More from dthompson
I'm happy to announce that guile-websocket 0.2.0 has been released! Guile-websocket is an implementation of the WebSocket protocol, both the client and server sides, for Guile Scheme. This release introduces breaking changes that overhaul the client and server implementations in order to support non-blocking I/O and TLS encrypted connections. source tarball: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz signature: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz.asc See the guile-websocket project page for more information. Bug reports, bug fixes, feature requests, and patches are welcomed.
Wasm GC is a wonderful thing that is now available in all major web browsers since slowpoke Safari/WebKit finally shipped it in December. It provides a hierarchy of heap allocated reference types and a set of instructions to operate on them. Wasm GC enables managed memory languages to take advantage of the advanced garbage collectors inside web browser engines. It’s now possible to implement a managed memory language without having to ship a GC inside the binary. The result is smaller binaries, better performance, and better integration with the host runtime. However, Wasm GC has some serious drawbacks when compared to linear memory. I enjoy playing around with realtime graphics programming in my free time, but I was disappointed to discover that Wasm GC just isn’t a good fit for that right now. I decided to write this post because I’d like to see Wasm GC on more or less equal footing with linear memory when it comes to binary data manipulation. Hello triangle For starters, let's take a look at what a “hello triangle” WebGL demo looks like with Wasm GC. I’ll use Hoot, the Scheme to Wasm compiler that I work on, to build it. Below is a Scheme program that declares imports for the subset of the WebGL, HTML5 Canvas, etc. APIs that are necessary and then renders a single triangle: (use-modules (hoot ffi)) ;; Document (define-foreign get-element-by-id "document" "getElementById" (ref string) -> (ref null extern)) ;; Element (define-foreign element-width "element" "width" (ref extern) -> i32) (define-foreign element-height "element" "height" (ref extern) -> i32) ;; Canvas (define-foreign get-canvas-context "canvas" "getContext" (ref extern) (ref string) -> (ref null extern)) ;; WebGL (define GL_VERTEX_SHADER 35633) (define GL_FRAGMENT_SHADER 35632) (define GL_COMPILE_STATUS 35713) (define GL_LINK_STATUS 35714) (define GL_ARRAY_BUFFER 34962) (define GL_STATIC_DRAW 35044) (define GL_COLOR_BUFFER_BIT 16384) (define GL_TRIANGLES 4) (define GL_FLOAT 5126) (define-foreign gl-create-shader "gl" "createShader" (ref extern) i32 -> (ref extern)) (define-foreign gl-delete-shader "gl" "deleteShader" (ref extern) (ref extern) -> none) (define-foreign gl-shader-source "gl" "shaderSource" (ref extern) (ref extern) (ref string) -> none) (define-foreign gl-compile-shader "gl" "compileShader" (ref extern) (ref extern) -> none) (define-foreign gl-get-shader-parameter "gl" "getShaderParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-shader-info-log "gl" "getShaderInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-program "gl" "createProgram" (ref extern) -> (ref extern)) (define-foreign gl-delete-program "gl" "deleteProgram" (ref extern) (ref extern) -> none) (define-foreign gl-attach-shader "gl" "attachShader" (ref extern) (ref extern) (ref extern) -> none) (define-foreign gl-link-program "gl" "linkProgram" (ref extern) (ref extern) -> none) (define-foreign gl-use-program "gl" "useProgram" (ref extern) (ref extern) -> none) (define-foreign gl-get-program-parameter "gl" "getProgramParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-program-info-log "gl" "getProgramInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-buffer "gl" "createBuffer" (ref extern) -> (ref extern)) (define-foreign gl-delete-buffer "gl" "deleteBuffer" (ref extern) (ref extern) -> (ref extern)) (define-foreign gl-bind-buffer "gl" "bindBuffer" (ref extern) i32 (ref extern) -> none) (define-foreign gl-buffer-data "gl" "bufferData" (ref extern) i32 (ref eq) i32 -> none) (define-foreign gl-enable-vertex-attrib-array "gl" "enableVertexAttribArray" (ref extern) i32 -> none) (define-foreign gl-vertex-attrib-pointer "gl" "vertexAttribPointer" (ref extern) i32 i32 i32 i32 i32 i32 -> none) (define-foreign gl-draw-arrays "gl" "drawArrays" (ref extern) i32 i32 i32 -> none) (define-foreign gl-viewport "gl" "viewport" (ref extern) i32 i32 i32 i32 -> none) (define-foreign gl-clear-color "gl" "clearColor" (ref extern) f64 f64 f64 f64 -> none) (define-foreign gl-clear "gl" "clear" (ref extern) i32 -> none) (define (compile-shader gl type source) (let ((shader (gl-create-shader gl type))) (gl-shader-source gl shader source) (gl-compile-shader gl shader) (unless (= (gl-get-shader-parameter gl shader GL_COMPILE_STATUS) 1) (let ((info (gl-get-shader-info-log gl shader))) (gl-delete-shader gl shader) (error "shader compilation failed" info))) shader)) (define (link-shader gl vertex-shader fragment-shader) (let ((program (gl-create-program gl))) (gl-attach-shader gl program vertex-shader) (gl-attach-shader gl program fragment-shader) (gl-link-program gl program) (unless (= (gl-get-program-parameter gl program GL_LINK_STATUS) 1) (let ((info (gl-get-program-info-log gl program))) (gl-delete-program gl program) (error "program linking failed" info))) program)) ;; Setup GL context (define canvas (get-element-by-id "canvas")) (define gl (get-canvas-context canvas "webgl")) (when (external-null? gl) (error "unable to create WebGL context")) ;; Compile shader (define vertex-shader-source "attribute vec2 position; attribute vec3 color; varying vec3 fragColor; void main() { gl_Position = vec4(position, 0.0, 1.0); fragColor = color; }") (define fragment-shader-source "precision mediump float; varying vec3 fragColor; void main() { gl_FragColor = vec4(fragColor, 1); }") (define vertex-shader (compile-shader gl GL_VERTEX_SHADER vertex-shader-source)) (define fragment-shader (compile-shader gl GL_FRAGMENT_SHADER fragment-shader-source)) (define shader (link-shader gl vertex-shader fragment-shader)) ;; Create vertex buffer (define stride (* 4 5)) (define buffer (gl-create-buffer gl)) (gl-bind-buffer gl GL_ARRAY_BUFFER buffer) (gl-buffer-data gl GL_ARRAY_BUFFER #f32(-1.0 -1.0 1.0 0.0 0.0 1.0 -1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0) GL_STATIC_DRAW) ;; Draw (gl-viewport gl 0 0 (element-width canvas) (element-height canvas)) (gl-clear gl GL_COLOR_BUFFER_BIT) (gl-use-program gl shader) (gl-enable-vertex-attrib-array gl 0) (gl-vertex-attrib-pointer gl 0 2 GL_FLOAT 0 stride 0) (gl-enable-vertex-attrib-array gl 1) (gl-vertex-attrib-pointer gl 1 3 GL_FLOAT 0 stride 8) (gl-draw-arrays gl GL_TRIANGLES 0 3) Note that in Scheme, the equivalent of a Uint8Array is a bytevector. Hoot uses a packed array, an (array i8) specifically, for the contents of a bytevector. And here is the JavaScript code necessary to boot the resulting Wasm binary: window.addEventListener("load", async () => { function bytevectorToUint8Array(bv) { let len = reflect.bytevector_length(bv); let array = new Uint8Array(len); for (let i = 0; i < len; i++) { array[i] = reflect.bytevector_ref(bv, i); } return array; } let mod = await SchemeModule.fetch_and_instantiate("triangle.wasm", { reflect_wasm_dir: 'reflect-wasm', user_imports: { document: { getElementById: (id) => document.getElementById(id) }, element: { width: (elem) => elem.width, height: (elem) => elem.height }, canvas: { getContext: (elem, type) => elem.getContext(type) }, gl: { createShader: (gl, type) => gl.createShader(type), deleteShader: (gl, shader) => gl.deleteShader(shader), shaderSource: (gl, shader, source) => gl.shaderSource(shader, source), compileShader: (gl, shader) => gl.compileShader(shader), getShaderParameter: (gl, shader, param) => gl.getShaderParameter(shader, param), getShaderInfoLog: (gl, shader) => gl.getShaderInfoLog(shader), createProgram: (gl, type) => gl.createProgram(type), deleteProgram: (gl, program) => gl.deleteProgram(program), attachShader: (gl, program, shader) => gl.attachShader(program, shader), linkProgram: (gl, program) => gl.linkProgram(program), useProgram: (gl, program) => gl.useProgram(program), getProgramParameter: (gl, program, param) => gl.getProgramParameter(program, param), getProgramInfoLog: (gl, program) => gl.getProgramInfoLog(program), createBuffer: (gl) => gl.createBuffer(), deleteBuffer: (gl, buffer) => gl.deleteBuffer(buffer), bindBuffer: (gl, target, buffer) => gl.bindBuffer(target, buffer), bufferData: (gl, buffer, data, usage) => { let bv = new Bytevector(reflect, data); gl.bufferData(buffer, bytevectorToUint8Array(bv), usage); }, enableVertexAttribArray: (gl, index) => gl.enableVertexAttribArray(index), vertexAttribPointer: (gl, index, size, type, normalized, stride, offset) => { gl.vertexAttribPointer(index, size, type, normalized, stride, offset); }, drawArrays: (gl, mode, first, count) => gl.drawArrays(mode, first, count), viewport: (gl, x, y, w, h) => gl.viewport(x, y, w, h), clearColor: (gl, r, g, b, a) => gl.clearColor(r, g, b, a), clear: (gl, mask) => gl.clear(mask) } } }); let reflect = await mod.reflect({ reflect_wasm_dir: 'reflect-wasm' }); let proc = new Procedure(reflect, mod.get_export("$load").value); proc.call(); }); Hello problems There are two major performance issues with this program. One is visible in the source above, the other is hidden in the language implementation. Heap objects are opaque on the other side Wasm GC heap objects are opaque to the host. Likewise, heap objects from the host are opaque to the Wasm guest. Thus the contents of an (array i8) object are not visible from JavaScript and the contents of a Uint8Array are not visible from Wasm. This is a good security property in the general case, but it’s a hinderance in this specific case. Let’s say we have an (array i8) full of vertex data we want to put into a WebGL buffer. To do this, we must make one JS->Wasm call for each byte in the array and store it into a Uint8Array. This is what the bytevectorToUint8Array function above is doing. Copying any significant amount of data per frame is going to tank performance. Hope you aren’t trying to stream vertex data! Contrast the previous paragraph with Wasm linear memory. A WebAssembly.Memory object can be easily accessed from JavaScript as an ArrayBuffer. To get a blob of vertex data out of a memory object, you just need to know the byte offset and length and you’re good to go. There are many Wasm linear memory applications using WebGL successfully. Manipulating multi-byte binary data is inefficient To read a multi-byte number such as an unsigned 32-bit integer from an (array i8), you have to fetch each individual byte and combine them together. Here’s a self-contained example that uses Guile-flavored WAT format: (module (type $bytevector (array i8)) (data $init #u32(123456789)) (func (export "main") (result i32) (local $a (ref $bytevector)) (local.set $a (array.new_data $bytevector $init (i32.const 0) (i32.const 4))) (array.get_u $bytevector (local.get $a) (i32.const 0)) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 1)) (i32.const 8)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 2)) (i32.const 16)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 3)) (i32.const 24)) (i32.or))) By contrast, Wasm linear memory needs but a single i32.load instruction: (module (memory 1) (func (export "main") (result i32) (i32.store (i32.const 0) (i32.const 123456789)) (i32.load (i32.const 0)))) Easy peasy. Not only is it less code, it's a lot more efficient. Unsatisfying workarounds There’s no way around the multi-byte problem at the moment, but for byte access from JavaScript there are some things we could try to work with what we have been given. Spoiler alert: None of them are pleasant. Use Uint8Array from the host This approach makes all binary operations from within the Wasm binary slow since we’d have to cross the Wasm->JS bridge for each read/write. Since most of the binary data manipulation is happening in the Wasm module, this approach will just make things slower overall. Use linear memory for bytevectors This would require a little malloc/free implementation and a way to reclaim memory for GC'd bytevectors. You could register every bytevector in a FinalizationRegistry in order to be notified upon GC and free the memory. Now you have to deal with memory fragmentation. This is Wasm GC, we shouldn’t have to do any of this! Use linear memory as a scratch space This avoids crossing the Wasm/JS boundary for each byte, but still involves a byte-by-byte copy from (array i8) to linear memory within the Wasm module. So far this feels like the least worst option, but the extra copy is still going to greatly reduce throughput. Wasm GC needs some fixin' I’ve used realtime graphics as an example because it’s a use case that is very sensitive to performance issues, but this unfortunate need to copy binary data byte-by-byte is also the reason why strings are trash on Wasm GC right now. Stringref is a good proposal and the Wasm community group made a mistake by rejecting it. Anyway, there has been some discussion about both multi-byte and ArrayBuffer access on GitHub, but as far as I can tell neither issue is anywhere close to a resolution. Can these things be implemented efficiently? How can the need for direct access to packed arrays from JS be reconciled with Wasm heap object opaqueness? I hope the Wasm community group can arrive at solutions sooner than later because it will take a long time to get the proposal(s) to phase 4 and shipped in all browsers, perhaps years. It would be a shame to be effectively shut out from using WebGPU when it finally reaches stable browser releases.
I'm pleased to announce that the very first release of guile-bstructs, version 0.1.0, has been released! This is a library I've been working on for quite some time and after more than one rewrite and many smaller refactors I think it's finally ready to release publicly. Let's hope I'm not wrong about that! About guile-bstructs Guile-bstructs is a library that provides structured read/write access to binary data for Guile. A bstruct (short for “binary structure”) is a data type that encapsulates a bytevector and a byte offset which interprets that bytevector based on a specified layout. Some use cases for bstructs are: manipulating C structs when using the foreign function interface packing GPU vertex buffers when using graphics APIs such as OpenGL implementing data types that benefit from Guile's unboxed math optimizations such as vectors and matrices This library was initially inspired by guile-opengl's define-packed-struct syntax but is heavily based on "Ftypes: Structured foreign types" by Andy Keep and R. Kent Dybvig. The resulting interface is quite similar but the implementation is completely original. This library provides a syntax-heavy interface; nearly all of the public API is syntax. This is done to ensure that bstruct types are static and well-known at compile time resulting in efficient bytecode and minimal runtime overhead. A subset of the interface deals in raw bytevector access for accessing structured data in bytevectors directly without going through an intermediary bstruct wrapper. This low-level interface is useful for certain batch processing situations where the overhead of creating wrapper bstructs would hinder throughput. Example Here are some example type definitions to give you an idea of what it’s like to use guile-bstructs: ;; Struct (define-bstruct <vec2> (padded (struct (x float) (y float)))) ;; Type group with a union (define-bstruct (<mouse-move-event> (struct (type uint8) (x int32) (y int32))) (<mouse-button-event> (struct (type uint8) (button uint8) (state uint8) (x int32) (y int32))) (<event> (union (type uint8) (mouse-move <mouse-move-event>) (mouse-button <mouse-button-event>)))) ;; Array (define-bstruct <matrix4> (array 16 float)) ;; Bit fields (define-bstruct <date> (bits (year 32 s) (month 4 u) (day 5 u))) ;; Pointer (define-bstruct (<item> (struct (type int))) (<chest> (struct (opened? uint8) (item (* <item>))))) ;; Packed struct modifier (define-bstruct <enemy> (packed (struct (type uint8) (health uint32)))) ;; Endianness modifier (define-bstruct <big-float> (endian big float)) ;; Recursive type (define-bstruct <node> (struct (item int) (next (* <node>)))) ;; Mutually recursive type group (define-bstruct (<forest> (struct (children (* <tree>)))) (<tree> (struct (value int) (forest (* <forest>)) (next (* <tree>))))) ;; Opaque type (define-bstruct SDL_GPUTexture) Download Source tarball: guile-bstructs-0.1.0.tar.gz GPG signature: guile-bstructs-0.1.0.tar.gz.asc This release was signed with this GPG key. See the guile-bstructs project page for more information.
The Spring Lisp Game Jam 2024 ended one week ago. 48 games were submitted, a new record for the jam! This past week has been a time for participants to play and rate each other’s games. As I explored the entries, I noticed two distinct meta-patterns in how people approached building games with Lisp. I think these patterns apply more broadly to all applications of Lisp. Let’s talk about these patterns in some detail, with examples. But first! Here’s the breakdown of the jam submissions by language: lang entries % (rounded) ---- ------- ----------- guile 15 31 fennel 10 21 clojure 5 10 cl 5 10 racket 4 8 elisp 4 8 s7 3 6 kawa 1 2 owl 1 2 I haven’t rolled up the various Schemes (Guile, Racket, S7, Kawa) into a general scheme category because Scheme is so minimally specified and they are all very distinct implementations for different purposes, not to mention that Racket has a lot more going on than just Scheme. For the first time ever, Guile came out on top with the most submissions! There’s a very specific reason for this outcome. 11 out of the 15 Guile games were built for the web with Hoot, a Scheme-to-WebAssembly compiler that I work on at the Spritely Institute. 2 of those 11 were official Spritely projects. We put out a call for people to try making games with Hoot before the jam started, and a lot of people took us up on it! Very cool! The next most popular language, which is typically the most popular language in these jams, is Fennel. Fennel is a Lisp that compiles to Lua. It’s very cool, too! Also of note, at least to me as a Schemer, is that three games used S7. Hmm, there might be something relevant to this post going on there. The patterns I’m about to talk about could sort of be framed as “The Guile Way vs. The Fennel Way”, but I don’t want to do that. It's not an “us vs. them” thing. It’s wonderful that there are so many flavors of Lisp these days that anyone can find a great implementation that suits their preferences. Not only that, but many of these implementations can be used to make games that anyone can easily play in their web browser! That was not the case several years ago. Incredible! I want to preface the rest of this post by saying that both patterns are valid, and while I prefer one over the other, that is not to say that the other is inferior. I'll also show how these patterns can be thought of as two ends of a spectrum and how, in the end, compromises must be made. Okay, let’s get into it! Lisp as icing The icing pattern is using Lisp as a “scripting” language on top of a cake that is made from C, Rust, and other static languages. The typical way to do this is by embedding a Lisp interpreter into the larger program. If you’re most interested in writing the high-level parts of an application in Lisp then this pattern is the fastest way to get there. All you need is a suitable interpreter/compiler and a way to add the necessary hooks into your application. Since the program is mainly C/Rust/whatever, you can then use emscripten to compile it to WebAssembly and deploy to the web. Instant gratification, but strongly tied to static languages and their toolchains. S7 is an example of an embeddable Scheme. Guile is also used for extending C programs, though typically that involves dynamically linking to libguile rather than embedding the interpreter into the program’s executable. Fennel takes a different approach, recognizing that there are many existing applications that are already extensible through Lua, and provides a lispy language that compiles to Lua. Lisp as cake The cake pattern is using Lisp to implement as much of the software stack as possible. It’s Lisp all the way down... sorta. Rather than embedding Lisp into a non-Lisp program, the cake pattern does the inverse: the majority of the program is written in Lisp. When necessary, shared libraries can be called via a foreign function interface, but this should be kept to a minimum. This approach takes longer to yield results. Time is spent implementing missing libraries for your Lisp of choice and writing wrappers around the C shared libraries you can’t avoid using. Web deployment gets trickier, too, since the project is not so easily emscriptenable. (You may recognize this as the classic embed vs. extend debate. You’re correct! I'm just adding my own thoughts and applying it specifically to some real-world Lisp projects.) I mentioned Guile as an option for icing, but Guile really shines best as cake. The initial vision for Guile was to Emacsify other programs by adding a Scheme interpreter to them. These days, the best practice is to write your program in Scheme to begin with. Common Lisp is probably the best example, though. Implementations like SBCL have good C FFIs and can compile efficient native executables, minimizing the desire to use some C for performance reasons. Case studies Let’s take a look at some of the languages and libraries used for the Lisp Game Jam and evaluate their icing/cake-ness. Fennel + love2d love2d has been a popular choice for solo or small team game development for many years. It is a C++ program that embeds a Lua interpreter, which means it’s a perfect target for Fennel. Most Linux distributions package love2d, so it’s easy to run .love files natively. Additionally, thanks to emscripten, love2d games can be deployed to the web. Thus most Fennel games use love2d. ./soko.bin and Gnomic Vengeance are two games that use this stack. Fennel + love2d is a perfect example of Lisp as icing. Fennel sits at the very top of the stack, but there’s not really a path to spread Lisp into the layers below. It is also the most successful Lisp game development stack to date. S7 + raylib This stack is new to me, but two games used it this time around: GhostHop and Life Predictor. (You really gotta play GhostHop, btw. It’s a great little puzzle game and it is playable on mobile devices.) Raylib is a C library with bindings for many higher-level languages that has become quite popular in recent years. S7 is also implemented in C and is easily embeddable. This makes the combination easy to deploy on the web with emscripten. S7 + raylib is another example of Lisp as icing. I’m curious to see if this stack becomes more popular in future jams. Guile + Chickadee This is the stack that I helped build. Chickadee is a game library for Guile that implements almost all of the interesting parts in Scheme, including rendering. Two games were built with Chickadee in the most recent jam: Turbo Racer 3000 and Bloatrunner. Guile + Chickadee is an example of Lisp as cake. Chickadee wraps some C libraries for low-level tasks such as loading images, audio, and fonts, but it is written in pure Scheme. All the matrix and vector math is in Scheme. Chickadee comes with a set of rendering primitives comparable to love2d and raylib but they’re all implemented in Scheme. I’ve even made progress on rendering vector graphics with Scheme, whereas most other Lisp game libraries use a C library such as nanosvg. Chickadee has pushed the limits of Guile’s compiler and virtual machine, and Guile has been improved as a result. But it’s the long road. Chickadee is mostly developed by me, alone, in my very limited spare time. It is taking a long time to reach feature parity with more popular game development libraries, but it works quite well for what it is. Hoot + HTML5 canvas I also helped build this one. Hoot is a Scheme-to-WebAssembly compiler. Rather than compile the Guile VM (written in C) to Wasm using emscripten, Hoot implements a complete Wasm toolchain and a new backend for Guile’s compiler that emits Wasm directly. Hoot is written entirely in Scheme. Unlike C programs compiled with emscripten that target Wasm 1.0 with linear memory, Hoot targets Wasm 2.0 with GC managed heap types. This gives Hoot a significant advantage: Hoot binaries do not ship a garbage collector and thus are much smaller than Lisp runtimes compiled via emscripten. The Wasm binary for my game weighs in at < 2MiB whereas the love2d game I checked had a nearly 6MiB love.wasm. Hoot programs can also easily interoperate with JavaScript. Scheme objects can easily be passed to JavaScript, and vice versa, as they are managed in the same heap. With all of the browser APIs just a Wasm import away, an obvious choice for games was the built-in HTML5 canvas API for easy 2D rendering. 11 games used Hoot in the jam, including (shameless plug) Cirkoban and Lambda Dungeon. Hoot + HTML5 canvas is mostly dense cake with a bit of icing. On one hand, it took a year and significant funding to boot Hoot. We said “no” to emscripten, built our own toolchain, and extended Guile’s compiler. It's Lisp all the way until you hit the browser runtime! We even have a Wasm interpreter that runs on the Guile VM! Hoot rules! It was a risk but it paid off. On the other hand, the canvas API is very high-level. The more cake thing to do would be to use Hoot’s JS FFI to call WebGL and/or WebGPU. Indeed, this is the plan for the future! Wasm GC needs some improvements to make this feasible, but my personal goal is to get Chickadee ported to Hoot. I want Chickadee games to be easy to play natively and in browsers, just like love2d games. The cake/icing spectrum I must acknowledge the limitations of the cake approach. We’re not living in a world of Lisp machines, but a world of glorified PDP-11s. Even the tallest of Lisp cakes sits atop an even larger cake made mostly of C. All modern Lisp systems bottom out at some point. Emacs rests on a C core. Guile’s VM is written in C. Hoot runs on mammoth JavaScript engines written in C++ like V8. Games on Hoot currently render with HTML5 canvas rather than WebGL/WebGPU. Good luck using OpenGL without libGL; Chickadee uses guile-opengl which uses the C FFI to call into libGL. Then there’s libpng, FreeType, and more. Who the heck wants to rewrite all this in Lisp? Who even has the resources? Does spending all this time taking the scenic route matter at all, or are we just deluding ourselves because we have fun writing Lisp code? I think it does matter. Every piece of the stack that can be reclaimed from the likes of C is a small victory. The parts written in Lisp are much easier to hack on, and some of those things become live hackable while our programs are running. They are also memory safe, typically, thanks to GC managed runtimes. Less FFI calls means less overhead from traversing the Lisp/C boundary and more safety. As more of the stack becomes Lisp, it starts looking less like icing and more like cake. Moving beyond games, we can look to the Guix project as a great example of just how tasty the cake can get. Guix took the functional packaging model from the Nix project and made a fresh implementation, replacing the Nix language with Guile. Why? For code staging, code sharing, and improved hackability. Guix also uses an init system written in Guile rather than systemd. Why? For code staging, code sharing, and improved hackability. These are real advantages that make the trade-off of not using the industry-standard thing worth it. I’ve been using Guix since the early days, and back then it was easy to make the argument that Guix was just reinventing wheels for no reason. But now, over 10 years later, the insistence on maximizing the usage of Lisp has been key to the success of the project. As a user, once you learn the Guix idioms and a bit of Guile, you unlock extraordinary power to craft your OS to your liking. It’s the closest thing you can get to a Lisp machine on modern hardware. The cake approach paid off for Guix, and it could pay off for other projects, too. If Common Lisp is more your thing, and even if it isn’t, you’ll be amazed by the Trial game engine and how much of it is implemented in Common Lisp rather than wrapping C libraries. There’s also projects like Pre-Scheme that give me hope that one day the layers below the managed GC runtime can be implemented in Lisp. Pre-Scheme was developed and successfully used for Scheme 48 and I am looking forward to a modern revival of it thanks to an NLnet grant. I'm a cake boy That’s right, I said it: I’m a cake boy. I want to see projects continue to push the boundaries of what Lisp can do. When it comes to the Lisp Game Jam, what excites me most are not the games themselves, but the small advances made to reclaim another little slice of the cake from stale, dry C. I intend to keep pushing the limits for Guile game development with my Chickadee project. It’s not a piece of cake to bake a lispy cake, and the way is often hazy, but I know we can’t be lazy and just do the cooking by the book. Rewrite it in Rust? No way! Rewrite it in Lisp!
More in programming
I started writing this early last week but Real Life Stuff happened and now you're getting the first-draft late this week. Warning, unedited thoughts ahead! New Logic for Programmers release! v0.9 is out! This is a big release, with a new cover design, several rewritten chapters, online code samples and much more. See the full release notes at the changelog page, and get the book here! Write the cleverest code you possibly can There are millions of articles online about how programmers should not write "clever" code, and instead write simple, maintainable code that everybody understands. Sometimes the example of "clever" code looks like this (src): # Python p=n=1 exec("p*=n*n;n+=1;"*~-int(input())) print(p%n) This is code-golfing, the sport of writing the most concise code possible. Obviously you shouldn't run this in production for the same reason you shouldn't eat dinner off a Rembrandt. Other times the example looks like this: def is_prime(x): if x == 1: return True return all([x%n != 0 for n in range(2, x)] This is "clever" because it uses a single list comprehension, as opposed to a "simple" for loop. Yes, "list comprehensions are too clever" is something I've read in one of these articles. I've also talked to people who think that datatypes besides lists and hashmaps are too clever to use, that most optimizations are too clever to bother with, and even that functions and classes are too clever and code should be a linear script.1. Clever code is anything using features or domain concepts we don't understand. Something that seems unbearably clever to me might be utterly mundane for you, and vice versa. How do we make something utterly mundane? By using it and working at the boundaries of our skills. Almost everything I'm "good at" comes from banging my head against it more than is healthy. That suggests a really good reason to write clever code: it's an excellent form of purposeful practice. Writing clever code forces us to code outside of our comfort zone, developing our skills as software engineers. Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you [will get excellent debugging practice at exactly the right level required to push your skills as a software engineer] — Brian Kernighan, probably There are other benefits, too, but first let's kill the elephant in the room:2 Don't commit clever code I am proposing writing clever code as a means of practice. Being at work is a job with coworkers who will not appreciate if your code is too clever. Similarly, don't use too many innovative technologies. Don't put anything in production you are uncomfortable with. We can still responsibly write clever code at work, though: Solve a problem in both a simple and a clever way, and then only commit the simple way. This works well for small scale problems where trying the "clever way" only takes a few minutes. Write our personal tools cleverly. I'm a big believer of the idea that most programmers would benefit from writing more scripts and support code customized to their particular work environment. This is a great place to practice new techniques, languages, etc. If clever code is absolutely the best way to solve a problem, then commit it with extensive documentation explaining how it works and why it's preferable to simpler solutions. Bonus: this potentially helps the whole team upskill. Writing clever code... ...teaches simple solutions Usually, code that's called too clever composes several powerful features together — the "not a single list comprehension or function" people are the exception. Josh Comeau's "don't write clever code" article gives this example of "too clever": const extractDataFromResponse = (response) => { const [Component, props] = response; const resultsEntries = Object.entries({ Component, props }); const assignIfValueTruthy = (o, [k, v]) => (v ? { ...o, [k]: v } : o ); return resultsEntries.reduce(assignIfValueTruthy, {}); } What makes this "clever"? I count eight language features composed together: entries, argument unpacking, implicit objects, splats, ternaries, higher-order functions, and reductions. Would code that used only one or two of these features still be "clever"? I don't think so. These features exist for a reason, and oftentimes they make code simpler than not using them. We can, of course, learn these features one at a time. Writing the clever version (but not committing it) gives us practice with all eight at once and also with how they compose together. That knowledge comes in handy when we want to apply a single one of the ideas. I've recently had to do a bit of pandas for a project. Whenever I have to do a new analysis, I try to write it as a single chain of transformations, and then as a more balanced set of updates. ...helps us master concepts Even if the composite parts of a "clever" solution aren't by themselves useful, it still makes us better at the overall language, and that's inherently valuable. A few years ago I wrote Crimes with Python's Pattern Matching. It involves writing horrible code like this: from abc import ABC class NotIterable(ABC): @classmethod def __subclasshook__(cls, C): return not hasattr(C, "__iter__") def f(x): match x: case NotIterable(): print(f"{x} is not iterable") case _: print(f"{x} is iterable") if __name__ == "__main__": f(10) f("string") f([1, 2, 3]) This composes Python match statements, which are broadly useful, and abstract base classes, which are incredibly niche. But even if I never use ABCs in real production code, it helped me understand Python's match semantics and Method Resolution Order better. ...prepares us for necessity Sometimes the clever way is the only way. Maybe we need something faster than the simplest solution. Maybe we are working with constrained tools or frameworks that demand cleverness. Peter Norvig argued that design patterns compensate for missing language features. I'd argue that cleverness is another means of compensating: if our tools don't have an easy way to do something, we need to find a clever way. You see this a lot in formal methods like TLA+. Need to check a hyperproperty? Cast your state space to a directed graph. Need to compose ten specifications together? Combine refinements with state machines. Most difficult problems have a "clever" solution. The real problem is that clever solutions have a skill floor. If normal use of the tool is at difficult 3 out of 10, then basic clever solutions are at 5 out of 10, and it's hard to jump those two steps in the moment you need the cleverness. But if you've practiced with writing overly clever code, you're used to working at a 7 out of 10 level in short bursts, and then you can "drop down" to 5/10. I don't know if that makes too much sense, but I see it happen a lot in practice. ...builds comradery On a few occasions, after getting a pull request merged, I pulled the reviewer over and said "check out this horrible way of doing the same thing". I find that as long as people know they're not going to be subjected to a clever solution in production, they enjoy seeing it! Next week's newsletter will probably also be late, after that we should be back to a regular schedule for the rest of the summer. Mostly grad students outside of CS who have to write scripts to do research. And in more than one data scientist. I think it's correlated with using Jupyter. ↩ If I don't put this at the beginning, I'll get a bajillion responses like "your team will hate you" ↩
Whether we like it or not, email is widely used to identify a person. Code sent to email is used as authentication and sometimes as authorisation for certain actions. I’m not comfortable with Google having such power over me, especially given the fact that they practically don’t have any support you can appeal to. If your Google account is blocked, that’s it. Maybe you know someone from Google and they can help you, but for most of us mortals that’s not an option.
In his book “The Order of Time” Carlo Rovelli notes how we often asks ourselves questions about the fundamental nature of reality such as “What is real?” and “What exists?” But those are bad questions he says. Why? the adjective “real” is ambiguous; it has a thousand meanings. The verb “to exist” has even more. To the question “Does a puppet whose nose grows when he lies exist?” it is possible to reply: “Of course he exists! It’s Pinocchio!”; or: “No, it doesn’t, he’s only part of a fantasy dreamed up by Collodi.” Both answers are correct, because they are using different meanings of the verb “to exist.” He notes how Pinocchio “exists” and is “real” in terms of a literary character, but not so far as any official Italian registry office is concerned. To ask oneself in general “what exists” or “what is real” means only to ask how you would like to use a verb and an adjective. It’s a grammatical question, not a question about nature. The point he goes on to make is that our language has to evolve and adapt with our knowledge. Our grammar developed from our limited experience, before we know what we know now and before we became aware of how imprecise it was in describing the richness of the natural world. Rovelli gives an example of this from a text of antiquity which uses confusing grammar to get at the idea of the Earth having a spherical shape: For those standing below, things above are below, while things below are above, and this is the case around the entire earth. On its face, that is a very confusing sentence full of contradictions. But the idea in there is profound: the Earth is round and direction is relative to the observer. Here’s Rovelli: How is it possible that “things above are below, while things below are above"? It makes no sense…But if we reread it bearing in mind the shape and the physics of the Earth, the phrase becomes clear: its author is saying that for those who live at the Antipodes (in Australia), the direction “upward” is the same as “downward” for those who are in Europe. He is saying, that is, that the direction “above” changes from one place to another on the Earth. He means that what is above with respect to Sydney is below with respect to us. The author of this text, written two thousand years ago, is struggling to adapt his language and his intuition to a new discovery: the fact that the Earth is a sphere, and that “up” and “down” have a meaning that changes between here and there. The terms do not have, as previously thought, a single and universal meaning. So language needs innovation as much as any technological or scientific achievement. Otherwise we find ourselves arguing over questions of deep import in a way that ultimately amounts to merely a question of grammar. Email · Mastodon · Bluesky
In mid-March we released a big bug fix update—elementary OS 8.0.1—and since then we’ve been hard at work on even more bug fixes and some new exciting features that I’m excited to share with you today! Read ahead to find out what we’ve released recently and what you can help us test in Early Access. Quick Settings Quick Settings has a new “Prevent Sleep” toggle Leo added a new “Prevent Sleep” toggle. This is useful when you’re giving a presentation or have a long-running background task where you want to temporarily avoid letting the computer go to sleep on its normal schedule. We also fixed a bug where the “Dark Mode” toggle would cancel the dark mode schedule when used. We now have proper schedule snoozing, so when you manually toggle Dark Mode on or off while using a timed or sunset-to-sunrise schedule, your schedule will resume on the next schedule change instead of being canceled completely. Vishal also fixed an issue that caused some apps to report being improperly closed on system shutdown or restart and on the lock screen we now show the “Suspend” button rather than the “Lock” button. System Settings Locale settings has a fresh layout thanks to Alain with its options aligned more cleanly and improved links to additional settings. Locale Settings has a more responsive design We’ve also added the phrase “about this device” as a search term for the System page and improved interface copy when a restart is required to finish installing updates based on your feedback. Plus, Stanisław improved stylus detection in Wacom settings preventing a crash when no stylus is found. AppCenter We now show a small label next to the download button for apps which contain in-app purchases. This is especially useful for easily identifying free-to-play games or alt stores like Steam or Heroic Games Launcher. AppCenter now shows when apps have in-app purchases Plus, we now reload app icons on-the-fly as their data is processed, thanks to Italo. That means you’ll no longer get occasionally stuck with an AppCenter which shows missing images for app’s who have taken a bit longer than usual to load. Get These Updates As always, pop open System Settings → System on elementary OS 8 and hit “Update All” to get these updates plus your regular security, bug fix, and translation updates. Or set up automatic updates and get a notification when updates are ready to install! Early Access Our development focus recently has been on some of the bigger features that will likely land for either elementary OS 8.1 or 9. We’ve got a new app, big changes to the design of our desktop itself, a whole lot of under-the-hood cleanup, and the return of some key system services thanks to a new open source project. Monitor We’re now shipping a System Monitor app by default By popular demand—and thanks to the hard work of Stanisław—we have a new system monitor app called “Monitor” shipping in Early Access. Monitor provides usage information for your processor, GPU, memory, storage, network, and currently running processes. You can optionally see system information in the panel with Monitor You can also optionally get a ton of glanceable information shown in the panel. There’s currently a lot of work happening to port Monitor to GTK4 and improve its functionality under the Secure Session, so make sure to report any issues you find! Multitasking The Dock is getting a workspace switcher Probably the biggest change to the Pantheon shell since its early inception, the Dock is getting a new workspace switcher! The workspace switcher works in a familiar way to the one you may have seen in the Multitasking View: Your currently open workspaces are represented as tiles with the icons of apps running on them; You can select a workspace to switch to it; You can drag-and-drop workspaces to rearrange them; And you can use the “+” button to create a new blank workspace. One new trick however is that selecting the workspace you’re already on will launch Multitasking View. The new workspace switcher makes it so much more accessible to multitask with just the mouse and get an overview of your workflows without having to first enter the Multitasking View. We’re really excited to hear what people think about it! You can close apps from Multitasking View by swiping up Another very satisfying feature for folks using touch input, you can now swipe up windows in the Multitasking View to close them. This is a really familiar gesture for those of us with Android and iOS devices and feels really natural for managing a big stack of windows without having to aim for a small “x” button. GTK4 Porting We’ve recently landed the port of Tasks to GTK4. So far that comes with a few fixes to tighten up its design, with much more possible in the future. Please make sure to help us test it thoroughly for any regressions! Tasks has a slightly tightened up design We’re also making great progress on porting the panel to GTK4. So far we have branches in review for Nightlight, Bluetooth, Datetime, and Network indicators. Power, Keyboard, and Quick Settings indicators all have in-progress branches. That leaves just Applications, Sound, and Notifications. So far these ports don’t come with major feature changes, but they do involve lots of cleaning up and modernizing of these code bases and in some cases fixing bugs! When the port is finished, we should see immediate performance gains and we’ll have a much better foundation for future releases. You can follow along with our progress porting everything to GTK4 in this GitHub Project. And More When you take a screenshot using keyboard shortcuts or by secondary-clicking an app’s window handle, we now send a notification letting you know that it was succesful and where to find the resulting image. Plus there’s a handy button that opens Files with your screenshot pre-selected. We’re also testing beaconDB as a replacement for Mozilla Location Services (MLS). If you’re not aware, we relied on MLS in previous versions of elementary OS to provide location information for devices that don’t have a GPS radio. Unfortunately Mozilla discontinued the service last June and we’ve been left without a replacement until now. Without these services, not only did maps and weather apps cease to function, but system features like automatic timezone detection and features that rely on sunset and sunrise times no longer work properly. beaconDB offers a drop-in replacement for MLS that uses Wireless networks, bluetooth devices, and cell towers to provide location data when requested. All of its data is crowd-sourced and opt-in and several distributions are now defaulting to using it as their location services data provider. I’ve set up a small sponsorship from elementary on Liberapay to support the project. If you can help support beaconDB either by sponsoring or providing stumbler data, I’d highly encourage you to do so! Sponsors At the moment we’re at 23% of our monthly funding goal and 336 Sponsors on GitHub! Shoutouts to everyone helping us reach our goals here. Your monthly sponsorship funds development and makes sure we have the resources we need to give you the best version of elementary OS we can! Monthly release candidate builds and daily Early Access builds are available to GitHub Sponsors from any tier! Beware that Early Access builds are not considered stable and you will encounter fresh issues when you run them. We’d really appreciate reporting any problems you encounter with the Feedback app or directly on GitHub.
Via Jeremy Keith’s link blog I found this article: Elizabeth Goodspeed on why graphic designers can’t stop joking about hating their jobs. It’s about the disillusionment of designers since the ~2010s. Having ridden that wave myself, there’s a lot of very relatable stuff in there about how design has evolved as a profession. But before we get into the meat of the article, there’s some bangers worth acknowledging, like this: Amazon – the most used website in the world – looks like a bunch of pop-up ads stitched together. lol, burn. Haven’t heard Amazon described this way, but it’s spot on. The hard truth, as pointed out in the article, is this: bad design doesn’t hurt profit margins. Or at least there’s no immediately-obvious, concrete data or correlation that proves this. So most decision makers don’t care. You know what does help profit margins? Spending less money. Cost-savings initiatives. Those always provide a direct, immediate, seemingly-obvious correlation. So those initiatives get prioritized. Fuzzy human-centered initiatives (humanities-adjacent stuff), are difficult to quantitatively (and monetarily) measure. “Let’s stop printing paper and sending people stuff in the mail. It’s expensive. Send them emails instead.” Boom! Money saved for everyone. That’s easier to prioritize than asking, “How do people want us to communicate with them — if at all?” Nobody ever asks that last part. Designers quickly realized that in most settings they serve the business first, customers second — or third, or fourth, or... Shar Biggers [says] designers are “realising that much of their work is being used to push for profit rather than change..” Meet the new boss. Same as the old boss. As students, designers are encouraged to make expressive, nuanced work, and rewarded for experimentation and personal voice. The implication, of course, is that this is what a design career will look like: meaningful, impactful, self-directed. But then graduation hits, and many land their first jobs building out endless Google Slides templates or resizing banner ads...no one prepared them for how constrained and compromised most design jobs actually are. Reality hits hard. And here’s the part Jeremy quotes: We trained people to care deeply and then funnelled them into environments that reward detachment. And the longer you stick around, the more disorienting the gap becomes – especially as you rise in seniority. You start doing less actual design and more yapping: pitching to stakeholders, writing brand strategy decks, performing taste. Less craft, more optics; less idealism, more cynicism. Less work advocating for your customers, more work for advocating for yourself and your team within the organization itself. Then the cynicism sets in. We’re not making software for others. We’re making company numbers go up, so our numbers ($$$) will go up. Which reminds me: Stephanie Stimac wrote about reaching 1 year at Igalia and what stood out to me in her post was that she didn’t feel a pressing requirement to create visibility into her work and measure (i.e. prove) its impact. I’ve never been good at that. I’ve seen its necessity, but am just not good at doing it. Being good at building is great. But being good at the optics of building is often better — for you, your career, and your standing in many orgs. Anyway, back to Elizabeth’s article. She notes you’ll burn out trying to monetize something you love — especially when it’s in pursuit of maintaining a cost of living. Once your identity is tied up in the performance, it’s hard to admit when it stops feeling good. It’s a great article and if you’ve been in the design profession of building software, it’s worth your time. Email · Mastodon · Bluesky