized too frequently. One of the strengths of Carta’s “house leadership style” is expecting leaders to go deep into the details to get informed and push pace. What I practiced there turned into the pieces on strategy testing and developing domain expertise. Refining my approach to engineering strategy – over the past 18 months, I’ve written a book on engineering strategy (posts are all in #eng-strategy-book), with initial chapters coming available for early release with O’Reilly next month. Fingers crossed, the book will be released in approximately October. Coming into Carta, I already had much of my core thesis about how to do engineering strategy, but Carta gave me a number of complex projects to practice on, and excellent people to practice with: thank you to Dan, Shawna and Vogl in particular! More on this project in the next few weeks. Extract the kernel – everywhere I’ve ever worked, teams have struggled understanding executives. In every case, the executives could be clearer, but it’s not particularly interesting to frame these problems as something the executives need to fix. Sure, that’s true they could communicate better, but that framing makes you powerless, when you have a great deal of power to understand confusing communication. After all, even good communicators communicate poorly sometimes. Meaningfully adopting LLMs – a year ago I wrote up notes on adopting LLMs in your products, based on what we’d learned so far. Since then, we’ve learned a lot more, and LLMs themselves have significantly improved. Carta has been using LLMs in real, business-impacting workflows for over a year. That’s continuing to expand into solving more complex internal workflows, and even more interestingly into creating net-new product capabilities that ought to roll out more widely in the next few months (currently released to small beta groups). This is the first major technology transition that I’ve experienced in a senior leadership role (since I was earlier in my career when mobile internet transitioned from novelty to commodity). The immense pressure to adopt faster, combined with the immense uncertainty if it’s a meaningful change or a brief blip was a lot of fun, and was the inspiration for this strategy document around LLM adoption. Multi-dimensional tradeoffs – a phrase that Henry Ward uses frequent is that “everyone’s right, just at a different altitude.” That idea resonates with me, and meshes well with the ideas of multi-dimensional tradeoffs and layers of context that I find improve decision making for folks in roles that require making numerous, complex decisions. Working at Carta, these ideas formalized from something I intuited into something I could explain clearly. Navigators – I think our most successful engineering strategy at Carta was rolling out the Navigator program, which ensured senior-most engineers had context and direct representation, rather than relying exclusively on indirect representation via engineering management. Carta’s engineering managers are excellent, but there’s always something lost as discussions extend across layers. The Navigator program probably isn’t a perfect fit for particularly small companies, but I think any company with more than 100-150 engineers would benefit from something along these lines. How to create software quality – I’ve evolved my thinking about software quality quite a bit over time, but Carta was particularly helpful in distinguishing why some pieces of software are so hard to build despite having little-to-no scale from a data or concurrency perspective. These systems, which I label as “high essential complexity”, deserve more credit for their complexity, even if they have little in the way of complexity from infrastructure scaling. Shaping eng org costs – a few years ago, I wrote about my mental model for managing infrastructure costs. At Carta, I got to refine my thinking about engineering salary costs, with most of those ideas getting incorporated in the Navigating Private Equity ownership strategy, and the eng org seniority mix model. The three biggest levers are (1) “N-1 backfills”, (2) requiring a business rationale for promotions into senior-most levels, and (3) shifting hiring into cost efficient hiring regions. None of these are the sort of inspiring topics that excite folks, but they are all essential to the long term stability of your organization. Explaining engineering costs to boards/execs – Similarly, I finally have a clear perspective on how to represent R&D investment to boards in the same language that they speak in, which I wrote up here, and know how to do it quickly without relying on any manually curated internal datasets. Lots of smaller stuff, like the no wrong doors policy for routing colleagues to appropriate channels, how to request headcount in a way that is convincing to executives, Act Two rationales for how people’s motivations evolve over the course of long careers (and my own personal career mission to advance the industry, why friction isn’t velocity even though many folks act like it is. I’ve also learned quite a bit about venture capital, fund administration, cap tables, non-social network products, operating a multi-business line company, and various operating models. Figuring out how to sanitize those learnings to share the interesting tidbits without leaking internal details is a bit too painful, so I’m omitting them for now. Maybe some will be shareable in four or five years after my context goes sufficiently stale. As a closing thought, I just want to say how much I’ve appreciated the folks I’ve gotten to work with at Carta. From the executive team (Ali, April, Charly, Davis, Henry, Jeff, Nicole, Vrushali) to my directs (Adi, Ciera, Dan, Dave, Jasmine, Javier, Jayesh, Karen, Madhuri, Sam, Shawna) to the navigators (there’s a bunch of y’all). The people truly are always the best part, and that was certainly true at Carta.
Some major updates to our open-source Automerge library, an introduction to Sketchy Calendars, and a peek at our work on collaborative game development. Also some meta content—a refreshed website, and a talk about how we work.
Test UI outcomes, not API requests. Mock network calls in setup, but assert on what users actually see and experience, not implementation details.
Do you feel that the number of applications needed to land a role has skyrocketed? If so, your instincts are correct. According to a Workday Global Workforce Report in September 2024, job applications are growing at a rate four times faster than job openings. This growth is fuelled by a tight job market as well as the new availability of remote work and online job boards. It’s also one of the results of improved generative AI. Around half of all job seekers use AI tools to create their resumes or fill out applications. More than that, a 2024 survey found that 29 percent of applicants were using AI tools to complete skills tests, while 26 percent employed AI tools to mass apply to positions, regardless of fit or qualifications. This never-before-seen flood of applications poses new hardships for both job candidates and recruiters. Candidates must ensure that their applications stand out enough from the pile to receive a recruiter’s attention. Recruiters, meanwhile, are struggling to manage the sheer number of resumes they receive, and winnow through heaps of irrelevant or unqualified applicants to find the ones they need. These problems worsen if you’re an overseas candidate hoping to find a role in Japan. Japan is a popular country for migrants, thereby increasing the competition for each open position. In addition, recruiters here have set expectations and criteria, some of which can be triggered unknowingly by candidates unfamiliar with the Japanese market. With all this in mind, how can you ensure your resume stands out from the crowd—and is there anything else you can do to pass the screening stage? I interviewed nine recruiters, both external and in-house, to learn how applicants can increase their chances of success. Below are their detailed suggestions on improving your resume, avoiding Japan-specific red flags, and persisting even in the face of rejection. The competition The first questions I asked each recruiter were: How many resumes do you review in a month? How long does it take you to review a resume? Some interviewees work for agencies or independently, while others are employed by the companies they screen applicants for. Surprisingly, where they work doesn’t consistently affect how many resumes they receive. What does affect their numbers is whether they accept candidates from overseas. One anonymous contributor stated the case plainly: “The volume of applications depends on whether the job posting targets candidates in Japan or internationally.” In Japan: we receive around 20–100+ applications within the first three days. Outside of Japan: a single job posting can attract 200–1,000 applications within three days. ”[Because] we are generally only open to current residents of Japan, our total applicant count is around 100 or so in a month,” said Caleb McClain, who is both a Senior Software Engineer and a hiring manager at Lunaris. “In the past, when we accepted applications from abroad it was much higher, though I unfortunately don’t have stats for that period. It was unmanageable for a single person (me) reviewing the applications, though! “Given that I deal with 100 or so per month, I probably spend a bit more time than others screening applications, but it depends. I’ll give every candidate a quick read through within a minute or so and, if I didn’t find a reason to immediately reject them, I’ll spend a few more minutes reading about their experience more deeply. I’ll check out the companies they have listed for their experience if I’m not familiar with them and, if they have a Github or personal projects listed, I’ll also spend a few minutes checking those out.” For companies that accept overseas candidates, the workload is greater. Laine Takahashi, a Talent Acquisition employee at HENNGE, estimated that every month they receive around 200 completed applications for engineering mid-career roles and 270 applications for their Global Internship program. Since their application process starts with a coding test as well as a resume and cover letter, it can take up to two weeks to review, score, and respond to each application. Clement Chidiac, Senior Technical Recruiter at Mercari, explained that the number of resumes he reviews monthly varies widely. “As an example, one of the current roles I am working on received 250+ applications in three weeks. Typically a recruiter at Mercari can work from 5–20 positions at a time, so this gives you an idea.” He also said that his initial quick scan of each resume might take between 5–30 seconds. External recruiters process resumes at a similar rate. Edmund Ho, Principal Consultant for Talisman Corporation, works with around 15 clients a month. To find them, he looks at 20–30 resumes a day, or 600–700 a month, and can only spend 30 seconds to 2 minutes on each one before coming to a decision. Axel Algoet, founder and CEO of InnoHyve, only reviews 200 resumes a month—but “if you count LinkedIn profiles, it’s probably around 1,000.” Why LinkedIn? “I usually start by looking at LinkedIn—the companies they’ve worked at and the roles they’ve had,” Algoet explained. “From there, I can quickly tell whether I’m open to talking with them or not. Since I focus on a very specific segment of roles, I can rapidly identify if a candidate might be a fit for my clients.” Applicant Tracking Systems (ATS) Given the sheer volume of resumes to review and respond to, it’s not surprising that companies are using Applicant Tracking Systems. What’s more unexpected is how few recruiters personally use an ATS or AI when evaluating candidates. Both Ho and Algoet reported that though a high percentage of their clients use an ATS—as many as 90 percent, according to Ho—they themselves don’t use one. Ho in particular emphasized that he manually reads every resume he receives. Lunaris doesn’t use an ATS, “unless you count Notion,” joked McClain. “Open to recommendations!” Koji Hamane, Vice President of Human Resources at KOMOJU, said, “Up to 2023, we were managing the pipeline on a spreadsheet basis, and you cannot do it anymore with 3,000 applications [a year]. So it’s more effective and efficient in terms of tracking where each applicant sits in the recruiting process, but it also facilitates communication among [the members of] the interview panel.” The ATS KOMOJU uses is Workable. “Workable, I mean, you know, it works,” Hamane joked. “It’s much better than nothing. . . . Workable actually shows the valid points of the candidates, highlights characteristics, and evaluates the fit for the required positions, like from a 0 to 100 point basis. It helps, but actually you need to go through the details anyway, to properly assess the candidates.” Chidiac explained that Mercari also uses Workable, which has a feature that matches keywords from the job description to the resume, giving the resume a score. “I’ve never made a decision based on that,” said Chidiac. “It’s an indicator, but it’s not accurate enough yet to use it as a decision-making tool.” For example, it doesn’t screen out non-Japanese speakers when Japanese is a requirement for the role. I think these [ATS] tools are going to be better, and they’re going to work. I think it’s a good idea to help junior recruiters. But I think it has to be used as a ‘decision helper,’ not a decision-making tool. There’s also an element of ethics—do you want to be screened out by a robot? HENNGE uses a different ATS, Greenhouse, mostly to communicate with candidates and send them the results of their application. “ Everything they submit,” said Sonam Choden, HENNGE’s Software Engineer Recruiter, “is actually manually checked by somebody in our team. It’s not that everything is automated for the coding test—the bot only checks if they meet the minimum score. Then there is another [human] screener that will actually look over the test itself. If they pass the coding test, then we have another [human] screener looking through each and every document, both the resume and the cover letter.” How to format your resume The good news is that, according to our interviewees, passing the resume screening doesn’t involve trying to master ATS algorithms. However, since many recruiters are manually evaluating a high number of resume every day, they can spend at most only a few minutes on each one. That’s why it’s critical to make your resume stand out positively from the rest. You can see tips on formatting and good practices in our article on the subject, but below recruiters offer detailed explanations of exactly what they’re looking for—and, importantly, what red flags lead to rejection. Red flags The biggest red flags called out by recruiters are frequent job changes, not having skills required by the position, applications from abroad when no visa support is available, mismatches in salary expectations, and lack of required Japanese language ability. Frequent job changes Jumpiness. Job-hopping. Career-switching. Although they had different names for it, nearly everyone listed frequent job changes as the number one red flag on a candidate’s resume—at least, when applying to jobs in Japan. “There’s a term HR in Japan uses: ‘Oh, this guy is jumpy,’” Clement Chidiac told me. When he asked what they meant by that, they told him it referred to a candidate who had only been in their last job for two years or less. “And my first reaction was like, ‘Is that a bad thing?’ I think in the US, and in most tech companies, people change over every two to three years. I remember at my university in France, I was told you need to change your job externally or internally every three years to grow. But in Japan, there’s still the element of loyalty, right?” It’s changing a little bit, but when I have a candidate, a good candidate, that has had four jobs in the past ten years, I know I’m going to get questioned. . . . If I get a candidate that’s changed jobs three times in the past three years, they’re not likely to pass the screening, especially if they’re overseas. “Which is fair, right?” he added. “Because it’s a bit expensive, it’s a bit of a risk, and [it takes] a bit of time.” Why do Japanese companies feel so strongly on this issue? Some of it is simply history—lifetime employment at a single company was the Japanese ideal until quite recently. But as Chidiac pointed out, hiring overseas candidates represents additional investments in both money and time spent navigating the visa system, so it makes sense for Japanese companies to move more cautiously when doing so. Sayaka Sasaki, who was previously employed as a Sourcing Specialist by Tech Japan Inc., told me that recruiters attempt to use past job history to foresee the future. “A lack of consistency in career history can also lead to rejection,” she said. “Recruiters can often predict a candidate’s future career plans and job-switching tendencies based on their past job-change patterns.” Koji Hamane has another reason for considering job tenure. “When you try to leave some achievement or visible impact, [you have to] take some time in the same job, in the same company. So from that perspective, the tenure of each position on a resume really matters. Even though you say, ‘I have this capability and I have this strength,’ your tenure at each company is very short, and [you] don’t leave an impact on those workplaces.” In this sense, Hamane is not evaluating loyalty for its own sake, but considering tenure as a variable to assess the reproducibility of meaningful achievement. For him, achievement and impact—rather than tenure length itself—are the true signals of qualities such as leadership and resilience. Long-time or regular freelancers may face similar scrutiny. Though Chidiac is reluctant to call freelancing a red flag, he acknowledged that it can cause problems. “[With] an engineer that’s been doing freelance for the past three or four years, I know I’m going to get pushback from the hiring team, because they might have worked on three-, four-, five-month projects. They might not have the depth of knowledge that companies on a large scale might want to hire.” Also my question is, if that person has been working on their own for three or four years, how are they going to work in the team? How long are they going to stay with us? Are they going to be happy being part of a company and then maybe having to come to the office, that kind of thing? He gave an example: “If you get 100 applicants for backend engineer roles, it’s sad, but you’re going to go with the ones that fit the most traditional background. If I’m hiring and I’m getting five candidates from PayPay . . . I might prioritize these people as opposed to a freelancer that’s based out of Spain and wants to relocate to Japan, because there are a lot of question marks. That’s the reality of the candidate pool. “Now, if the freelancer in Spain has the exact experience that I want, and I don’t have other applicants, then yeah, of course I’ll talk to that person. I’ll take time to understand [their reasons].” How to “fix” job-hopping on your resume If you have changed jobs frequently, is rejection guaranteed? Not necessarily. These recruiters also offered a host of tips to compensate for job-hopping, freelancing stints, or gaps in your work history. The biggest tip: include an explanation on your resume. Edmund Ho advises offering a “reason for leaving” for short-term jobs, defining short-term as “less than three years.” For example, if the job was a limited contract role, then labelling it as such will prevent Japanese companies from drawing the conclusion that you left prematurely. Lay-offs and failed start-ups will also be looked upon more benevolently than simply quitting. In addition, Ho suggested that those with difficult resumes avail themselves of an agent or recruiter. Since the recruiter will contact the company directly, they have the chance to advocate and explain your job history better than the resume alone can. Sasaki also feels that explanations can help, but added a caveat: “Being honest about what you did during a gap period is not a bad thing. However, it is important to present it in a positive light. For example, if you traveled abroad or spent time at your family home during the gap period, you could write something like this: ‘Once I start a new job, it will be difficult to take a long vacation. So, I took advantage of this break to visit [destination], which I had always dreamed of seeing. Experiencing [specific highlight] was a lifelong goal, and it helped me refresh myself while boosting my motivation for work.’ “If the gap period lasted for more than a year, it is necessary to provide a convincing explanation for the hiring manager. For instance, you could write, ‘I used this time to enhance my skills by studying [specific subject] and preparing for [certification].’ If you have actually obtained a qualification, that would be a perfect way to present your time productively.” Hamane answered the question quite differently. “Do you gamble?” he asked me. He went on: “ When I say ‘gamble,’ ultimately recruiting is decision-making under uncertainty, right? It comes with risks. But the most important question is, what are the downside risks and upside risks?” “In the game of hiring,” Hamane explained, “employers are looking for indicators of future performance. Tenure, to me, is not inherently valuable, but serves as a variable to assess whether a candidate had the opportunity to leave a meaningful impact. It’s not about loyalty or raw length of time, but about whether qualities like resilience or leadership had the chance to emerge. Those qualities often require time. However, I don’t judge the number of years on its own—what matters is whether there is evidence of real contributions.” A shorter tenure with clear impact can be just as strong a signal as longer service. That’s why I view tenure not categorically, but contextually—as one indicator among others. If possible, then, a candidate should focus on highlighting their work contributions and unique strengths in their resume, which can counterbalance the perceived “downside risk” of job-hopping. Incompatibility with the job description Most other red flags can be categorized as “incompatible with the job description.” This includes: Not possessing the required skills Applying from abroad when the position doesn’t offer visa support Mismatch in salary expectations Not speaking Japanese Many of the resumes recruiters receive are wholly unsuited for the position. Hamane estimated that 70 percent of the resumes his department reviews are essentially “random applications.” Almost all the applications are basically not qualified. One of the major reasons why is the Internet. The Internet enables us to apply for any job from anywhere, right? So there are so many applications with no required skills. . . . From my perspective, they are applying on a batch basis, like mass applications. Even if the candidate has the required job skills, if they’re overseas and the position doesn’t offer visa support, their resume almost certainly won’t pass. Caleb McClain, whose company is currently hiring only domestically, said, “The most common reason [for rejection] is the person is applying from abroad. . . . After that, if there’s just a clear skills mismatch, we won’t move forward with them.” Axel Algoet pointed out that nationality can be a problem even if the company is open to hiring from overseas. “I support many companies in the space, aerospace, and defense industries,” he said, “and they are not allowed to hire candidates from certain countries.” It’s important to comprehend any legal issues surrounding sensitive industries before applying, to save both your own and the company’s time. He also mentioned that, while companies do look for candidates with experience at top enterprises, a prestigious background can actually be a red flag—-mostly in terms of compensation. Japanese tech companies on average pay lower wages than American businesses, and a mismatch in expectations can become a major stumbling block in the application process overall. “Especially [for] candidates coming from companies like Indeed or some foreign firms,” Algoet said, “if I know I won’t be able to match or beat their current salary, I tell them upfront.” Not speaking Japanese is another common stumbling block. Companies have different expectations of candidates when it comes to Japanese language ability. Algoet said that, although in his own niche Japanese often isn’t required at all, a Japanese level below JLPT N2 can be a problem for other roles. Sasaki agreed that speaking Japanese to at least the JLPT N3 level would open more doors. Anticipating potential rejection points If you can anticipate why recruiters might reject you, you can structure your resume accordingly, highlighting your strengths while deemphasizing any weak points. For example, if you don’t live in Japan but do speak Japanese, it’s important to bring attention to that fact. “Something that’s annoying,” said Chidiac, “that I’m seeing a lot from a hiring manager point of view, is that they sort of anticipate or presume things. . . . ‘That person has only been in Japan for a year, they can’t speak Japanese.’ But there are some people that have been [going to] Japanese school back home.” That’s why he urges candidates to clearly state both their language ability and their connections to Japan in their resume whenever possible. Chidiac also mentioned seniority issues. “It’s important that you highlight any elements of seniority.” However, he added, “Seniority means different things depending on the environment.” That’s why context is critical in your resume. If you’ve worked for a company in another country or another industry, the recruiter may not intuitively know much about the scale or complexity of the projects you’ve worked on. Without offering some context—the size of the project, the size of the team, the technologies involved, etc.—it’s difficult for recruiters to judge. If you contextualize your projects properly, though, Chidiac believes that even someone with relatively few years of experience may still be viewed favorably for higher roles. If you’ve led a very strong project, you might have the seniority we want. Finally, Edmund Ho suggested an easy trick for those without a STEM degree: just put down the university you graduated from, and not your major. “It’s cheating!” he said with a chuckle. Green flags Creating a great resume isn’t just about avoiding pitfalls. Your resume may also be missing some of the green flags recruiters get excited to see, which can open doors or lead to unexpected offers. Niche skills Niche skills were cited by several as not only being valuable in and of themselves, but also being a great way to open otherwise closed doors. Even when the job description doesn’t call for your unusual ability or experience, it’s probably worth including them in your resume. “I’ll of course take into consideration the requirements as written in our current open listings,” said McClain, “as that represents the core of what we are looking for at any given time. However, I also try to keep an eye out for interesting individuals with skills or experience that may benefit us in ways we haven’t considered yet, or match well with projects that aren’t formally planned but we are excited about starting when we have the time or the right people.” Chidiac agrees that he takes special note of rare skills or very senior candidates on a resume. “We might be able to create an unseeable headcount to secure a rare talent. . . . I think it’s important to have that mindset, especially for niche areas. Machine learning is one that comes to mind, but it could also be very senior [candidates], like staff level or principal level engineers, or people coming from very strong companies, or people that solve problems that we want to solve at the moment, that kind of thing.” I call it the opportunistic approach, like the unusual path, but it’s important to have that in mind when you apply for a company, because you might not be a fit for a role now, but you might not be aware that a role is going to open soon. Sasaki pointed out that niche skills can compensate for an otherwise relatively weak resume, or one that would be bypassed by more traditional Japanese companies. “If the company you are applying to is looking for a niche skill set that only you possess, they will want to speak with you in an interview. So don’t lose hope!” Tailoring to the job description “I don’t think there’s a secret recipe to automatically pass the resume screening, because at the end of the day, you need to match the job, right?” said Chidiac. “But I’ve seen people that use the same resume for different roles, and sometimes it’s missing [relevant] experience or specific keywords. So I think it’s important to really read the job description and think about, ‘Okay, these are all the main skills they want. Let me highlight these in some way.’” If you’re a cloud infrastructure engineer, but you’ve done a lot of coding in the past, or you use a specific technology but it doesn’t show on your CV, you may be automatically rejected either by the recruiter or by the [ATS]. But if you make sure that, ‘Oh yeah, I’ve seen the need for coding skill. I’m going to add that I was a software engineer when I started and I’m doing coding on my side project,’ that will help you with the screening. It’s not necessary to entirely remake your resume each time, Chidiac believes, but you should at least ensure that at the top of the resume you highlight the skills that match the job description. Connections to Japan While most of this advice would be relevant anywhere in the world, recruiters did offer one additional tip for applying in Japan—emphasizing your connection to the country. “Whenever a candidate overseas writes a little thing about any ties to Japan, it usually helps,” said Chidiac. For example, he believes that it helps to highlight your Japanese language ability at the top of your resume. [If] someone writes like, ‘I want to come to Japan,’ ‘I’ve been going to Japanese school for the last five years,’ ‘I’ve got family in Japan,’ . . . that kind of stuff usually helps. Laine Takahashi confirmed that HENNGE shows extra interest in those kinds of candidates. “Either in the cover letter or the CV,” she said, “if they’re not living in Japan, we want them to write about their passion for coming to Japan.” Ho went so far as to state that every overseas candidate he’d helped land a job in Japan had either already learned some Japanese, or had an interest in Japanese culture. Tourists who’d just enjoyed traveling in Japan were less successful, he’d found. How important is a cover letter? Most recruiters had similar advice for candidates, but one serious point of contention arose: cover letters. Depending on their company and hiring style, interviewees’ opinions ranged widely on whether cover letters were necessary or helpful. Cover letters aren’t important “I was trying to remember the last time I read a cover letter,” said Clement Chidiac, “and I honestly don’t think I’ve ever screened an application based on the cover letter.” Instead, Mercari typically requests a resume and poses some screening questions. Chidiac thought this might be a controversial opinion to take, but it was echoed strongly by around half of the other interviewees. When applying to jobs in Japan, there’s no need to write a cover letter, Edmund Ho told me. “Companies in Japan don’t care!” He then added, “One company, HENNGE, uses cover letters. But you don’t need,” he advised, “to write a fancy cover letter.” “I never ask for cover letters,” said Axel Algoet. “Instead, I usually set up a casual twenty-minute call between the hiring manager and the candidate, as a quick intro to decide if it’s worth moving forward with the interview process.” Getting to skip the cover letter and go straight to an early-stage interview is a major advantage Algoet is able to offer his candidates. “That said,” he added, “if a candidate is rejected at the screening stage and I feel the client is making a mistake, we sometimes work on a cover letter together to give it another shot.” Cover letters are extremely important According to Sayaka Sasaki, though, Japanese companies don’t just expect cover letters—they read them quite closely. “Some people may find this hard to believe,” said Sasaki, “but many Japanese companies carefully analyze aspects of a candidate’s personality that cannot be directly read from the text of a cover letter. They expect to see respect, humility, enthusiasm, and sincerity reflected in the writing.” Such companies also expect, or at least hope for, brevity and clarity. “Long cover letters are not a good sign,” said Koji Hamane. “You need to be clear and concise.” He does appreciate cover letters, though, especially for junior candidates, who have less information on their resume. “It supplements [our knowledge of] the candidate’s objectives, and helps us to verify the fit between the candidate’s motivation and the job and the company.” Caleb McClain feels strongly that a good cover letter is the best way for a candidate to stand out from a crowd. “After looking at enough resumes,” he said, “you start to notice similarities and patterns, and as the resume screener I feel a bit of exhaustion over trying to pick out what makes a person unique or better-suited for the position than another.” A well-written and personal cover letter that expresses genuine interest in joining ‘our’ team and company and working on ‘our’ projects will make you stand out and, assuming you meet the requirements otherwise, I will take that interest into serious consideration. “For example,” McClain continued, “we had an applicant in the past who wrote about his experience using our e-commerce site, SolarisJapan, many years ago, and his positive impressions of shopping there. Others wrote about their interests which clearly align with our businesses, or about details from our TokyoDev company profile that appealed to them.” McClain urged candidates to “really tie your experience and interests into what the company does, show us why you’re the best fit! Use the cover letter to stand out in the crowd and show us who you are in ways that a standard resume cannot. If you have interesting projects on Github or blogs on technical topics, share them! But of course,” he added, “make sure they are in a state where you’d want others to read them.” What to avoid in your cover letter “However,” McClain also cautioned, “[cover letters are] a double-edged sword, and for as many times as they’ve caused an application to rise to the top, they’ve also sunk that many.” For this reason, it’s best not to attach a cover letter unless one is specifically requested. Since cover letters are extremely important to some recruiters, however, you should have a good one prepared in advance—and not one authored by an AI tool. “I sometimes receive cover letters,” McClain told me, “that are very clearly written by AI, even going so far as to leave the prompt in the cover letter. Others simply rehash points from their resume, which is a shame and feels like a waste. This is your chance to really sell yourself!” He wasn’t the only recruiter who frowned on using AI. “Avoid simply copying and pasting AI-generated content into your cover letter,” Sasaki advised. “At the very least, you should write the base structure yourself. Using AI to refine your writing is acceptable, but hiring managers tend to dislike cover letters that clearly appear to be AI-written.” Laine Takahashi and Sonam Choden at HENNGE have also received their share of AI-generated letters. Sometimes, Choden explained, the use of AI is blatantly obvious, because the places where the company or applicant’s name should be written aren’t filled out. That doesn’t mean they’re opposed to all use of AI, though. “[The screeners] do not have a problem with the usage of AI technology. It’s just that [you should] show a bit more of your personality,” Takahashi said. She thinks it’s acceptable to use AI “just for making the sentences a bit more pretty, for example, but the story itself is still yours.” A bigger mistake would be not writing a cover letter at all. “There are cases,” Takahashi explained, “where perhaps the candidate thought that we actually don’t look at or read the cover letter.” They sent the CV, and then the cover letter was like, ‘Whatever, you’re not going to read this anyway.’ That’s an automatic fail from our side. “We do understand,” said Choden, “that most developers now think cover letters are an outdated type of process. But for us, there is a lot of benefit in actually going through with the cover letter, because it’s really hard to judge someone by one piece like a resume, right? So the cover letter is perfect to supplement with things that you might not be able to express in a one-page CV.” Other tips for success The interviewees offered a host of other tips to help candidates advance in the application process. Recruiters vs job boards There are pros and cons to working with a recruiter as opposed to applying directly. Partnering with a recruiter can be a complex process in its own right, and candidates should not expect recruiters to guarantee a specific placement or job. Edmund Ho pointed out some of the advantages of working with a recruiter from the start of your job search. Not only can they help fix your resume, or call a company’s HR directly if you’re rejected, but these services are free. After all, external recruiters are paid only if they successfully place you with a company. Axel Algoet also recommended candidates find a recruiter, but he offered a few caveats to this general advice. “Many candidates are unaware of the candidate ownership rule—which means that when a recruiter submits your application, they ‘own’ it for the next 12–18 months. There’s nothing you can do about it after that point.” By that, he means that the agency you work with will be eligible for a fee if you are hired within that timeframe. Other agencies typically won’t submit your application if it is currently “owned” by another. This affects TokyoDev as well: if you apply to a company with a recruiter, and then later apply to another role at that company via TokyoDev within 12 months of the original application, the recruiter receives the hiring fee rather than TokyoDev. That’s why, Algoet said, you should make sure your recruiter is a good fit and can represent you properly. “If you feel they can’t,” he suggested, “walk away.” And if you have less than three years of experience, he suggests skipping a recruiter entirely. “Many companies don’t want to pay recruitment fees for junior candidates,” he added, “but that doesn’t mean they won’t hire you. Reach out to hiring managers directly.” From the internal recruiter’s perspective, Sonam Choden is in favor of candidates who come through job boards. “I think we definitely have more success with job boards where people are actively directly applying, rather than candidates from agents. In terms of the requirements, the candidates introduced by agents have the experience and what we’re looking for, but those candidates introduced by agents might not necessarily be looking for work, or even if they are . . . [HENNGE] might not be their first choice.” Laine Takahashi agreed and cited TokyoDev as one of HENNGE’s best sources for candidates. We’ve been using TokyoDev for the longest time . . . before the [other] job boards that we’re using now. I think TokyoDev was the one that gave us a good head start for hiring inside Japan. “And now we’re expanding to other job boards as well,” she said, “but still, TokyoDev is [at] the top, definitely.” Follow up Ho casually nailed the dilemma around sending a message or email to follow up on your application. “It’s always best to follow up if you don’t hear back,” he said, “but if you follow up too much, it’s irritating.” The question is, how much is too much? When is it too soon to message a recruiter or hiring manager? Ho gave a concrete suggestion: “Send a message after three days to one week.” For Chidiac, following up is a strategy he’s used himself to great effect. “Something that I’ve always done when I look for a job is ping people on LinkedIn, trying to anticipate who is the hiring manager for that role, or who’s the recruiter for that role, and say ‘Hey, I want to apply,’ or ‘I’ve applied.’” [I’ve said] ‘I know I might not be able to do this and this and that, but I’ve done this and this and this. Can we have a quick chat? Do you need me to tailor my CV differently? Do you have any other roles that you think would be a good fit?’ And then, follow up frequently. “This is something that’s important,” he added, “showing that you’ve researched about the company, showing that you’ve attended meetups from time to time, checking the [company] blogs as well. I’ve had people that just said, ‘Hey, I’ve seen on the blogs that you’re working on this. This is what I’ve done in my company. If you’re hiring [for] this team, let me know, right?’ So that could be a good tip to stand out from other applicants. [But] I think there’s no rule. It’s just going to be down to individuals.” “You might,” he continued, “end up talking to someone who’s like, ‘Hey, don’t ever contact me again.’ As an agency recruiter that happened to me, someone said, ‘How did you get my phone [number]? Don’t ever call me again.’ . . . [But] then a lot of the time it’s like, ‘Oh, we’re both French, let’s help each other out,’ or, ‘Oh, yeah, we were at the same university,’ or ‘Hey, I know you know that person.’” Chidiac gave a recent example of a highly-effective follow-up message. “He used to work in top US tech companies for the past 25 years. [After he applied to Mercari], the person messaged me out of the blue: ‘I’m in Japan, I’m semi-retired, I don’t care about money. I really like what Mercari is doing. I’ve done X and Y at these companies.’ . . . So yeah, I was like, I don’t have a role, but this is an exceptional CV. I’ll show it to the hiring team.” There are a few caveats to this advice, however. First, a well-researched, well-crafted follow-up message is necessary to stand out from the crowd—and these days, there is quite a crowd. “Oh my goodness,” Choden exclaimed when I brought up the subject. “I actually wanted to write a post on LinkedIn, apologizing to people for not being able to get back to them, because of the amount of requests to connect and all related to the positions that we have at HENNGE.” Takahashi and Choden explained that many of these messages are attempts to get around the actual hiring process. “Sometimes,” Choden said, “when I do have the time, I try to redirect them. ‘Oh, please, apply here, or go directly to the site,’ because we can’t really do anything, they have to start with the coding test itself. . . . I do look at them,” Choden went on, “and if they’re actually asking a question that I can help with, then I’m more than happy to reply.” Nonetheless, a few candidates have attempted to go over their heads. Sometimes we have some candidates who are asking for updates on their application directly from our CEO. It’s quite shocking, because they send it to his work email as well. “And then he’s like, ‘Is anybody handling this? Why am I getting this email?’,” Choden related. Other applicants have emailed random HENNGE employees, or even members of the overseas branch in Taiwan. Needless to say, such candidates don’t endear themselves to anyone on the hiring team. Be persistent “I know a bunch of people,” Chidiac told me, “that managed to land a job because they’ve tried harder going to meetups, reaching out to people, networking, that kind of thing.” One of those people was Chidiac himself, who in 2021 was searching for an in-house recruiter position in Japan, while not speaking Japanese. In his job hunt, Chidiac was well aware that he faced some major disadvantages. “So I went the extra mile by contacting the company directly and being like, ‘This is what I’ve done, I’ve solved these problems, I’ve done this, I’ve done that, I know the Japanese market . . . [but] I don’t speak Japanese.’” There’s a bit of a reality check that everyone has to have on what they can bring to the table and how much effort they need to [put forth]. You’re going to have to sell yourself and reach out and find your people. “Does it always work? No. Does it often work? No. But it works, right?” said Chidiac with a laugh. “Like five percent of the time it works every time. But you need to understand that there are some markets that are tougher than others.” Ho agreed that job-hunters, particularly candidates who are overseas hoping to work in Japan for the first time, face a tough road. He recommended applying to as many jobs as possible, but in a strictly organized way. “Make an Excel sheet for your applications,” he urged. Such a spreadsheet should track your applications, when you followed up on those applications, and the probation period for reapplying to that company when you receive a rejection. Most importantly, Ho believes candidates should maintain a realistic, but optimistic, view of the process. “Keep a longer mindset,” he suggested. “Maybe you don’t get an offer the first year, but you do the second year.” Conclusion Given the staggering number of applications recruiters must process, and the increasing competition for good roles—especially those open to candidates overseas—it’s easy to become discouraged. Nonetheless, Japan needs international developers. Given Japan’s demographics, as well as the government’s interest in implementing AI and digital transformation (DX) solutions for social problems, that fact won’t change anytime soon. We at TokyoDev suggest that candidates interested in working in Japan adopt two basic approaches. First, follow the advice in this article and also in our resume-writing guide to prevent your resume from being rejected for common flaws. You can highlight niche skills, write an original cover letter, and send appropriate follow-up messages to the recruiters and hiring managers you hope to impress. Second, persistence is key. The work culture in Japan is evolving and there are more openings for new candidates. Japan’s startup scene is also burgeoning, and modern tech companies—such as Mercari—continue to grow and hire. If your long-term goal is to work in Japan, then it’s worth investing the time to keep applying. That said, hopefully the suggestions offered above will help turn what might have been a lengthy job-hunt into a quicker and more successful search. To apply to open positions right now, see our job board. If you want to hear more tips from other international developers in Japan, check out the TokyoDev Discord. We also have articles with more advice on job hunting, relocating to Japan, and life in Japan.