Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
6
Less known desktop UI frameworks Writing desktop software is hard. The UI technologies of Windows or MacOS are awful compared to web technology. What can trivially be done with HTML/CSS/JavaScript in few minutes can take hours using Windows’s win32 APIs or Mac’s Cocoa. That’s why the default technology for desktop apps, especially cross-platform, is Electron: a Chrome browser combined with Node runtime. The problem is that it’s bloaty: each app is a unique build of Chrome with a little bit of application code. Chrome is over 100MB so many apps ship less than 1MB of code in a 100M wrapper. People tried to address the problem of poor OS APIs by writing UI frameworks, often meant to be cross-platform. You’ve heard about QT, GTK, wxWindows. The problem with those is that they are also old, their APIs are not the greatest either and they are bloaty as well. There just doesn’t seem to be a good option. Writing your own framework seems impossible due to the size of task. But is...
3 days ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Krzysztof Kowalczyk blog

New Edna feature: multiple notes

I started working on Edna several months ago and I’ve implemented lots of functionality. Edna is a note taking application with super powers. I figured I’ll make a series of posts about all the features I’ve added in last few months. The first is multiple notes. By default we start with 3 notes: scratch inbox daily journal Here’s a note switcher (Ctrl + K): From note switcher you can: quickly find a note by partial name open selected note with Enter or mouse click create new note: enter fully unique note name and Enter or Ctrl + Enter if it partially matches existing note. I learned this trick from Notational Velocity delete note with Ctrl + Delete archive notes with icon on the right star / un-star (add to favorites, remove from favorites) by clicking star icon on the left assign quick access shortcut Alt + <n> You can also rename notes: context menu (right click mouse) and This note / Rename Rename current note in command palette (Ctrl + Shift + K) Use context menu This note sub-menu for note-related commands. Note: I use Windows keyboard bindings. For Mac equivalent, visit https://edna.arslexis.io/help#keyboard-shortcuts

2 days ago 3 votes
Evolving Edna Ask AI UI

This is a real life example of tweaking UI in Edna, my note taking application with super powers. Ask AI is a simple AI chat: you write a question, send it to LLM model and get a response. Here’s my first version of the UI: What is good and bad about this version? Good: there’s a learn more link. This is not an obvious feature because you need to pick a model and provide an API key. An easy access to an explanation is good. Bad: It’s not clear enough that you need to provide an API key. To make things even more confusing, for models from OpenAI or xAI you can use either OpenAI/xAI key or OpenRouter key. Hence the Use OpenRouter checkbox. I decided to make things more explicit: I think it’s clearer, especially for someone new to the API keys. Checkbox is gone. Now I just ask for one or the other and will use whichever is given. A learn more links to section of the docs explaining how to get API key and answering basic questions someone new might have. Visually I think it would look better if the link was on the right but then it would be easier to miss. Functionality over aesthetics. Another subtle touch: explicit placeholder Enter OpenAI API key text in input field.

3 days ago 4 votes
Implementing UI translation in SumatraPDF, a C++ Windows application

Translating user interface of SumatraPDF SumatraPDF is the best PDF/eBook/Comic Book viewer for Windows. It’s small, fast, full of features, free and open-source. It became popular enough that it made sense to translate the UI for non-English users. Currently we support 72 languages. This article describes how I designed and implemented a translation system in SumatraPDF, a native win32 C++ Windows application. Hard things about translating the UI There are 2 hard things about translating an application code for translation system (extracting strings to translate, translate strings from English to user’s language) translating them into many languages Extracting strings to translate from source code Currently there are 381 strings in SumatraPDF subject to translation. It’s important that the system requires the least amount of effort when adding new strings to translate. Every string that needs to be translated is marked in .cpp or .h file with one of two macros: _TRA("Rename") _TRN("Open") I have a script that extracts those strings from source files. Mine is written in Go but it could just as well be Python or JavaScript. It’s a simple regex job. _TR stands for “translation”. _TRA(s) expands into const char* trans::GetTranslation(const char* str) function which returns str translated to current UI language. We auto-detect language at startup based on Windows settings and allow the user to explicitly set UI language. For English we just return the original string. If a string to be translated is e.g. a part of const char* array[], we can’t use trans::GetTranslation(). For cases like that we have _TRN() which expands to English string. We have to write code to translate it at some point. Adding new strings is therefore as simple as wrapping them in _TRA() or _TRN() macros. Translating strings into many languages Now that we’ve extracted strings to be translated, we need to translate them into 72 languages. SumatraPDF is a free, open-source program. I don’t have a budget to hire translators. I don’t have a budget, period. The only option was to get help from SumatraPDF users. It was vital to make it very easy for users to send me translations. I didn’t want to ask them, for example, to download some translation software. Design and implementation of AppTranslator web app I couldn’t find a really simple software for crowd sourcing translations so I wrote my own: https://github.com/kjk/apptranslator You can see it in action: https://www.apptranslator.org/app/SumatraPDF I designed it to be generic but I don’t think anyone else is using it. AppTranslator is simple. Per https://tools.arslexis.io/wc/: 4k lines of Go server code 451 lines of html code a single dependency: bootstrap CSS framework (the project is old) It’s simple because I don’t want to spend a lot of time writing translation software. It’s just a side project in service of the goal of translating SumatraPDF. Login is exclusively via GitHub. It doesn’t even use a database. Like in Redis, changes are stored as a series of operations in an append-only log. We keep the whole state in memory and re-create it from the log at startup. Main operation is translate a string from English to language X represented as [kOpTranslation, english string, language, translation, user who provided translation]. When user provides a translation in the web UI, we send an API call to the server which appends the translation operation to the log. Simple and reliable. Because the code is written in Go, it’s very fast and memory efficient. When running it uses mere megabytes of RAM. It can comfortably run on the smallest 256 MB VPS server. I backup the log to S3 so if the server ever fails, I can re-install the program on a new server and re-download the translations from S3. I provide RSS feed for each language so that people who provide translations can monitor for new strings to be translated. Sending strings for translation and receiving translations So I have a web app for collecting translations and a script that extracts strings to be translated from source code. How do they connect? AppTranslator has an API for submitting the current set of strings to be translated in the simplest possible format: a line for each string (I ensure there are no newlines in the string itself by escaping them with \n) API is password protected because only I can submit the strings. The server compares the strings sent with the current set and records a difference in the log. It also sends a response with translations. Again the simplest possible format: AppTranslator: SumatraPDF 651b739d7fa110911f25563c933f42b1d37590f8 :%s annotation. Ctrl+click to edit. am:%s մեկնաբանություն: Ctrl+քլիք՝ խմբագրելու համար: ar:ملاحظة %s. اضغط Ctrl للتحرير. az:Qeyd %s. Düzəliş etmək üçün Ctrl+düyməyə basın. As you can see: a string to translate is on a line starting with : is followed by translations of that strings in the format: ${lang}: ${translation} An optimization: 651b739d7fa110911f25563c933f42b1d37590f8 is a hash of this response. If I submit this hash with my request and translations didn’t change on the server, the response is empty. Implementing C++ part of translation system So now I have a text file with translation downloaded from the server. How do I get a translation in my C++ code? As with everything in SumatraPDF, I try to do things in a simple and efficient way. The whole Translation.cpp is only 239 lines of code. The core of translation system is const char* trans::GetTranslation(const char* s); function. I embed the translations in exact the same format as received from AppTranslator in the executable as data file in resources. If the UI language is English, we do nothing. trans::GetTranslation() returns its argument. When we switch the language, we load the translations from resources and build an index: an array of English strings an array of corresponding translations Both arrays use my own StrVec class optimized for storing an array of strings. To find a translation we scan the first array to find an index of the string and return translation from the second array, at the same index. Linear scan seems like it would be slow but it isn’t. Resizing dialogs I have a few dialogs defined in SumatraPDF.rc file. The problem with dialogs is that position of UI elements is fixed. A translated string will almost certainly have a different size than the English string which will mess up fixed layout. Thankfully someone wrote DialogSizer that smartly resizes dialogs and solves this problem. The evolution of a solution No AppTranslator My initial implementation was simpler. I didn’t yet have AppTranslator so I stored the strings in a text file in repository in the same format as what I described above. People would download it, make changes using a text editor and send me the file via email which I would then checkin. It worked for a while but it became worse over time. More strings, more languages created more work for me to manually manage e-mail submissions. I decided to automate the process. Code generation My first implementation of C++ side used code generation instead of embedding the text file in resources. My Go script would generate C++ source code files with static const char* [] arrays. This worked well but I decided to improve it further by making the code use the text file with translations embedded in the app. The main motivation for the change was to open a possibility of downloading latest translations from the server to fix the problem of translations not being all ready when I build the release executable. I haven’t done that yet but it’s now easier to implement given that the format of strings embedded in the exe is the same as the one I can download from AppTranslator. Only utf-8 SumatraPDF started by using both WCHAR* Unicode strings and char* utf8 strings. For that reason the translation system had to support returning translation in both WCHAR* and char* version. Over time I refactored the code to use mostly utf8 and at some point I no longer needed to support WCHAR* version. That made the code even smaller and reduced memory usage. The experience I’m happy how things turned out. AppTranslator proved to be reliable and hassle free. It runs for many years now and collected 35440 string translations from users. I automated everything so that all I need to do is to periodically re-run the script that extracts strings from source code, uploads them to AppTranslator and downloads latest translations. One problem is that translations are not always ready in time for release so I make a release and then people start translating strings added since last release. I’ve considered downloading the latest translations from the server, in addition to embedding them in an executable at the time of building the app. Would I do the same today? While AppTranslator is reliable and doesn’t require on-going work, it would be better to not have to run a server at all. The world has changed since I started SumatraPDF. Namely: people are comfortable using GitHub and you can edit files directly in GitHub UI. It’s not a great experience but it works. One option would be to generate a translation text file for each language, in this format: :first untranslated string :second untranslated string :first translated string translation of first string :second translated string translation of second string Untranslated strings are listed at the top, to make it easier to find. A link would send a translator directly to edit this file in GitHub UI. When translator saves translations, it creates a PR for me to review and merge. The roads not taken But why did you re-invent everything? You should do X instead. All other X that I know about suck. Using per-language .rc resource files Traditional way of localizing / translating Window GUI apps is to store all strings and dialog definitions in an .rc file. Each language gets its own .rc file (or files) and the program picks the right resource based on a language. This doesn’t solve the 2 hard problems: having an easy way to add strings for translations having an easy way for users to provide translations XML horror show There was a dark time when the world was under the iron grip of XML fanaticism. Everything had to be an XML file even when it was the worst possible solution for the problem. XML doesn’t solve the 2 hard problems and a string storage format is an absolute nightmare for human editing. GNU gettext There’s a C library gettext that uses .po files. This is much saner solution than XML horror show. .po files are relatively simple text format. The code is already written. Warning: tooting my own horn. My format is better. It’s easier for people to edit, it’s easier to write code to parse it. This looks like many times more than 239 lines of code. Ok, gettext probably does a bit more than my code, but clearly nothing than I need. It also doesn’t solve the 2 hard problems. I would still have to write code to extract strings from source code and build a way to allow users to translate them easily.

4 days ago 5 votes
Calling Grok, OpenAI, Anthropic, Google, OpenRouter API from the browser

Here’s what I learned about calling LLM APIs from the browser when building AI chat functionality in my note taking app Edna. The API I care about is getting LLM response to a question in a streaming way. OpenAI pioneered this and created https://api.openai.com/v1/chat/completions POST API. Others created a compatible API for their LLM to make it easy for programmers to migrate. xAI has https://api.x.ai/v1/chat/completions for Grok and OpenRouter has https://openrouter.ai/api/v1/chat/completions. Google and Anthropic have similar APIs but they use CORS to disallow calling them from the browser. Baffling restriction. For now I decided to not support them directly. I could route the requests via the server but I can use OpenRouter instead. I’ve seen TypingMind call Google API from the browser but using a different API endpoint. Again, for now I decided to not support Google directly. OpenRouter is an interesting service and business. They provide unified API for lots of different models so I can use Google or Anthropic APIs via OpenRouter and lots of other models. They charge 5% on top of what they pay the providers, which is reasonable if you consider that they probably pay ~3% for processing credit card fees. For now I support OpenAI and Grok directly and everyone else via OpenRouter.

4 days ago 6 votes

More in programming

Computers Are a Feeling

Exploring diagram.website, I came across The Computer is a Feeling by Tim Hwang and Omar Rizwan: the modern internet exerts a tyranny over our imagination. The internet and its commercial power has sculpted the computer-device. It's become the terrain of flat, uniform, common platforms and protocols, not eccentric, local, idiosyncratic ones. Before computers were connected together, they were primarily personal. Once connected, they became primarily social. The purpose of the computer shifted to become social over personal. The triumph of the internet has also impoverished our sense of computers as a tool for private exploration rather than public expression. The pre-network computer has no utility except as a kind of personal notebook, the post-network computer demotes this to a secondary purpose. Smartphones are indisputably the personal computer. And yet, while being so intimately personal, they’re also the largest distribution of behavior-modification devices the world has ever seen. We all willing carry around in our pockets a device whose content is largely designed to modify our behavior and extract our time and money. Making “computer” mean computer-feelings and not computer-devices shifts the boundaries of what is captured by the word. It removes a great many things – smartphones, language models, “social” “media” – from the domain of the computational. It also welcomes a great many things – notebooks, papercraft, diary, kitchen – back into the domain of the computational. I love the feeling of a personal computer, one whose purpose primarily resides in the domain of the individual and secondarily supports the social. It’s part of what I love about the some of the ideas embedded in local-first, which start from the principle of owning and prioritizing what you do on your computer first and foremost, and then secondarily syncing that to other computers for the use of others. Email · Mastodon · Bluesky

2 days ago 3 votes
New Edna feature: multiple notes

I started working on Edna several months ago and I’ve implemented lots of functionality. Edna is a note taking application with super powers. I figured I’ll make a series of posts about all the features I’ve added in last few months. The first is multiple notes. By default we start with 3 notes: scratch inbox daily journal Here’s a note switcher (Ctrl + K): From note switcher you can: quickly find a note by partial name open selected note with Enter or mouse click create new note: enter fully unique note name and Enter or Ctrl + Enter if it partially matches existing note. I learned this trick from Notational Velocity delete note with Ctrl + Delete archive notes with icon on the right star / un-star (add to favorites, remove from favorites) by clicking star icon on the left assign quick access shortcut Alt + <n> You can also rename notes: context menu (right click mouse) and This note / Rename Rename current note in command palette (Ctrl + Shift + K) Use context menu This note sub-menu for note-related commands. Note: I use Windows keyboard bindings. For Mac equivalent, visit https://edna.arslexis.io/help#keyboard-shortcuts

2 days ago 3 votes
Thoughts on Motivation and My 40-Year Career

I’ve never published an essay quite like this. I’ve written about my life before, reams of stuff actually, because that’s how I process what I think, but never for public consumption. I’ve been pushing myself to write more lately because my co-authors and I have a whole fucking book to write between now and October. […]

3 days ago 10 votes
Single-Use Disposable Applications

As search gets worse and “working code” gets cheaper, apps get easier to make from scratch than to find.

3 days ago 8 votes