Full Width [alt+shift+f] Shortcuts [alt+shift+k] TRY SIMPLE MODE
Sign Up [alt+shift+s] Log In [alt+shift+l]
25
Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our...
a month ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Alice GG

Playing with open source LLMs

Every 6 months or so, I decide to leave my cave and check out what the cool kids are doing with AI. Apparently the latest trend is to use fancy command line tools to write code using LLMs. This is a very nice change, since it suddenly makes AI compatible with my allergy to getting out of the terminal. The most popular of these tools seems to be Claude Code. It promises to be able to build in total autonomy, being able to use search code, write code, run tests, lint, and commit the changes. While this sounds great on paper, I’m not keen on getting locked into vendor tools from an unprofitable company. At some point, they will either need to raise their prices, enshittify their product, or most likely do both. So I went looking for what the free and open source alternatives are. Picking a model There’s a large amount of open source large language models on the market, with new ones getting released all the time. However, they are not all ready to be used locally in coding tasks, so I had to try a bunch of them before settling on one. deepseek-r1:8b Deepseek is the most popular open source model right now. It was created by the eponymous Chinese company. It made the news by beating numerous benchmarks while being trained on a budget that is probably lower than the compensation of some OpenAI workers. The 8b variant only weights 5.2 GB and runs decently on limited hardware, like my three years old Mac. This model is famous for forgetting about world events from 1989, but also seems to have a few issues when faced with concrete coding tasks. It is a reasoning model, meaning it “thinks” before acting, which should lead to improved accuracy. In practice, it regularly gets stuck indefinitely searching where it should start and jumping from one problem to the other in a loop. This can happen even on simple problems, and made it unusable for me. mistral:7b Mistral is the French alternative to American and Chinese models. I have already talked about their 7b model on this blog. It is worth noting that they have kept updating their models, and it should now be much more accurate than two years ago. Mistral is not a reasoning model, so it will jump straight to answering. This is very good if you’re working with tasks where speed and low compute use are a priority. Sadly, the accuracy doesn’t seem good enough for coding. Even on simple tasks, it will hallucinate functions or randomly delete parts of the code I didn’t want to touch. qwen3:8b Another model from China, qwen3 was created by the folks at Alibaba. It also claims impressive benchmark results, and can work as both a reasoning or non-thinking model. It was made with modern AI tooling in mind, by supporting MCPs and a framework for agentic development. This model actually seems to work as expected, providing somewhat accurate code output while not hanging in the reasoning part. Since it runs decently on my local setup, I decided to stick to that model for now. Setting up a local API with Ollama Ollama is now the default way to download and run local LLMs. It can be simply installed by downloading it from their website. Once installed, it works like Docker for models, by giving us access to commands like pull, run, or rm. Ollama will expose an API on localhost which can be used by other programs. For example, you can use it from your Python programs through ollama-python. Pair programming with aider The next piece of software I installed is aider. I assume it’s pronounced like the French word, but I could not confirm that. Aider describes itself as a “pair programming” application. Its main job is to pass context to the model, let it write the output to files, run linters, and commit the changes. Getting started It can be installed using the official Python package or via Homebrew if you use Mac. Once it is installed, just navigate to your code repository and launch it: export OLLAMA_API_BASE=http://127.0.0.1:11434 aider --model ollama_chat/qwen3:8b The CLI should automatically create some configuration files and add them to the repo’s .gitignore. Usage Aider isn’t meant to be left alone in complete autonomy. You’ll have to guide the AI through the process of making changes to your repository. To start, use the /add command to add files you want to focus on. Those files will be passed entirely to the model’s context and the model will be able to write in them. You can then ask questions using the /ask command. If you want to generate code, a good strategy can be to starting by requesting a plan of actions. When you want it to actually write to the files, you can prompt it using the /code command. This is also the default mode. There’s no absolute guarantee that it will follow a plan if you agreed on one previously, but it is still a good idea to have one. The /architect command seems to automatically ask for a plan, accept it, and write the code. The specificity of this command is that it lets you use different models to plan and write the changes. Refactoring I tried coding with aider in a few situations to see how it performs in practice. First, I tried making it do a simple refactoring on Itako, which is a project of average complexity. When pointed to the exact part of code where the issues happened, and explained explicitly what to do, the model managed to change the target struct according to the instructions. It did unexpectedly change a function that was outside the scope of what I asked, but this was easy to spot. On paper, this looks like a success. In practice, the time spent crafting a prompt, waiting for the AI to run and fixing the small issue that came up immensely exceeds the 10 minutes it would have taken me to edit the file myself. I don’t think coding that way would lead me to a massive performance improvement for now. Greenfield project For a second scenario, I wanted to see how it would perform on a brand-new project. I quickly set up a Python virtual environment, and asked aider to work with me at building a simple project. We would be opening a file containing Japanese text, parsing it with fugashi, and counting the words. To my surprise, this was a disaster. All I got was a bunch on hallucination riddled python that wouldn’t run under any circumstances. It may be that the lack of context actually made it harder for the model to generate code. Troubleshooting Finally, I went back to Itako, and decided to check how it would perform on common troubleshooting tasks. I introduced a few bugs to my code and gathered some error messages. I then proceeded to simply give aider the files mentioned by the error message and just use /ask to have it explain the errors to me, without requiring it to implement the code. This part did work very well. If I compare it with Googling unknown error messages, I think this can cut the time spent on the issue by half This is not just because Google is getting worse every day, but the model having access to the actual code does give it a massive advantage. I do think this setup is something I can use instead of the occasional frustration of scrolling through StackOverflow threads when something unexpected breaks. What about the Qwen CLI? With everyone jumping on the trend of CLI tools for LLMs, the Qwen team released its own Qwen Code. It can be installed using npm, and connects to a local model if configured like this: export OPENAI_API_KEY="ollama" export OPENAI_BASE_URL="http://localhost:11434/v1/" export OPENAI_MODEL="qwen3:8b" Compared to aider, it aims at being fully autonomous. For example, it will search your repository using grep. However, I didn’t manage to get it to successfully write any code. The tool seems optimized for larger, online models, with context sizes up to 1M tokens. Our local qwen3 context only has a 40k tokens context size, which can get overwhelmed very quickly when browsing entire code repositories. Even when I didn’t run out of context, the tool mysteriously failed when trying to write files. It insists it can only write to absolute paths, which the model doesn’t seem to agree with providing. I did not investigate the issue further.

a week ago 15 votes
Discord considered harmful

In the past few years, social media use has gained a bad reputation. More or less everyone is now aware that TikTok is ruining your attention span, and Twitter is radicalizing you into extreme ideologies. But, despite its enormous popularity amongst technology enthusiasts, there’s not a lot of attention given to Discord. I personally have been using Discord so much for so long that the majority of my social circle is made of people I met through the platform. I even spent two years of my life helping run the infrastructure behind the most popular Bot available on Discord. In this article, I will try to give my perspective on Discord, why I think it is harmful, and what can we do about it. appshunter.io A tale of two book clubs To explain my point of view about Discord, I will compare the experience between joining a real-life book-club, and one that communicates exclusively through Discord. This example is about books, but the same issues would apply if it was a community talking about investing, knitting, or collecting stamps. As Marshall McLuhan showed last century, examining media should be done independently of their content. In the first scenario, we have Bob. Bob enjoys reading books, which is generally a solitary hobby. To break this solitude, Bob decides to join a book club. This book club reunites twice a month in a library where they talk about a new book each time. In the second scenario, we have Alice. Alice also likes books. Alice also wants to meet fellow book lovers. Being a nerd, Alice decides to join a Discord server. This server does not have fixed meeting times. Most users simply use the text channels to talk about what they are reading anytime during the day. Crumbs of Belongingness In Bob’s book club, a session typically lasts an hour. First, the librarian takes some time to welcome everyone and introduce newcomers. After, that each club member talks about the book they were expected to read. They can talk about what they liked and disliked, how the book made them feel, and the chapters they found particularly noteworthy. Once each member had the time to talk about the book, they vote on the book they are going to read for the next date. After the session is concluded, some members move to the nearest coffeehouse to keep talking. During this session of one hour, Bob spent around one hour socializing. The need for belongingness that drove Bob to join this book club is fully met. On Alice’s side, the server is running 24/7. When she opens the app, even if there are sometimes more than 4000 members of her virtual book club online, most of the time, nobody is talking. If she was to spend an entire hour staring at the server she might witness a dozen or so messages. Those messages may be part of small conversations in which Alice can take part. Sadly, most of the time they will be simple uploads of memes, conversations about books she hasn’t read, or messages that do not convey enough meaning to start a conversation. In one hour of constant Discord use, Alice’s need for socializing has not been met. Susan Q Yin The shop is closed Even if Bob’s library is open every day, the book club is only open for a total of two hours a month. It is enough for Bob. Since the book club fulfills his need, he doesn’t want it to be around for longer. He has not even entertained the thought of joining a second book club, because too many meetings would be overwhelming. For Alice, Discord is always available. No matter if she is at home or away, it is always somewhere in her phone or taskbar. At any moment of the day, she might notice a red circle above the icon. It tells her there are unread messages on Discord. When she notices that, she instinctively stops her current task and opens the app to spend a few minutes checking her messages. Most of the time those messages do not lead to a meaningful conversation. Reading a few messages isn’t enough to meet her need for socialization. So, after having scrolled through the messages, she goes back to waiting for the next notification. Each time she interrupts her current task to check Discord, getting back into the flow can take several minutes or not happen at all. This can easily happen dozens of times a day and cost Alice hundreds of hours each month. Book hopping When Bob gets home, the club only requires him to read the next book. He may also choose to read two books at the same time, one for the book club and one from his personal backlog. But, if he were to keep his efforts to a strict minimum, he would still have things to talk about in the next session. Alice wants to be able to talk with other users about the books they are reading. So she starts reading the books that are trending and get mentionned often. The issue is, Discord’s conversation are instantaneous, and instantaneity compresses time. A book isn’t going to stay popular and relevant for two whole weeks, if it manages to be the thing people talk about for two whole days, it’s already great. Alice might try to purchase and read two to three books a week to keep up with the server rythm. Even if books are not terribly expensive, this can turn a 20 $/month hobby into a 200 $/month hobby. In addition to that, if reading a book takes Alice on average 10 hours, reading 3 books a week would be like adding a part-time job to her schedule. All this, while being constantly interrupted by the need to check if new conversations have been posted to the server. visnu deva Quitting Discord If you are in Alice’s situation, the solution is quite simple: use Discord less, ideally not at all. On my side, I’ve left every server that is not relevant to my current work. I blocked discord.com from the DNS of my coding computer (using NextDNS) and uninstalled the app from my phone. This makes the platform only usable as a direct messaging app, exclusively from my gaming device, which I cannot carry with me. I think many people realize the addictive nature of Discord, yet keep using the application all the time. One common objection to quitting the platform, is that there’s a need for an alternative: maybe we should go back to forums, or IRC, or use Matrix, etc… I don’t think any alternative internet chat platform can solve the problem. The real problem is that we want to be able to talk to people without leaving home, at any time, without any inconvenience. But what we should do is exactly that, leave home and join a real book club, one that is not open 24/7, and one where the members take the time to listen to each other. In the software community, we have also been convinced that every one of our projects needs to be on Discord. Every game needs a server, open-source projects offer support on Discord, and a bunch of AI startups even use it as their main user interface. I even made a server for Dice’n Goblins. I don’t think it’s really that useful. I’m not even sure it’s that convenient. Popular games are not popular because they have big servers, they have big servers because they are popular. Successful open-source projects often don’t even have a server.

a month ago 27 votes
Thoughts on releasing our first indie game

Two weeks ago we released Dice’n Goblins, our first game on Steam. This project allowed me to discover and learn a lot of new things about game development and the industry. I will use this blog post to write down what I consider to be the most important lessons from the months spent working on this. The development started around 2 years ago when Daphnée started prototyping a dungeon crawler featuring a goblin protagonist. After a few iterations, the game combat started featuring dice, and then those dice could be used to make combos. In May 2024, the game was baptized Dice’n Goblins, and a Steam page was created featuring some early gameplay screenshots and footage. I joined the project full-time around this period. Almost one year later, after amassing more than 8000 wishlists, the game finally released on Steam on April 4th, 2025. It was received positively by the gaming press, with great reviews from PCGamer and LadiesGamers. It now sits at 92% positive reviews from players on Steam. Building RPGs isn’t easy As you can see from the above timeline, building this game took almost two years and two programmers. This is actually not that long if you consider that other indie RPGs have taken more than 6 years to come out. The main issue with the genre is that you need to create a believable world. In practice, this requires programming many different systems that will interact together to give the impression of a cohesive universe. Every time you add a new system, you need to think about how it will fit all the existing game features. For example, players typically expect an RPG to have a shop system. Of course, this means designing a shop non-player character (or building) and creating a UI that is displayed when you interact with it. But this also means thinking through a lot of other systems: combat needs to be changed to reward the player with gold, every item needs a price tag, chests should sometimes reward the player with gold, etc… Adding too many systems can quickly get into scope creep territory, and make the development exponentially longer. But you can only get away with removing so much until your game stops being an RPG. Making a game without a shop might be acceptable, but the experience still needs to have more features than “walking around and fighting monsters” to feel complete. RPGs are also, by definition, narrative experiences. While some games have managed to get away with procedurally generating 90% of the content, in general, you’ll need to get your hands dirty, write a story, and design a bunch of maps. Creating enough content for a game to fit 12h+ without having the player go through repetitive grind will by itself take a lot of time. Having said all that, I definitely wouldn’t do any other kind of games than RPGs, because this is what I enjoy playing. I don’t think I would be able to nail what makes other genres fun if I don’t play them enough to understand what separates the good from the mediocre. Marketing isn’t that complicated Everyone in the game dev community knows that there are way too many games releasing on Steam. To stand out amongst the 50+ games coming out every day, it’s important not only to have a finished product but also to plan a marketing campaign well in advance. For most people coming from a software engineering background, like me, this can feel extremely daunting. Our education and jobs do not prepare us well for this kind of task. In practice, it’s not that complicated. If your brain is able to provision a Kubernetes cluster, then you are most definitely capable of running a marketing campaign. Like anything else, it’s a skill that you can learn over time by practicing it, and iteratively improving your methods. During the 8 months following the Steam page release, we tried basically everything you can think of as a way to promote the game. Every time something was having a positive impact, we would do it more, and we quickly stopped things with low impact. The most important thing to keep in mind is your target audience. If you know who wants the game of games you’re making, it is very easy to find where they hang out and talk to them. This is however not an easy question to answer for every game. For a long while, we were not sure who would like Dice’n Goblins. Is it people who like Etrian Odyssey? Fans of Dicey Dungeons? Nostalgic players of Paper Mario? For us, the answer was mostly #1, with a bit of #3. Once we figured out what was our target audience, how to communicate with them, and most importantly, had a game that was visually appealing enough, marketing became very straightforward. This is why we really struggled to get our first 1000 wishlists, but getting the last 5000 was actually not that complicated. Publishers aren’t magic At some point, balancing the workload of actually building the game and figuring out how to market it felt too much for a two-person team. We therefore did what many indie studios do, and decided to work with a publisher. We worked with Rogue Duck Interactive, who previously published Dice & Fold, a fairly successful dice roguelike. Without getting too much into details, it didn’t work out as planned and we decided, by mutual agreement, to go back to self-publishing Dice’n Goblins. The issue simply came from the audience question mentioned earlier. Even though Dice & Fold and Dice’n Goblins share some similarities, they target a different audience, which requires a completely different approach to marketing. The lesson learned is that when picking a publisher, the most important thing you can do is to check that their current game catalog really matches the idea you have of your own game. If you’re building a fast-paced FPS, a publisher that only has experience with cozy simulation games will not be able to help you efficiently. In our situation, a publisher with experience in roguelikes and casual strategy games wasn’t a good fit for an RPG. In addition to that, I don’t think the idea of using a publisher to remove marketing toil and focus on making the game is that much of a good idea in the long term. While it definitely helps to remove the pressure from handling social media accounts and ad campaigns, new effort will be required in communicating and negotiating with the publishing team. In the end, the difference between the work saved and the work gained might not have been worth selling a chunk of your game. Conclusion After all this was said and done, one big question I haven’t answered is: would I do it again? The answer is definitely yes. Not only building this game was an extremely satisfying endeavor, but so much has been learned and built while doing it, it would be a shame not to go ahead and do a second one.

3 months ago 40 votes
Writing GDScript with Neovim

Neovim is by far my favorite text editor. The clutter-free interface and keyboard-only navigation are what keep me productive in my daily programming. In an earlier post, I explained how I configure it into a minimalist development environment. Today, I will show you how to use it with Godot and GDScript. Configure Godot First, we need to tell Godot to use nvim as a text editor instead of the built-in one. Open Godot, and head to Editor Settings > General > Text Editor > External. There, you will need to tick the box Use external editor, indicate your Neovim installation path, and use --server /tmp/godothost --remote-send "<C-\><C-N>:n {file}<CR>{line}G{col}|" as execution flags. While in the settings, head to Network > Language Server and note down the remote port Godot is using. By default, it should be 6005. We will need that value later. Connecting to Godot with vim-godot Neovim will be able to access Godot features by using a plugin called vim-godot. We will need to edit the nvim configuration file to install plugins and configure Neovim. On Mac and Linux, it is located at ~/.config/nvim/init.vim I use vim-plug to manage my plugins, so I can just add it to my configuration like this: call plug#begin('~/.vim/plugged') " ... Plug 'habamax/vim-godot' " ... call plug#end() Once the configuration file is modified and saved, use the :PlugInstall command to install it. You’ll also need to indicate Godot’s executable path. Add this line to your init.vim: let g:godot_executable = '/Applications/Godot.app/Contents/MacOS/Godot' For vim-godot to communicate with the Godot editor, it will need to listen to the /tmp/godothost file we configured in the editor previously. To do that, simply launch nvim with the flag --listen /tmp/godothost. To save you some precious keypress, I suggest creating a new alias in your bashrc/zshrc like this: alias gvim="nvim --listen /tmp/godothost" Getting autocompletion with coc.nvim Godot ships with a language server. It means the Godot editor can provide autocompletion, syntax highlighting, and advanced navigation to external editors like nvim. While Neovim now has built-in support for the language server protocol, I’ve used the plugin coc.nvim to obtain these functionalities for years and see no reason to change. You can also install it with vim-plug by adding the following line to your plugin list: Plug 'neoclide/coc.nvim', {'branch':'release'} Run :PlugInstall again to install it. You’ll need to indicate the Godot language server address and port using the command :CocConfig. It should open Coc’s configuration file, which is a JSON file normally located at ~/.config/nvim/coc-settings.json. In this file enter the following data, and make sure the port number matches the one located in your editor: { "languageserver": { "godot": { "host": "127.0.0.1", "filetypes": ["gdscript"], "port": 6005 } } } I recommend adding Coc’s example configuration to your init.vim file. You can find it on GitHub. It will provide you with a lot of useful shortcuts, such as using gd to go to a function definition and gr to list its references. Debugging using nvim-dap If you want to use the debugger from inside Neovim, you’ll need to install another plugin called nvim-dap. Add the following to your plugins list: Plug 'mfussenegger/nvim-dap' The plugin authors suggest configuring it using Lua, so let’s do that by adding the following in your init.vim: lua <<EOF local dap = require("dap") dap.adapters.godot = { type = "server", host = "127.0.0.1", port = 6006, } dap.configurations.gdscript = { { type = "godot", request = "launch", name = "Launch scene", project = "${workspaceFolder}", launch_scene = true, }, } vim.api.nvim_create_user_command("Breakpoint", "lua require'dap'.toggle_breakpoint()", {}) vim.api.nvim_create_user_command("Continue", "lua require'dap'.continue()", {}) vim.api.nvim_create_user_command("StepOver", "lua require'dap'.step_over()", {}) vim.api.nvim_create_user_command("StepInto", "lua require'dap'.step_into()", {}) vim.api.nvim_create_user_command("REPL", "lua require'dap'.repl.open()", {}) EOF This will connect to the language server (here on port 6005), and allow you to pilot the debugger using the following commands: :Breakpoint to create (or remove) a breakpoint :Continue to launch the game or run until the next breakpoint :StepOver to step over a line :StepInto to step inside a function definition :REPL to launch a REPL (useful if you want to examine values) Conclusion I hope you’ll have a great time developing Godot games with Neovim. If it helps you, you can check out my entire init.vim file on GitHub gist.

9 months ago 82 votes

More in programming

The Framework Desktop is a beast

I've been running the Framework Desktop for a few months here in Copenhagen now. It's an incredible machine. It's completely quiet, even under heavy, stress-all-cores load. It's tiny too, at just 4.5L of volume, especially compared to my old beautiful but bulky North tower running the 7950X — yet it's faster! And finally, it's simply funky, quirky, and fun! In some ways, the Framework Desktop is a curious machine. Desktop PCs are already very user-repairable! So why is Framework even bringing their talents to this domain? In the laptop realm, they're basically alone with that concept, but in the desktop space, it's rather crowded already. Yet it somehow still makes sense. Partly because Framework has gone with the AMD Ryzen AI Max 395+, which is technically a laptop CPU. You can find it in the ASUS ROG Flow Z13 and the HP ZBook Ultra. Which means it'll fit in a tiny footprint, and Framework apparently just wanted to see what they could do in that form factor. They clearly had fun with it. Look at mine: There are 21 little tiles on the front that you can get in a bunch of different colors or with logos from Framework. Or you can 3D print your own! It's a welcome change in aesthetic from the brushed aluminum or gamer-focused RGBs approach that most of the competition is taking. But let's cut to the benchmarks. That's really why you'd buy a machine like the Framework Desktop. There are significantly cheaper mini PCs available from Beelink and others, but so far, Framework has the only AMD 395+ unit on sale that's completely silent (the GMKTec very much is not, nor is the Z3 Flow). And for me, that's just a dealbreaker. I can't listen to roaring fans anymore. Here's the key benchmark for me: That's the only type of multi-core workload I really sit around waiting on these days, and the Framework Desktop absolutely crushes it. It's almost twice as fast as the Beelink SER8 and still a solid third faster than the Beelink SER9 too. Of course, it's also a lot more expensive, but you're clearly getting some multi-core bang for your buck here! It's even a more dramatic difference to the Macs. It's a solid 40% faster than the M4 Max and 50% faster than the M4 Pro! Now some will say "that's just because Docker is faster on Linux," and they're not entirely wrong. Docker runs natively on Linux, so for this test, where the MySQL/Redis/ElasticSearch data stores run in Docker while Ruby and the app code runs natively, that's part of the answer. Last I checked, it was about 25% of the difference. But so what? Docker is an integral part of the workflow for tons of developers. We use it to be able to run different versions of MySQL, Redis, and ElasticSearch for different applications on the same machine at the same time. You can't really do that without Docker. So this is what Real World benchmarks reveal. It's not just about having a Docker advantage, though. The AMD 395+ is also incredibly potent in RAW CPU performance. Those 16 Zen5 cores are running at 5.1GHz, and in Geekbench 6 multicore, this is how they stack up: Basically matching the M4 Max! And a good chunk faster than the M4 Pro (as well as other AMDs and Intel's 14900K!). No wonder that it's crazy quick with a full-core stress test like running 30,000 assertions for our HEY test suite. To be fair, the M4s are faster in single-core performance. Apple holds the crown there. It's about 20%. And you'll see that in benchmarks like Speedometer, which mostly measures JavaScript single-core performance. The Framework Desktop puts out 670 vs 744 on the M4 Pro on Speedometer 2.1. On SP 3.1, it's an even bigger difference with 35 vs 50. But I've found that all these computers feel fast enough in single-core performance these days. I can't actually feel the difference browsing on a machine that does 670 vs 744 on SP2.1. Hell, I can barely feel the difference between the SER8, which does 506, and the M4 Pro! The only time I actually feel like I'm waiting on anything is in multi-core workloads like the HEY test suite, and here the AMD 395+ is very near the fastest you can get for a consumer desktop machine today at any price. It gets even better when you bring price into the equation, though. The Framework Desktop with 64GB RAM + 2TB NVMe is $1,876. To get a Mac Studio with similar specs — M4 Max, 64GB RAM, 2TB NVMe — you'll literally spend nearly twice as much at $3,299! If you go for 128GB RAM, you'll spend $2,276 on the Framework, but $4,099 on the Mac. And it'll still be way slower for development work using Docker! The Framework Desktop is simply a great deal. Speaking of 64GB vs 128GB, I've been running the 64GB version, and I almost never get anywhere close to the limits. I think the highest I've seen in regular use is about 20GB of RAM in action. Linux is really efficient. Especially when you're using a window manager like Hyprland, as we do in Omarchy. The only reason you really want to go for the full 128GB RAM is to run local LLM models. The AMD 395+ uses unified memory, like Apple, so nearly all of it is addressable to be used by the GPU. That means you can run monster models, like the new 120b gpt-oss from OpenAI. Framework has a video showing them pushing out 40 tokens/second doing just that. That seems about in range of the numbers I've seen from the M4 Max, which also seem in the 40-50 token/second range, but I'll defer to folks who benchmark local LLMs for the exact details on that. I tried running the new gpt-oss-20b on my 64GB machine, though, and I wasn't exactly blown away by the accuracy. In fact, I'd say it was pretty bad. I mean, exceptionally cool that it's doable, but very far off the frontier models we have access to as SaaS. So personally, this isn't yet something I actually use all that much in day-to-day development. I want the best models running at full speed, and right now that means SaaS. So if you just want the best, small computer that runs Linux superbly well out of the box, you should buy the Framework Desktop. It's completely quiet, fantastically fast, and super fun to look at. But I think it's also fair to mention that you can get something like a Beelink SER9 for half the price! Yes, it's also only 2/3 the performance in multi-core, but it's just as fast in single-core. Most developers could totally get away with the SER9, and barely notice what they were missing. But there are just as many people for whom the extra $1,000 is worth the price to run the test suite 40 seconds quicker! You know who you are. Oh, before I close, I also need to mention that this thing is a gaming powerhouse. It basically punches about as hard as an RTX 4060! With an iGPU! That's kinda crazy. Totally new territory on the PC side for integrated graphics. ETA Prime has a video showing the same chip in the GMK Tech running premier games at 1440p High Settings at great frame rates. You can run most games under Linux these days too (thanks Valve and Steam Deck!), but if you need to dual boot with Windows, the dual NVMe slots in the Framework Desktop come very handy. Framework did good with this one. AMD really blew it out of the water with the 395+. We're spoiled to have such incredible hardware available for Linux at such appealing discounts over similar stuff from Cupertino. What a great time to love open source software and tinker-friendly hardware!

21 hours ago 4 votes
Writing: Blog Posts and Songs

I was listening to a podcast interview with the Jackson Browne (American singer/songwriter, political activist, and inductee into the Rock and Roll Hall of Fame) and the interviewer asks him how he approaches writing songs with social commentaries and critiques — something along the lines of: “How do you get from the New York Times headline on a social subject to the emotional heart of a song that matters to each individual?” Browne discusses how if you’re too subtle, people won’t know what you’re talking about. And if you’re too direct, you run the risk of making people feel like they’re being scolded. Here’s what he says about his songwriting: I want this to sound like you and I were drinking in a bar and we’re just talking about what’s going on in the world. Not as if you’re at some elevated place and lecturing people about something they should know about but don’t but [you think] they should care. You have to get to people where [they are, where] they do care and where they do know. I think that’s a great insight for anyone looking to have a connecting, effective voice. I know for me, it’s really easily to slide into a lecturing voice — you “should” do this and you “shouldn’t” do that. But I like Browne’s framing of trying to have an informal, conversational tone that meets people where they are. Like you’re discussing an issue in the bar, rather than listening to a sermon. Chris Coyier is the canonical example of this that comes to mind. I still think of this post from CSS Tricks where Chris talks about how to have submit buttons that go to different URLs: When you submit that form, it’s going to go to the URL /submit. Say you need another submit button that submits to a different URL. It doesn’t matter why. There is always a reason for things. The web is a big place and all that. He doesn’t conjure up some universally-applicable, justified rationale for why he’s sharing this method. Nor is there any pontificating on why this is “good” or “bad”. Instead, like most of Chris’ stuff, I read it as a humble acknowledgement of the practicalities at hand — “Hey, the world is a big place. People have to do crafty things to make their stuff work. And if you’re in that situation, here’s something that might help what ails ya.” I want to work on developing that kind of a voice because I love reading voices like that. Email · Mastodon · Bluesky

2 days ago 4 votes
Doing versus Delegating

A staff+ skill

2 days ago 7 votes
p-fast trie, but smaller

Previously, I wrote some sketchy ideas for what I call a p-fast trie, which is basically a wide fan-out variant of an x-fast trie. It allows you to find the longest matching prefix or nearest predecessor or successor of a query string in a set of names in O(log k) time, where k is the key length. My initial sketch was more complicated and greedy for space than necessary, so here’s a simplified revision. (“p” now stands for prefix.) layout A p-fast trie stores a lexicographically ordered set of names. A name is a sequence of characters from some small-ish character set. For example, DNS names can be represented as a set of about 50 letters, digits, punctuation and escape characters, usually one per byte of name. Names that are arbitrary bit strings can be split into chunks of 6 bits to make a set of 64 characters. Every unique prefix of every name is added to a hash table. An entry in the hash table contains: A shared reference to the closest name lexicographically greater than or equal to the prefix. Multiple hash table entries will refer to the same name. A reference to a name might instead be a reference to a leaf object containing the name. The length of the prefix. To save space, each prefix is not stored separately, but implied by the combination of the closest name and prefix length. A bitmap with one bit per possible character, corresponding to the next character after this prefix. For every other prefix that matches this prefix and is one character longer than this prefix, a bit is set in the bitmap corresponding to the last character of the longer prefix. search The basic algorithm is a longest-prefix match. Look up the query string in the hash table. If there’s a match, great, done. Otherwise proceed by binary chop on the length of the query string. If the prefix isn’t in the hash table, reduce the prefix length and search again. (If the empty prefix isn’t in the hash table then there are no names to find.) If the prefix is in the hash table, check the next character of the query string in the bitmap. If its bit is set, increase the prefix length and search again. Otherwise, this prefix is the answer. predecessor Instead of putting leaf objects in a linked list, we can use a more complicated search algorithm to find names lexicographically closest to the query string. It’s tricky because a longest-prefix match can land in the wrong branch of the implicit trie. Here’s an outline of a predecessor search; successor requires more thought. During the binary chop, when we find a prefix in the hash table, compare the complete query string against the complete name that the hash table entry refers to (the closest name greater than or equal to the common prefix). If the name is greater than the query string we’re in the wrong branch of the trie, so reduce the length of the prefix and search again. Otherwise search the set bits in the bitmap for one corresponding to the greatest character less than the query string’s next character; if there is one remember it and the prefix length. This will be the top of the sub-trie containing the predecessor, unless we find a longer match. If the next character’s bit is set in the bitmap, continue searching with a longer prefix, else stop. When the binary chop has finished, we need to walk down the predecessor sub-trie to find its greatest leaf. This must be done one character at a time – there’s no shortcut. thoughts In my previous note I wondered how the number of search steps in a p-fast trie compares to a qp-trie. I have some old numbers measuring the average depth of binary, 4-bit, 5-bit, 6-bit and 4-bit, 5-bit, dns qp-trie variants. A DNS-trie varies between 7 and 15 deep on average, depending on the data set. The number of steps for a search matches the depth for exact-match lookups, and is up to twice the depth for predecessor searches. A p-fast trie is at most 9 hash table probes for DNS names, and unlikely to be more than 7. I didn’t record the average length of names in my benchmark data sets, but I guess they would be 8–32 characters, meaning 3–5 probes. Which is far fewer than a qp-trie, though I suspect a hash table probe takes more time than chasing a qp-trie pointer. (But this kind of guesstimate is notoriously likely to be wrong!) However, a predecessor search might need 30 probes to walk down the p-fast trie, which I think suggests a linked list of leaf objects is a better option.

2 days ago 4 votes
Software books I wish I could read

New Logic for Programmers Release! v0.11 is now available! This is over 20% longer than v0.10, with a new chapter on code proofs, three chapter overhauls, and more! Full release notes here. Software books I wish I could read I'm writing Logic for Programmers because it's a book I wanted to have ten years ago. I had to learn everything in it the hard way, which is why I'm ensuring that everybody else can learn it the easy way. Books occupy a sort of weird niche in software. We're great at sharing information via blogs and git repos and entire websites. These have many benefits over books: they're free, they're easily accessible, they can be updated quickly, they can even be interactive. But no blog post has influenced me as profoundly as Data and Reality or Making Software. There is no blog or talk about debugging as good as the Debugging book. It might not be anything deeper than "people spend more time per word on writing books than blog posts". I dunno. So here are some other books I wish I could read. I don't think any of them exist yet but it's a big world out there. Also while they're probably best as books, a website or a series of blog posts would be ok too. Everything about Configurations The whole topic of how we configure software, whether by CLI flags, environmental vars, or JSON/YAML/XML/Dhall files. What causes the configuration complexity clock? How do we distinguish between basic, advanced, and developer-only configuration options? When should we disallow configuration? How do we test all possible configurations for correctness? Why do so many widespread outages trace back to misconfiguration, and how do we prevent them? I also want the same for plugin systems. Manifests, permissions, common APIs and architectures, etc. Configuration management is more universal, though, since everybody either uses software with configuration or has made software with configuration. The Big Book of Complicated Data Schemas I guess this would kind of be like Schema.org, except with a lot more on the "why" and not the what. Why is important for the Volcano model to have a "smokingAllowed" field?1 I'd see this less as "here's your guide to putting Volcanos in your database" and more "here's recurring motifs in modeling interesting domains", to help a person see sources of complexity in their own domain. Does something crop up if the references can form a cycle? If a relationship needs to be strictly temporary, or a reference can change type? Bonus: path dependence in data models, where an additional requirement leads to a vastly different ideal data model that a company couldn't do because they made the old model. (This has got to exist, right? Business modeling is a big enough domain that this must exist. Maybe The Essence of Software touches on this? Man I feel bad I haven't read that yet.) Computer Science for Software Engineers Yes, I checked, this book does not exist (though maybe this is the same thing). I don't have any formal software education; everything I know was either self-taught or learned on the job. But it's way easier to learn software engineering that way than computer science. And I bet there's a lot of other engineers in the same boat. This book wouldn't have to be comprehensive or instructive: just enough about each topic to understand why it's an area of study and appreciate how research in it eventually finds its way into practice. MISU Patterns MISU, or "Make Illegal States Unrepresentable", is the idea of designing system invariants in the structure of your data. For example, if a Contact needs at least one of email or phone to be non-null, make it a sum type over EmailContact, PhoneContact, EmailPhoneContact (from this post). MISU is great. Most MISU in the wild look very different than that, though, because the concept of MISU is so broad there's lots of different ways to achieve it. And that means there are "patterns": smart constructors, product types, properly using sets, newtypes to some degree, etc. Some of them are specific to typed FP, while others can be used in even untyped languages. Someone oughta make a pattern book. My one request would be to not give them cutesy names. Do something like the Aarne–Thompson–Uther Index, where items are given names like "Recognition by manner of throwing cakes of different weights into faces of old uncles". Names can come later. The Tools of '25 Not something I'd read, but something to recommend to junior engineers. Starting out it's easy to think the only bit that matters is the language or framework and not realize the enormous amount of surrounding tooling you'll have to learn. This book would cover the basics of tools that enough developers will probably use at some point: git, VSCode, very basic Unix and bash, curl. Maybe the general concepts of tools that appear in every ecosystem, like package managers, build tools, task runners. That might be easier if we specialize this to one particular domain, like webdev or data science. Ideally the book would only have to be updated every five years or so. No LLM stuff because I don't expect the tooling will be stable through 2026, to say nothing of 2030. A History of Obsolete Optimizations Probably better as a really long blog series. Each chapter would be broken up into two parts: A deep dive into a brilliant, elegant, insightful historical optimization designed to work within the constraints of that era's computing technology What we started doing instead, once we had more compute/network/storage available. c.f. A Spellchecker Used to Be a Major Feat of Software Engineering. Bonus topics would be brilliance obsoleted by standardization (like what people did before git and json were universal), optimizations we do today that may not stand the test of time, and optimizations from the past that did. Sphinx Internals I need this. I've spent so much goddamn time digging around in Sphinx and docutils source code I'm gonna throw up. Systems Distributed Talk Today! Online premier's at noon central / 5 PM UTC, here! I'll be hanging out to answer questions and be awkward. You ever watch a recording of your own talk? It's real uncomfortable! In this case because it's a field on one of Volcano's supertypes. I guess schemas gotta follow LSP too ↩

2 days ago 9 votes