More from Computer Things
Hi nerds, I'm back from Systems Distributed! I'd heartily recommend it, wildest conference I've been to in years. I have a lot of work to catch up on, so this will be a short newsletter. In an earlier version of my talk, I had a gag about unit tests. First I showed the test f([1,2,3]) == 3, then said that this was satisfied by f(l) = 3, f(l) = l[-1], f(l) = len(l), f(l) = (129*l[0]-34*l[1]-617)*l[2] - 443*l[0] + 1148*l[1] - 182. Then I progressively rule them out one by one with more unit tests, except the last polynomial which stubbornly passes every single test. If you're given some function of f(x: int, y: int, …): int and a set of unit tests asserting specific inputs give specific outputs, then you can find a polynomial that passes every single unit test. To find the gag, and as SMT practice, I wrote a Python program that finds a polynomial that passes a test suite meant for max. It's hardcoded for three parameters and only finds 2nd-order polynomials but I think it could be generalized with enough effort. The code Full code here, breakdown below. from z3 import * # type: ignore s1, s2 = Solver(), Solver() Z3 is just the particular SMT solver we use, as it has good language bindings and a lot of affordances. As part of learning SMT I wanted to do this two ways. First by putting the polynomial "outside" of the SMT solver in a python function, second by doing it "natively" in Z3. I created two solvers so I could test both versions in one run. a0, a, b, c, d, e, f = Consts('a0 a b c d e f', IntSort()) x, y, z = Ints('x y z') t = "a*x+b*y+c*z+d*x*y+e*x*z+f*y*z+a0" Both Const('x', IntSort()) and Int('x') do the exact same thing, the latter being syntactic sugar for the former. I did not know this when I wrote the program. To keep the two versions in sync I represented the equation as a string, which I later eval. This is one of the rare cases where eval is a good idea, to help us experiment more quickly while learning. The polynomial is a "2nd-order polynomial", even though it doesn't have x^2 terms, as it has xy and xz terms. lambdamax = lambda x, y, z: eval(t) z3max = Function('z3max', IntSort(), IntSort(), IntSort(), IntSort()) s1.add(ForAll([x, y, z], z3max(x, y, z) == eval(t))) lambdamax is pretty straightforward: create a lambda with three parameters and eval the string. The string "a*x" then becomes the python expression a*x, a is an SMT symbol, while the x SMT symbol is shadowed by the lambda parameter. To reiterate, a terrible idea in practice, but a good way to learn faster. z3max function is a little more complex. Function takes an identifier string and N "sorts" (roughly the same as programming types). The first N-1 sorts define the parameters of the function, while the last becomes the output. So here I assign the string identifier "z3max" to be a function with signature (int, int, int) -> int. I can load the function into the model by specifying constraints on what z3max could be. This could either be a strict input/output, as will be done later, or a ForAll over all possible inputs. Here I just use that directly to say "for all inputs, the function should match this polynomial." But I could do more complicated constraints, like commutativity (f(x, y) == f(y, x)) or monotonicity (Implies(x < y, f(x) <= f(y))). Note ForAll takes a list of z3 symbols to quantify over. That's the only reason we need to define x, y, z in the first place. The lambda version doesn't need them. inputs = [(1,2,3), (4, 2, 2), (1, 1, 1), (3, 5, 4)] for g in inputs: s1.add(z3max(*g) == max(*g)) s2.add(lambdamax(*g) == max(*g)) This sets up the joke: adding constraints to each solver that the polynomial it finds must, for a fixed list of triplets, return the max of each triplet. for s, func in [(s1, z3max), (s2, lambdamax)]: if s.check() == sat: m = s.model() for x, y, z in inputs: print(f"max([{x}, {y}, {z}]) =", m.evaluate(func(x, y, z))) print(f"max([x, y, z]) = {m[a]}x + {m[b]}y", f"+ {m[c]}z +", # linebreaks added for newsletter rendering f"{m[d]}xy + {m[e]}xz + {m[f]}yz + {m[a0]}\n") Output: max([1, 2, 3]) = 3 # etc max([x, y, z]) = -133x + 130y + -10z + -2xy + 62xz + -46yz + 0 max([1, 2, 3]) = 3 # etc max([x, y, z]) = -17x + 16y + 0z + 0xy + 8xz + -6yz + 0 I find that z3max (top) consistently finds larger coefficients than lambdamax does. I don't know why. Practical Applications Test-Driven Development recommends a strict "red-green refactor" cycle. Write a new failing test, make the new test pass, then go back and refactor. Well, the easiest way to make the new test pass would be to paste in a new polynomial, so that's what you should be doing. You can even do this all automatically: have a script read the set of test cases, pass them to the solver, and write the new polynomial to your code file. All you need to do is write the tests! Pedagogical Notes Writing the script took me a couple of hours. I'm sure an LLM could have whipped it all up in five minutes but I really want to learn SMT and LLMs may decrease learning retention.1 Z3 documentation is not... great for non-academics, though, and most other SMT solvers have even worse docs. One useful trick I use regularly is to use Github code search to find code using the same APIs and study how that works. Turns out reading API-heavy code is a lot easier than writing it! Anyway, I'm very, very slowly feeling like I'm getting the basics on how to use SMT. I don't have any practical use cases yet, but I wanted to learn this skill for a while and glad I finally did. Caveat I have not actually read the study, for all I know it could have a sample size of three people, I'll get around to it eventually ↩
No newsletter next week I’ll be speaking at Systems Distributed. My talk isn't close to done yet, which is why this newsletter is both late and short. Solving LinkedIn Queens in SMT The article Modern SAT solvers: fast, neat and underused claims that SAT solvers1 are "criminally underused by the industry". A while back on the newsletter I asked "why": how come they're so powerful and yet nobody uses them? Many experts responded saying the reason is that encoding SAT kinda sucked and they rather prefer using tools that compile to SAT. I was reminded of this when I read Ryan Berger's post on solving “LinkedIn Queens” as a SAT problem. A quick overview of Queens. You’re presented with an NxN grid divided into N regions, and have to place N queens so that there is exactly one queen in each row, column, and region. While queens can be on the same diagonal, they cannot be adjacently diagonal. (Important note: Linkedin “Queens” is a variation on the puzzle game Star Battle, which is the same except the number of stars you place in each row/column/region varies per puzzle, and is usually two. This is also why 'queens' don’t capture like chess queens.) Ryan solved this by writing Queens as a SAT problem, expressing properties like "there is exactly one queen in row 3" as a large number of boolean clauses. Go read his post, it's pretty cool. What leapt out to me was that he used CVC5, an SMT solver.2 SMT solvers are "higher-level" than SAT, capable of handling more data types than just boolean variables. It's a lot easier to solve the problem at the SMT level than at the SAT level. To show this, I whipped up a short demo of solving the same problem in Z3 (via the Python API). Full code here, which you can compare to Ryan's SAT solution here. I didn't do a whole lot of cleanup on it (again, time crunch!), but short explanation below. The code from z3 import * # type: ignore from itertools import combinations, chain, product solver = Solver() size = 9 # N Initial setup and modules. size is the number of rows/columns/regions in the board, which I'll call N below. # queens[n] = col of queen on row n # by construction, not on same row queens = IntVector('q', size) SAT represents the queen positions via N² booleans: q_00 means that a Queen is on row 0 and column 0, !q_05 means a queen isn't on row 0 col 5, etc. In SMT we can instead encode it as N integers: q_0 = 5 means that the queen on row 0 is positioned at column 5. This immediately enforces one class of constraints for us: we don't need any constraints saying "exactly one queen per row", because that's embedded in the definition of queens! (Incidentally, using 0-based indexing for the board was a mistake on my part, it makes correctly encoding the regions later really painful.) To actually make the variables [q_0, q_1, …], we use the Z3 affordance IntVector(str, n) for making n variables at once. solver.add([And(0 <= i, i < size) for i in queens]) # not on same column solver.add(Distinct(queens)) First we constrain all the integers to [0, N), then use the incredibly handy Distinct constraint to force all the integers to have different values. This guarantees at most one queen per column, which by the pigeonhole principle means there is exactly one queen per column. # not diagonally adjacent for i in range(size-1): q1, q2 = queens[i], queens[i+1] solver.add(Abs(q1 - q2) != 1) One of the rules is that queens can't be adjacent. We already know that they can't be horizontally or vertically adjacent via other constraints, which leaves the diagonals. We only need to add constraints that, for each queen, there is no queen in the lower-left or lower-right corner, aka q_3 != q_2 ± 1. We don't need to check the top corners because if q_1 is in the upper-left corner of q_2, then q_2 is in the lower-right corner of q_1! That covers everything except the "one queen per region" constraint. But the regions are the tricky part, which we should expect because we vary the difficulty of queens games by varying the regions. regions = { "purple": [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (1, 1), (8, 1)], "red": [(1, 2), (2, 2), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (8, 2), (8, 3),], # you get the picture } # Some checking code left out, see below The region has to be manually coded in, which is a huge pain. (In the link, some validation code follows. Since it breaks up explaining the model I put it in the next section.) for r in regions.values(): solver.add(Or( *[queens[row] == col for (row, col) in r] )) Finally we have the region constraint. The easiest way I found to say "there is exactly one queen in each region" is to say "there is a queen in region 1 and a queen in region 2 and a queen in region 3" etc." Then to say "there is a queen in region purple" I wrote "q_0 = 0 OR q_0 = 1 OR … OR q_1 = 0 etc." Why iterate over every position in the region instead of doing something like (0, q[0]) in r? I tried that but it's not an expression that Z3 supports. if solver.check() == sat: m = solver.model() print([(l, m[l]) for l in queens]) Finally, we solve and print the positions. Running this gives me: [(q__0, 0), (q__1, 5), (q__2, 8), (q__3, 2), (q__4, 7), (q__5, 4), (q__6, 1), (q__7, 3), (q__8, 6)] Which is the correct solution to the queens puzzle. I didn't benchmark the solution times, but I imagine it's considerably slower than a raw SAT solver. Glucose is really, really fast. But even so, solving the problem with SMT was a lot easier than solving it with SAT. That satisfies me as an explanation for why people prefer it to SAT. Sanity checks One bit I glossed over earlier was the sanity checking code. I knew for sure that I was going to make a mistake encoding the region, and the solver wasn't going to provide useful information abut what I did wrong. In cases like these, I like adding small tests and checks to catch mistakes early, because the solver certainly isn't going to catch them! all_squares = set(product(range(size), repeat=2)) def test_i_set_up_problem_right(): assert all_squares == set(chain.from_iterable(regions.values())) for r1, r2 in combinations(regions.values(), 2): assert not set(r1) & set(r2), set(r1) & set(r2) The first check was a quick test that I didn't leave any squares out, or accidentally put the same square in both regions. Converting the values into sets makes both checks a lot easier. Honestly I don't know why I didn't just use sets from the start, sets are great. def render_regions(): colormap = ["purple", "red", "brown", "white", "green", "yellow", "orange", "blue", "pink"] board = [[0 for _ in range(size)] for _ in range(size)] for (row, col) in all_squares: for color, region in regions.items(): if (row, col) in region: board[row][col] = colormap.index(color)+1 for row in board: print("".join(map(str, row))) render_regions() The second check is something that prints out the regions. It produces something like this: 111111111 112333999 122439999 124437799 124666779 124467799 122467899 122555889 112258899 I can compare this to the picture of the board to make sure I got it right. I guess a more advanced solution would be to print emoji squares like 🟥 instead. Neither check is quality code but it's throwaway and it gets the job done so eh. "Boolean SATisfiability Solver", aka a solver that can find assignments that make complex boolean expressions true. I write a bit more about them here. ↩ "Satisfiability Modulo Theories" ↩
Systems Distributed I'll be speaking at Systems Distributed next month! The talk is brand new and will aim to showcase some of the formal methods mental models that would be useful in mainstream software development. It has added some extra stress on my schedule, though, so expect the next two monthly releases of Logic for Programmers to be mostly minor changes. What does "Undecidable" mean, anyway Last week I read Against Curry-Howard Mysticism, which is a solid article I recommend reading. But this newsletter is actually about one comment: I like to see posts like this because I often feel like I can’t tell the difference between BS and a point I’m missing. Can we get one for questions like “Isn’t XYZ (Undecidable|NP-Complete|PSPACE-Complete)?” I've already written one of these for NP-complete, so let's do one for "undecidable". Step one is to pull a technical definition from the book Automata and Computability: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (pg 220) Step two is to translate the technical computer science definition into more conventional programmer terms. Warning, because this is a newsletter and not a blog post, I might be a little sloppy with terms. Machines and Decision Problems In automata theory, all inputs to a "program" are strings of characters, and all outputs are "true" or "false". A program "accepts" a string if it outputs "true", and "rejects" if it outputs "false". You can think of this as automata studying all pure functions of type f :: string -> boolean. Problems solvable by finding such an f are called "decision problems". This covers more than you'd think, because we can bootstrap more powerful functions from these. First, as anyone who's programmed in bash knows, strings can represent any other data. Second, we can fake non-boolean outputs by instead checking if a certain computation gives a certain result. For example, I can reframe the function add(x, y) = x + y as a decision problem like this: IS_SUM(str) { x, y, z = split(str, "#") return x + y == z } Then because IS_SUM("2#3#5") returns true, we know 2 + 3 == 5, while IS_SUM("2#3#6") is false. Since we can bootstrap parameters out of strings, I'll just say it's IS_SUM(x, y, z) going forward. A big part of automata theory is studying different models of computation with different strengths. One of the weakest is called "DFA". I won't go into any details about what DFA actually can do, but the important thing is that it can't solve IS_SUM. That is, if you give me a DFA that takes inputs of form x#y#z, I can always find an input where the DFA returns true when x + y != z, or an input which returns false when x + y == z. It's really important to keep this model of "solve" in mind: a program solves a problem if it correctly returns true on all true inputs and correctly returns false on all false inputs. (total) Turing Machines A Turing Machine (TM) is a particular type of computation model. It's important for two reasons: By the Church-Turing thesis, a Turing Machine is the "upper bound" of how powerful (physically realizable) computational models can get. This means that if an actual real-world programming language can solve a particular decision problem, so can a TM. Conversely, if the TM can't solve it, neither can the programming language.1 It's possible to write a Turing machine that takes a textual representation of another Turing machine as input, and then simulates that Turing machine as part of its computations. Property (1) means that we can move between different computational models of equal strength, proving things about one to learn things about another. That's why I'm able to write IS_SUM in a pseudocode instead of writing it in terms of the TM computational model (and why I was able to use split for convenience). Property (2) does several interesting things. First of all, it makes it possible to compose Turing machines. Here's how I can roughly ask if a given number is the sum of two primes, with "just" addition and boolean functions: IS_SUM_TWO_PRIMES(z): x := 1 y := 1 loop { if x > z {return false} if IS_PRIME(x) { if IS_PRIME(y) { if IS_SUM(x, y, z) { return true; } } } y := y + 1 if y > x { x := x + 1 y := 0 } } Notice that without the if x > z {return false}, the program would loop forever on z=2. A TM that always halts for all inputs is called total. Property (2) also makes "Turing machines" a possible input to functions, meaning that we can now make decision problems about the behavior of Turing machines. For example, "does the TM M either accept or reject x within ten steps?"2 IS_DONE_IN_TEN_STEPS(M, x) { for (i = 0; i < 10; i++) { `simulate M(x) for one step` if(`M accepted or rejected`) { return true } } return false } Decidability and Undecidability Now we have all of the pieces to understand our original definition: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (220) Let IS_P be the decision problem "Does the input satisfy P"? Then IS_P is decidable if it can be solved by a Turing machine, ie, I can provide some IS_P(x) machine that always accepts if x has property P, and always rejects if x doesn't have property P. If I can't do that, then IS_P is undecidable. IS_SUM(x, y, z) and IS_DONE_IN_TEN_STEPS(M, x) are decidable properties. Is IS_SUM_TWO_PRIMES(z) decidable? Some analysis shows that our corresponding program will either find a solution, or have x>z and return false. So yes, it is decidable. Notice there's an asymmetry here. To prove some property is decidable, I need just to need to find one program that correctly solves it. To prove some property is undecidable, I need to show that any possible program, no matter what it is, doesn't solve it. So with that asymmetry in mind, do are there any undecidable problems? Yes, quite a lot. Recall that Turing machines can accept encodings of other TMs as input, meaning we can write a TM that checks properties of Turing machines. And, by Rice's Theorem, almost every nontrivial semantic3 property of Turing machines is undecidable. The conventional way to prove this is to first find a single undecidable property H, and then use that to bootstrap undecidability of other properties. The canonical and most famous example of an undecidable problem is the Halting problem: "does machine M halt on input i?" It's pretty easy to prove undecidable, and easy to use it to bootstrap other undecidability properties. But again, any nontrivial property is undecidable. Checking a TM is total is undecidable. Checking a TM accepts any inputs is undecidable. Checking a TM solves IS_SUM is undecidable. Etc etc etc. What this doesn't mean in practice I often see the halting problem misconstrued as "it's impossible to tell if a program will halt before running it." This is wrong. The halting problem says that we cannot create an algorithm that, when applied to an arbitrary program, tells us whether the program will halt or not. It is absolutely possible to tell if many programs will halt or not. It's possible to find entire subcategories of programs that are guaranteed to halt. It's possible to say "a program constructed following constraints XYZ is guaranteed to halt." The actual consequence of undecidability is more subtle. If we want to know if a program has property P, undecidability tells us We will have to spend time and mental effort to determine if it has P We may not be successful. This is subtle because we're so used to living in a world where everything's undecidable that we don't really consider what the counterfactual would be like. In such a world there might be no need for Rust, because "does this C program guarantee memory-safety" is a decidable property. The entire field of formal verification could be unnecessary, as we could just check properties of arbitrary programs directly. We could automatically check if a change in a program preserves all existing behavior. Lots of famous math problems could be solved overnight. (This to me is a strong "intuitive" argument for why the halting problem is undecidable: a halt detector can be trivially repurposed as a program optimizer / theorem-prover / bcrypt cracker / chess engine. It's too powerful, so we should expect it to be impossible.) But because we don't live in that world, all of those things are hard problems that take effort and ingenuity to solve, and even then we often fail. To be pendantic, a TM can't do things like "scrape a webpage" or "render a bitmap", but we're only talking about computational decision problems here. ↩ One notation I've adopted in Logic for Programmers is marking abstract sections of pseudocode with backticks. It's really handy! ↩ Nontrivial meaning "at least one TM has this property and at least one TM doesn't have this property". Semantic meaning "related to whether the TM accepts, rejects, or runs forever on a class of inputs". IS_DONE_IN_TEN_STEPS is not a semantic property, as it doesn't tell us anything about inputs that take longer than ten steps. ↩
You're walking down the street and need to pass someone going the opposite way. You take a step left, but they're thinking the same thing and take a step to their right, aka your left. You're still blocking each other. Then you take a step to the right, and they take a step to their left, and you're back to where you started. I've heard this called "walkwarding" Let's model this in TLA+. TLA+ is a formal methods tool for finding bugs in complex software designs, most often involving concurrency. Two people trying to get past each other just also happens to be a concurrent system. A gentler introduction to TLA+'s capabilities is here, an in-depth guide teaching the language is here. The spec ---- MODULE walkward ---- EXTENDS Integers VARIABLES pos vars == <<pos>> Double equals defines a new operator, single equals is an equality check. <<pos>> is a sequence, aka array. you == "you" me == "me" People == {you, me} MaxPlace == 4 left == 0 right == 1 I've gotten into the habit of assigning string "symbols" to operators so that the compiler complains if I misspelled something. left and right are numbers so we can shift position with right - pos. direction == [you |-> 1, me |-> -1] goal == [you |-> MaxPlace, me |-> 1] Init == \* left-right, forward-backward pos = [you |-> [lr |-> left, fb |-> 1], me |-> [lr |-> left, fb |-> MaxPlace]] direction, goal, and pos are "records", or hash tables with string keys. I can get my left-right position with pos.me.lr or pos["me"]["lr"] (or pos[me].lr, as me == "me"). Juke(person) == pos' = [pos EXCEPT ![person].lr = right - @] TLA+ breaks the world into a sequence of steps. In each step, pos is the value of pos in the current step and pos' is the value in the next step. The main outcome of this semantics is that we "assign" a new value to pos by declaring pos' equal to something. But the semantics also open up lots of cool tricks, like swapping two values with x' = y /\ y' = x. TLA+ is a little weird about updating functions. To set f[x] = 3, you gotta write f' = [f EXCEPT ![x] = 3]. To make things a little easier, the rhs of a function update can contain @ for the old value. ![me].lr = right - @ is the same as right - pos[me].lr, so it swaps left and right. ("Juke" comes from here) Move(person) == LET new_pos == [pos[person] EXCEPT !.fb = @ + direction[person]] IN /\ pos[person].fb # goal[person] /\ \A p \in People: pos[p] # new_pos /\ pos' = [pos EXCEPT ![person] = new_pos] The EXCEPT syntax can be used in regular definitions, too. This lets someone move one step in their goal direction unless they are at the goal or someone is already in that space. /\ means "and". Next == \E p \in People: \/ Move(p) \/ Juke(p) I really like how TLA+ represents concurrency: "In each step, there is a person who either moves or jukes." It can take a few uses to really wrap your head around but it can express extraordinarily complicated distributed systems. Spec == Init /\ [][Next]_vars Liveness == <>(pos[me].fb = goal[me]) ==== Spec is our specification: we start at Init and take a Next step every step. Liveness is the generic term for "something good is guaranteed to happen", see here for more. <> means "eventually", so Liveness means "eventually my forward-backward position will be my goal". I could extend it to "both of us eventually reach out goal" but I think this is good enough for a demo. Checking the spec Four years ago, everybody in TLA+ used the toolbox. Now the community has collectively shifted over to using the VSCode extension.1 VSCode requires we write a configuration file, which I will call walkward.cfg. SPECIFICATION Spec PROPERTY Liveness I then check the model with the VSCode command TLA+: Check model with TLC. Unsurprisingly, it finds an error: The reason it fails is "stuttering": I can get one step away from my goal and then just stop moving forever. We say the spec is unfair: it does not guarantee that if progress is always possible, progress will be made. If I want the spec to always make progress, I have to make some of the steps weakly fair. + Fairness == WF_vars(Next) - Spec == Init /\ [][Next]_vars + Spec == Init /\ [][Next]_vars /\ Fairness Now the spec is weakly fair, so someone will always do something. New error: \* First six steps cut 7: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 1, fb |-> 2]] 8: <Juke("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 0, fb |-> 2]] 9: <Juke("me")> (back to state 7) In this failure, I've successfully gotten past you, and then spend the rest of my life endlessly juking back and forth. The Next step keeps happening, so weak fairness is satisfied. What I actually want is for both my Move and my Juke to both be weakly fair independently of each other. - Fairness == WF_vars(Next) + Fairness == WF_vars(Move(me)) /\ WF_vars(Juke(me)) If my liveness property also specified that you reached your goal, I could instead write \A p \in People: WF_vars(Move(p)) etc. I could also swap the \A with a \E to mean at least one of us is guaranteed to have fair actions, but not necessarily both of us. New error: 3: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 4: <Juke("you")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 5: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 1, fb |-> 3]] 6: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 7: <Juke("you")> (back to state 3) Now we're getting somewhere! This is the original walkwarding situation we wanted to capture. We're in each others way, then you juke, but before either of us can move you juke, then we both juke back. We can repeat this forever, trapped in a social hell. Wait, but doesn't WF(Move(me)) guarantee I will eventually move? Yes, but only if a move is permanently available. In this case, it's not permanently available, because every couple of steps it's made temporarily unavailable. How do I fix this? I can't add a rule saying that we only juke if we're blocked, because the whole point of walkwarding is that we're not coordinated. In the real world, walkwarding can go on for agonizing seconds. What I can do instead is say that Liveness holds as long as Move is strongly fair. Unlike weak fairness, strong fairness guarantees something happens if it keeps becoming possible, even with interruptions. Liveness == + SF_vars(Move(me)) => <>(pos[me].fb = goal[me]) This makes the spec pass. Even if we weave back and forth for five minutes, as long as we eventually pass each other, I will reach my goal. Note we could also by making Move in Fairness strongly fair, which is preferable if we have a lot of different liveness properties to check. A small exercise for the reader There is a presumed invariant that is violated. Identify what it is, write it as a property in TLA+, and show the spec violates it. Then fix it. Answer (in rot13): Gur vainevnag vf "ab gjb crbcyr ner va gur rknpg fnzr ybpngvba". Zbir thnenagrrf guvf ohg Whxr qbrf abg. More TLA+ Exercises I've started work on an exercises repo. There's only a handful of specific problems now but I'm planning on adding more over the summer. learntla is still on the toolbox, but I'm hoping to get it all moved over this summer. ↩
More in programming
One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩
As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)
A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky
SumatraPDF is a fast, small, open-source PDF reader for Windows, written in C++. This article describes how I implemented StrVec class for efficiently storing multiple strings. Much ado about the strings Strings are among the most used types in most programs. Arrays of strings are also used often. I count ~80 uses of StrVec in SumatraPDF code. This article describes how I implemented an optimized array of strings in SumatraPDF C++ code . No STL for you Why not use std::vector<std::string>? In SumatraPDF I don’t use STL. I don’t use std::string, I don’t use std::vector. For me it’s a symbol of my individuality, and my belief in personal freedom. As described here, minimum size of std::string on 64-bit machines is 32 bytes for msvc / gcc and 24 bytes for short strings (15 chars for msvc / gcc, 22 chars for clang). For longer strings we have more overhead: 32⁄24 bytes for the header memory allocator overhead allocator metadata padding due to rounding allocations to at least 16 bytes There’s also std::vector overhead: for fast appends (push()) std::vectorimplementations over-allocated space Longer strings are allocated at random addresses so they can be spread out in memory. That is bad for cache locality and that often cause more slowness than executing lots of instructions. Design and implementation of StrVec StrVec (vector of strings) solves all of the above: per-string overhead of only 8 bytes strings are laid out next to each other in memory StrVec High level design of StrVec: backing memory is allocated in singly-linked pages similar to std::vector, we start with small page and increase the size of the page. This strikes a balance between speed of accessing a string at random index and wasted space unlike std::vector we don’t reallocate memory (most of the time). That saves memory copy when re-allocating backing space Here’s all there is to StrVec: struct StrVec { StrVecPage* first = nullptr; int nextPageSize = 256; int size = 0; } size is a cached number of strings. It could be calculated by summing the size in all StrVecPages. nextPageSize is the size of the next StrVecPage. Most array implementation increase the size of next allocation by 1.4x - 2x. I went with the following progression: 256 bytes, 1k, 4k, 16k, 32k and I cap it at 64k. I don’t have data behind those numbers, they feel right. Bigger page wastes more space. Smaller page makes random access slower because to find N-th string we need to traverse linked list of StrVecPage. nextPageSize is exposed to allow the caller to optimize use. E.g. if it expects lots of strings, it could set nextPageSize to a large number. StrVecPage Most of the implementation is in StrVecPage. The big idea here is: we allocate a block of memory strings are allocated from the end of memory block at the beginning of the memory block we build and index of strings. For each string we have: u32 size u32 offset of the string within memory block, counting from the beginning of the block The layout of memory block is: StrVecPage struct { size u32; offset u32 } [] … not yet used space strings This is StrVecPage: struct StrVecPage { struct StrVecPage* next; int pageSize; int nStrings; char* currEnd; } next is for linked list of pages. Since pages can have various sizes we need to record pageSize. nStrings is number of strings in the page and currEnd points to the end of free space within page. Implementing operations Appending a string Appending a string at the end is most common operation. To append a string: we calculate how much memory inside a page it’ll need: str::Len(string) + 1 + sizeof(u32) + sizeof(u32). +1 is for 0-termination for compatibility with C APIs that take char*, and 2xu32 for size and offset. If we have enough space in last page, we add size and offset at the end of index and append a string from the end i.e. `currEnd - (str::Len(string) + 1). If there is not enough space in last page, we allocate new page We can calculate how much space we have left with: int indexEntrySize = sizeof(u32) + sizeof(u32); // size + offset char* indexEnd = (char*)pageStart + sizeof(StrVecPage) + nStrings*indexEntrySize int nBytesFree = (int)(currEnd - indexEnd) Removing a string Removing a string is easy because it doesn’t require moving memory inside StrVecPage. We do nStrings-- and move index values of strings after the removed string. I don’t bother freeing the string memory within a page. It’s possible but complicated enough I decided to skip it. You can compact StrVec to remove all overhead. If you do not care about preserving order of strings after removal, I haveRemoveAtFast() which uses a trick: instead of copying memory of all index values after removed string, I copy a single index from the end into a slot of the string being removed. Replacing a string or inserting in the middle Replacing a string or inserting a string in the middle is more complicated because there might not be enough space in the page for the string. When there is enough space, it’s as simple as append. When there is not enough space, I re-use the compacting capability: I compact all existing pages into a single page with extra space for the string and some extra space as an optimization for multiple inserts. Iteration A random access requires traversing a linked list. I think it’s still fast because typically there aren’t many pages and we only need to look at a single nStrings value. After compaction to a single page, random access is as fast as it could ever be. C++ iterator is optimized for sequential access: struct iterator { const StrVec* v; int idx; // perf: cache page, idxInPage from prev iteration int idxInPage; StrVecPage* page; } We cache the current state of iteration as page and idxInPage. To advance to next string we advance idxInPage. If it exceeds nStrings, we advance to page->next. Optimized search Finding a string is as optimized as it could be without a hash table. Typically to compare char* strings you need to call str::Eq(s, s2) for every string you compare it to. That is a function call and it has to touch s2 memory. That is bad for performance because it blows the cache. In StrVec I calculate length of the string to find once and then traverse the size / offset index. Only when size is different I have to compare the strings. Most of the time we just look at offset / size in L1 cache, which is very fast. Compacting If you know that you’ll not be adding more strings to StrVec you can compact all pages into a single page with no overhead of empty space. It also speeds up random access because we don’t have multiple pages to traverse to find the item and a given index. Representing a nullptr char* Even though I have a string class, I mostly use char* in SumatraPDF code. In that world empty string and nullptr are 2 different things. To allow storing nullptr strings in StrVec (and not turning them into empty strings on the way out) I use a trick: a special u32 value kNullOffset represents nullptr. StrVec is a string pool allocator In C++ you have to track the lifetime of each object: you allocate with malloc() or new when you no longer need to object, you call free() or delete However, the lifetime of allocations is often tied together. For example in SumatraPDF an opened document is represented by a class. Many allocations done to construct that object last exactly as long as the object. The idea of a pool allocator is that instead of tracking the lifetime of each allocation, you have a single allocator. You allocate objects with the same lifetime from that allocator and you free them with a single call. StrVec is a string pool allocator: all strings stored in StrVec have the same lifetime. Testing In general I don’t advocate writing a lot of tests. However, low-level, tricky functionality like StrVec deserves decent test coverage to ensure basic functionality works and to exercise code for corner cases. I have 360 lines of tests for ~700 lines of of implementation. Potential tweaks and optimization When designing and implementing data structures, tradeoffs are aplenty. Interleaving index and strings I’m not sure if it would be faster but instead of storing size and offset at the beginning of the page and strings at the end, we could store size / string sequentially from the beginning. It would remove the need for u32 of offset but would make random access slower. Varint encoding of size and offset Most strings are short, under 127 chars. Most offsets are under 16k. If we stored size and offset as variable length integers, we would probably bring down average per-string overhead from 8 bytes to ~4 bytes. Implicit size When strings are stored sequentially size is implicit as difference between offset of the string and offset of next string. Not storing size would make insert and set operations more complicated and costly: we would have to compact and arrange strings in order every time. Storing index separately We could store index of size / offset in a separate vector and use pages to only allocate string data. This would simplify insert and set operations. With current design if we run out of space inside a page, we have to re-arrange memory. When offset is stored outside of the page, it can refer to any page so insert and set could be as simple as append. The evolution of StrVec The design described here is a second implementation of StrVec. The one before was simply a combination of str::Str (my std::string) for allocating all strings and Vec<u32> (my std::vector) for storing offset index. It had some flaws: appending a string could re-allocate memory within str::Str. The caller couldn’t store returned char* pointer because it could be invalidated. As a result the API was akward and potentially confusing: I was returning offset of the string so the string was str::Str.Data() + offset. The new StrVec doesn’t re-allocate on Append, only (potentially) on InsertAt and SetAt. The most common case is append-only which allows the caller to store the returned char* pointers. Before implementing StrVec I used Vec<char*>. Vec is my version of std::vector and Vec<char*> would just store pointer to individually allocated strings. Cost vs. benefit I’m a pragmatist: I want to achieve the most with the least amount of code, the least amount of time and effort. While it might seem that I’m re-implementing things willy-nilly, I’m actually very mindful of the cost of writing code. Writing software is a balance between effort and resulting quality. One of the biggest reasons SumatraPDF so popular is that it’s fast and small. That’s an important aspect of software quality. When you double click on a PDF file in an explorer, SumatraPDF starts instantly. You can’t say that about many similar programs and about other software in general. Keeping SumatraPDF small and fast is an ongoing focus and it does take effort. StrVec.cpp is only 705 lines of code. It took me several days to complete. Maybe 2 days to write the code and then some time here and there to fix the bugs. That being said, I didn’t start with this StrVec. For many years I used obvious Vec<char*>. Then I implemented somewhat optimized StrVec. And a few years after that I implemented this ultra-optimized version. References SumatraPDF is a small, fast, multi-format (PDF/eBook/Comic Book and more), open-source reader for Windows. The implementation described here: StrVec.cpp, StrVec.h, StrVec_ut.cpp By the time you read this, the implementation could have been improved.
Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot. This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!