More from dthompson
I'm happy to announce that guile-websocket 0.2.0 has been released! Guile-websocket is an implementation of the WebSocket protocol, both the client and server sides, for Guile Scheme. This release introduces breaking changes that overhaul the client and server implementations in order to support non-blocking I/O and TLS encrypted connections. source tarball: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz signature: https://files.dthompson.us/guile-websocket/guile-websocket-0.2.0.tar.gz.asc See the guile-websocket project page for more information. Bug reports, bug fixes, feature requests, and patches are welcomed.
Wasm GC is a wonderful thing that is now available in all major web browsers since slowpoke Safari/WebKit finally shipped it in December. It provides a hierarchy of heap allocated reference types and a set of instructions to operate on them. Wasm GC enables managed memory languages to take advantage of the advanced garbage collectors inside web browser engines. It’s now possible to implement a managed memory language without having to ship a GC inside the binary. The result is smaller binaries, better performance, and better integration with the host runtime. However, Wasm GC has some serious drawbacks when compared to linear memory. I enjoy playing around with realtime graphics programming in my free time, but I was disappointed to discover that Wasm GC just isn’t a good fit for that right now. I decided to write this post because I’d like to see Wasm GC on more or less equal footing with linear memory when it comes to binary data manipulation. Hello triangle For starters, let's take a look at what a “hello triangle” WebGL demo looks like with Wasm GC. I’ll use Hoot, the Scheme to Wasm compiler that I work on, to build it. Below is a Scheme program that declares imports for the subset of the WebGL, HTML5 Canvas, etc. APIs that are necessary and then renders a single triangle: (use-modules (hoot ffi)) ;; Document (define-foreign get-element-by-id "document" "getElementById" (ref string) -> (ref null extern)) ;; Element (define-foreign element-width "element" "width" (ref extern) -> i32) (define-foreign element-height "element" "height" (ref extern) -> i32) ;; Canvas (define-foreign get-canvas-context "canvas" "getContext" (ref extern) (ref string) -> (ref null extern)) ;; WebGL (define GL_VERTEX_SHADER 35633) (define GL_FRAGMENT_SHADER 35632) (define GL_COMPILE_STATUS 35713) (define GL_LINK_STATUS 35714) (define GL_ARRAY_BUFFER 34962) (define GL_STATIC_DRAW 35044) (define GL_COLOR_BUFFER_BIT 16384) (define GL_TRIANGLES 4) (define GL_FLOAT 5126) (define-foreign gl-create-shader "gl" "createShader" (ref extern) i32 -> (ref extern)) (define-foreign gl-delete-shader "gl" "deleteShader" (ref extern) (ref extern) -> none) (define-foreign gl-shader-source "gl" "shaderSource" (ref extern) (ref extern) (ref string) -> none) (define-foreign gl-compile-shader "gl" "compileShader" (ref extern) (ref extern) -> none) (define-foreign gl-get-shader-parameter "gl" "getShaderParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-shader-info-log "gl" "getShaderInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-program "gl" "createProgram" (ref extern) -> (ref extern)) (define-foreign gl-delete-program "gl" "deleteProgram" (ref extern) (ref extern) -> none) (define-foreign gl-attach-shader "gl" "attachShader" (ref extern) (ref extern) (ref extern) -> none) (define-foreign gl-link-program "gl" "linkProgram" (ref extern) (ref extern) -> none) (define-foreign gl-use-program "gl" "useProgram" (ref extern) (ref extern) -> none) (define-foreign gl-get-program-parameter "gl" "getProgramParameter" (ref extern) (ref extern) i32 -> i32) (define-foreign gl-get-program-info-log "gl" "getProgramInfoLog" (ref extern) (ref extern) -> (ref string)) (define-foreign gl-create-buffer "gl" "createBuffer" (ref extern) -> (ref extern)) (define-foreign gl-delete-buffer "gl" "deleteBuffer" (ref extern) (ref extern) -> (ref extern)) (define-foreign gl-bind-buffer "gl" "bindBuffer" (ref extern) i32 (ref extern) -> none) (define-foreign gl-buffer-data "gl" "bufferData" (ref extern) i32 (ref eq) i32 -> none) (define-foreign gl-enable-vertex-attrib-array "gl" "enableVertexAttribArray" (ref extern) i32 -> none) (define-foreign gl-vertex-attrib-pointer "gl" "vertexAttribPointer" (ref extern) i32 i32 i32 i32 i32 i32 -> none) (define-foreign gl-draw-arrays "gl" "drawArrays" (ref extern) i32 i32 i32 -> none) (define-foreign gl-viewport "gl" "viewport" (ref extern) i32 i32 i32 i32 -> none) (define-foreign gl-clear-color "gl" "clearColor" (ref extern) f64 f64 f64 f64 -> none) (define-foreign gl-clear "gl" "clear" (ref extern) i32 -> none) (define (compile-shader gl type source) (let ((shader (gl-create-shader gl type))) (gl-shader-source gl shader source) (gl-compile-shader gl shader) (unless (= (gl-get-shader-parameter gl shader GL_COMPILE_STATUS) 1) (let ((info (gl-get-shader-info-log gl shader))) (gl-delete-shader gl shader) (error "shader compilation failed" info))) shader)) (define (link-shader gl vertex-shader fragment-shader) (let ((program (gl-create-program gl))) (gl-attach-shader gl program vertex-shader) (gl-attach-shader gl program fragment-shader) (gl-link-program gl program) (unless (= (gl-get-program-parameter gl program GL_LINK_STATUS) 1) (let ((info (gl-get-program-info-log gl program))) (gl-delete-program gl program) (error "program linking failed" info))) program)) ;; Setup GL context (define canvas (get-element-by-id "canvas")) (define gl (get-canvas-context canvas "webgl")) (when (external-null? gl) (error "unable to create WebGL context")) ;; Compile shader (define vertex-shader-source "attribute vec2 position; attribute vec3 color; varying vec3 fragColor; void main() { gl_Position = vec4(position, 0.0, 1.0); fragColor = color; }") (define fragment-shader-source "precision mediump float; varying vec3 fragColor; void main() { gl_FragColor = vec4(fragColor, 1); }") (define vertex-shader (compile-shader gl GL_VERTEX_SHADER vertex-shader-source)) (define fragment-shader (compile-shader gl GL_FRAGMENT_SHADER fragment-shader-source)) (define shader (link-shader gl vertex-shader fragment-shader)) ;; Create vertex buffer (define stride (* 4 5)) (define buffer (gl-create-buffer gl)) (gl-bind-buffer gl GL_ARRAY_BUFFER buffer) (gl-buffer-data gl GL_ARRAY_BUFFER #f32(-1.0 -1.0 1.0 0.0 0.0 1.0 -1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0) GL_STATIC_DRAW) ;; Draw (gl-viewport gl 0 0 (element-width canvas) (element-height canvas)) (gl-clear gl GL_COLOR_BUFFER_BIT) (gl-use-program gl shader) (gl-enable-vertex-attrib-array gl 0) (gl-vertex-attrib-pointer gl 0 2 GL_FLOAT 0 stride 0) (gl-enable-vertex-attrib-array gl 1) (gl-vertex-attrib-pointer gl 1 3 GL_FLOAT 0 stride 8) (gl-draw-arrays gl GL_TRIANGLES 0 3) Note that in Scheme, the equivalent of a Uint8Array is a bytevector. Hoot uses a packed array, an (array i8) specifically, for the contents of a bytevector. And here is the JavaScript code necessary to boot the resulting Wasm binary: window.addEventListener("load", async () => { function bytevectorToUint8Array(bv) { let len = reflect.bytevector_length(bv); let array = new Uint8Array(len); for (let i = 0; i < len; i++) { array[i] = reflect.bytevector_ref(bv, i); } return array; } let mod = await SchemeModule.fetch_and_instantiate("triangle.wasm", { reflect_wasm_dir: 'reflect-wasm', user_imports: { document: { getElementById: (id) => document.getElementById(id) }, element: { width: (elem) => elem.width, height: (elem) => elem.height }, canvas: { getContext: (elem, type) => elem.getContext(type) }, gl: { createShader: (gl, type) => gl.createShader(type), deleteShader: (gl, shader) => gl.deleteShader(shader), shaderSource: (gl, shader, source) => gl.shaderSource(shader, source), compileShader: (gl, shader) => gl.compileShader(shader), getShaderParameter: (gl, shader, param) => gl.getShaderParameter(shader, param), getShaderInfoLog: (gl, shader) => gl.getShaderInfoLog(shader), createProgram: (gl, type) => gl.createProgram(type), deleteProgram: (gl, program) => gl.deleteProgram(program), attachShader: (gl, program, shader) => gl.attachShader(program, shader), linkProgram: (gl, program) => gl.linkProgram(program), useProgram: (gl, program) => gl.useProgram(program), getProgramParameter: (gl, program, param) => gl.getProgramParameter(program, param), getProgramInfoLog: (gl, program) => gl.getProgramInfoLog(program), createBuffer: (gl) => gl.createBuffer(), deleteBuffer: (gl, buffer) => gl.deleteBuffer(buffer), bindBuffer: (gl, target, buffer) => gl.bindBuffer(target, buffer), bufferData: (gl, buffer, data, usage) => { let bv = new Bytevector(reflect, data); gl.bufferData(buffer, bytevectorToUint8Array(bv), usage); }, enableVertexAttribArray: (gl, index) => gl.enableVertexAttribArray(index), vertexAttribPointer: (gl, index, size, type, normalized, stride, offset) => { gl.vertexAttribPointer(index, size, type, normalized, stride, offset); }, drawArrays: (gl, mode, first, count) => gl.drawArrays(mode, first, count), viewport: (gl, x, y, w, h) => gl.viewport(x, y, w, h), clearColor: (gl, r, g, b, a) => gl.clearColor(r, g, b, a), clear: (gl, mask) => gl.clear(mask) } } }); let reflect = await mod.reflect({ reflect_wasm_dir: 'reflect-wasm' }); let proc = new Procedure(reflect, mod.get_export("$load").value); proc.call(); }); Hello problems There are two major performance issues with this program. One is visible in the source above, the other is hidden in the language implementation. Heap objects are opaque on the other side Wasm GC heap objects are opaque to the host. Likewise, heap objects from the host are opaque to the Wasm guest. Thus the contents of an (array i8) object are not visible from JavaScript and the contents of a Uint8Array are not visible from Wasm. This is a good security property in the general case, but it’s a hinderance in this specific case. Let’s say we have an (array i8) full of vertex data we want to put into a WebGL buffer. To do this, we must make one JS->Wasm call for each byte in the array and store it into a Uint8Array. This is what the bytevectorToUint8Array function above is doing. Copying any significant amount of data per frame is going to tank performance. Hope you aren’t trying to stream vertex data! Contrast the previous paragraph with Wasm linear memory. A WebAssembly.Memory object can be easily accessed from JavaScript as an ArrayBuffer. To get a blob of vertex data out of a memory object, you just need to know the byte offset and length and you’re good to go. There are many Wasm linear memory applications using WebGL successfully. Manipulating multi-byte binary data is inefficient To read a multi-byte number such as an unsigned 32-bit integer from an (array i8), you have to fetch each individual byte and combine them together. Here’s a self-contained example that uses Guile-flavored WAT format: (module (type $bytevector (array i8)) (data $init #u32(123456789)) (func (export "main") (result i32) (local $a (ref $bytevector)) (local.set $a (array.new_data $bytevector $init (i32.const 0) (i32.const 4))) (array.get_u $bytevector (local.get $a) (i32.const 0)) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 1)) (i32.const 8)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 2)) (i32.const 16)) (i32.or) (i32.shl (array.get_u $bytevector (local.get $a) (i32.const 3)) (i32.const 24)) (i32.or))) By contrast, Wasm linear memory needs but a single i32.load instruction: (module (memory 1) (func (export "main") (result i32) (i32.store (i32.const 0) (i32.const 123456789)) (i32.load (i32.const 0)))) Easy peasy. Not only is it less code, it's a lot more efficient. Unsatisfying workarounds There’s no way around the multi-byte problem at the moment, but for byte access from JavaScript there are some things we could try to work with what we have been given. Spoiler alert: None of them are pleasant. Use Uint8Array from the host This approach makes all binary operations from within the Wasm binary slow since we’d have to cross the Wasm->JS bridge for each read/write. Since most of the binary data manipulation is happening in the Wasm module, this approach will just make things slower overall. Use linear memory for bytevectors This would require a little malloc/free implementation and a way to reclaim memory for GC'd bytevectors. You could register every bytevector in a FinalizationRegistry in order to be notified upon GC and free the memory. Now you have to deal with memory fragmentation. This is Wasm GC, we shouldn’t have to do any of this! Use linear memory as a scratch space This avoids crossing the Wasm/JS boundary for each byte, but still involves a byte-by-byte copy from (array i8) to linear memory within the Wasm module. So far this feels like the least worst option, but the extra copy is still going to greatly reduce throughput. Wasm GC needs some fixin' I’ve used realtime graphics as an example because it’s a use case that is very sensitive to performance issues, but this unfortunate need to copy binary data byte-by-byte is also the reason why strings are trash on Wasm GC right now. Stringref is a good proposal and the Wasm community group made a mistake by rejecting it. Anyway, there has been some discussion about both multi-byte and ArrayBuffer access on GitHub, but as far as I can tell neither issue is anywhere close to a resolution. Can these things be implemented efficiently? How can the need for direct access to packed arrays from JS be reconciled with Wasm heap object opaqueness? I hope the Wasm community group can arrive at solutions sooner than later because it will take a long time to get the proposal(s) to phase 4 and shipped in all browsers, perhaps years. It would be a shame to be effectively shut out from using WebGPU when it finally reaches stable browser releases.
I’ve been interested in functional reactive programming (FRP) for about a decade now. I even wrote a couple of blog posts back in 2014 describing my experiments. My initial source of inspiration was Elm, the Haskell-like language for the web that once had FRP as a core part of the language. Evan Czaplicki’s Strange Loop 2013 talk really impressed me, especially that Mario demo. From there, I explored the academic literature on the subject. Ultimately, I created and then abandoned a library that focused on FRP for games. It was a neat idea, but the performance was terrible. The overhead of my kinda-sorta FRP system was part of the problem, but mostly it was my own inexperience. I didn’t know how to optimize effectively and my implementation language, Guile, did not have as many optimization passes as it does now. Also, realtime simulations like games require much more careful use of heap allocation. I found that, overhead aside, FRP is a bad fit for things like scripting sequences of actions in a game. I don’t want to give up things like coroutines that make it easy. I’ve learned how different layers of a program may call for different programming paradigms. Functional layers rest upon imperative foundations. Events are built on top of polling. Languages with expression trees run on machines that only understand linear sequences. You get the idea. A good general-purpose language will allow you to compose many paradigms in the same program. I’m still a big fan of functional programming, but single paradigm languages do not appeal to me. Fast forward 10 years, I find myself thinking about FRP again in a new context. I now work for the Spritely Institute where we’re researching and building the next generation of secure, distributed application infrastructure. We want to demo our tech through easy-to-use web applications, which means we need to do some UI programming. So, the back burner of my brain has been mulling over the possibilities. What’s the least painful way to build web UIs? Is this FRP thing worth revisiting? The reason why FRP is so appealing to me (on paper, at least) is that it allows for writing interactive programs declaratively. With FRP, I can simply describe the relationships between the various time-varying components, and the system wires it all together for me. I’m spared from callback hell, one of the more frightening layers of hell that forces programs to be written in a kind of continuation-passing style where timing and state bugs consume more development time as the project grows. What about React? In the time during and since I last experimented with FRP, a different approach to declarative UI programming has swept the web development world: React. From React, many other similar libraries emerged. On the minimalist side there are things like Mithril (a favorite of mine), and then there are bigger players like Vue. The term “reactive” has become overloaded, but in the mainstream software world it is associated with React and friends. FRP is quite different, despite sharing the declarative and reactive traits. Both help free programmers from callback hell, but they achieve their results differently. The React model describes an application as a tree of “components”. Each component represents a subset of the complete UI element tree. For each component, there is a template function that takes some inputs and returns the new desired state of the UI. This function is called whenever an event occurs that might change the state of the UI. The template produces a data structure known as a “virtual DOM”. To realize this new state in the actual DOM, React diffs the previous tree with the new one and updates, creates, and deletes elements as necessary. With FRP, you describe your program as an acyclic graph of nodes that contain time-varying values. The actual value of any given node is determined by a function that maps the current values of some input nodes into an output value. The system is bootstrapped by handling a UI event and updating the appropriate root node, which kicks off a cascade of updates throughout the graph. At the leaf nodes, side-effects occur that realize the desired state of the application. Racket’s FrTime is one example of such a system, which is based on Greg Cooper’s 2008 PhD dissertation “Integrating Dataflow Evaluation into a Practical Higher-Order Call-by-Value Language”. In FrTime, time-varying values are called “signals”. Elm borrowed this language, too, and there’s currently a proposal to add signals to JavaScript. Research into FRP goes back quite a bit further. Notably, Conal Elliot and Paul Hudak wrote “Functional Reactive Animation” in 1997. On jank The scope of potential change for any given event is larger in React than FRP. An FRP system flows data through an acyclic graph, updating only the nodes affected by the event. React requires re-evaluating the template for each component that needs refreshing and applying a diff algorithm to determine what needs changing in the currently rendered UI. The virtual DOM diffing process can be quite wasteful in terms of both memory usage and processing time, leading to jank on systems with limited resources like phones. Andy Wingo has done some interesting analyses of things like React Native and Flutter and covers the subject of jank well. So, while I appreciate the greatly improved developer experience of React-likes (I wrote my fair share of frontend code in the jQuery days), I’m less pleased by the overhead that it pushes onto each user’s computer. React feels like an important step forward on the declarative UI trail, but it’s not the destination. FRP has the potential for less jank because side-effects (the UI widget state updates) can be more precise. For example, if a web page has a text node that displays the number of times the user has clicked a mouse button, an FRP system could produce a program that would do the natural thing: Register a click event handler that replaces the text node with a new one containing the updated count. We don’t need to diff the whole page, nor do we need to create a wrapper component to update a subset of the page. The scope is narrow, so we can apply smaller updates. No virtual DOM necessary. There is, of course, overhead to maintaining the graph of time-varying values. The underlying runtime is free to use mutable state, but the user layer must take care to use pure functions and persistent, immutable data structures. This has a cost, but the per-event cost to refresh the UI feels much more reasonable when compared to React. From here on, I will stop talking about React and start exploring if FRP might really offer a more expressive way to do declarative UI without too much overhead. But first, we need to talk about a serious problem. FRP is acyclic FRP is no silver bullet. As mentioned earlier, FRP graphs are typically of the acyclic flavor. This limits the set of UIs that are possible to create with FRP. Is this the cost of declarativeness? To demonstrate the problem, consider a color picker tool that has sliders for both the red-green-blue and hue-saturation-value representations of color: In this program, updating the sliders on the RGB side should change the values of the sliders on the HSV side, and vice versa. This forms a cycle between the two sets of sliders. It’s possible to express cycles like this with event callbacks, though it’s messy and error-prone to do manually. We’d like a system built on top of event callbacks that can do the right thing without strange glitches or worse, unbounded loops. Propagators to the rescue Fortunately, I didn’t create that diagram above. It’s from Alexey Radul’s 2009 PhD dissertation: “Propagation Networks: A Flexible and Expressive Substrate for Computation”. This paper dedicates a section to explaining how FRP can be built on top a more general paradigm called propagation networks, or just propagators for short. The paper is lengthy, naturally, but it is written in an approachable style. There isn’t any terse math notation and there are plenty of code examples. As far as PhD dissertations go, this one is a real page turner! Here is a quote from section 5.5 about FrTime (with emphasis added by me): FrTime is built around a custom propagation infrastructure; it nicely achieves both non-recomputation and glitch avoidance, but unfortunately, the propagation system is nontrivially complicated, and specialized for the purpose of supporting functional reactivity. In particular, the FrTime system imposes the invariant that the propagation graph be acyclic, and guarantees that it will execute the propagators in topological-sort order. This simplifies the propagators themselves, but greatly complicates the runtime system, especially because it has to dynamically recompute the sort order when the structure of some portion of the graph changes (as when the predicate of a conditional changes from true to false, and the other branch must now be computed). That complexity, in turn, makes that runtime system unsuitable for other kinds of propagation, and even makes it difficult for other kinds of propagation to interoperate with it. So, the claim is that FRP-on-propagators can remove the acyclic restriction, reduce complexity, and improve interoperability. But what are propagators? I like how the book “Software Design for Flexibility” (2021) defines them (again, with emphasis added by me): “The propagator model is built on the idea that the basic computational elements are propagators, autonomous independent machines interconnected by shared cells through which they communicate. Each propagator machine continuously examines the cells it is connected to, and adds information to some cells based on computations it can make from information it can get from others. Cells accumulate information and propagators produce information.” Research on propagators goes back a long way (you’ll even find a form of propagators in the all-time classic “Structure and Interpretation of Computer Programs”), but it was Alexey Radul that discovered how to unify many different types of special-purpose propagation systems so that they could share a generic substrate and interoperate. Perhaps the most exciting application of the propagator model is AI, where it can be used to create “explainable AI” that keeps track of how a particular output was computed. This type of AI stands in stark contrast to the much hyped mainstream machine learning models that hoover up our planet’s precious natural resources to produce black boxes that generate impressive bullshit. But anyway! The diagram above can also be found in section 5.5 of the dissertation. Here’s the description: “A network for a widget for RGB and HSV color selection. Traditional functional reactive systems have qualms about the circularity, but general-purpose propagation handles it automatically.” This color picker felt like a good, achievable target for a prototype. The propagator network is small and there are only a handful of UI elements, yet it will test if the FRP system is working correctly. The prototype I read Alexey Radul’s dissertation, and then read chapter 7 of Software Design for Flexibility, which is all about propagators. Both use Scheme as the implementation language. The latter makes no mention of FRP, and while the former explains how FRP can be implemented in terms of propagators, there is (understandably) no code included. So, I had to implement it for myself to test my understanding. Unsurprisingly, I had misunderstood many things along the way and my iterations of broken code let me know that. Implementation is the best teacher. After much code fiddling, I was able to create a working prototype of the color picker. Here it is below: This prototype is written in Scheme and uses Hoot to compile it to WebAssembly so I can embed it right here in my blog. Sure beats a screenshot or video! This prototype contains a minimal propagator implementation that is sufficient to bootstrap a similarly minimal FRP implementation. Propagator implementation Let’s take a look at the code and see how it all works, starting with propagation. There are two essential data types: Cells and propagators. Cells accumulate information about a value, ranging from nothing, some form of partial information, or a complete value. The concept of partial information is Alexey Radul’s major contribution to the propagator model. It is through partial information structures that general-purpose propagators can be used to implement logic programming, probabilistic programming, type inference, and FRP, among others. I’m going to keep things as simple as possible in this post (it’s a big enough infodump already), but do read the propagator literature if phrases like “dependency directed backtracking” and “truth maintenance system” sound like a good time to you. Cells start out knowing nothing, so we need a special, unique value to represent nothing: (define-record-type <nothing> (make-nothing) %nothing?) (define nothing (make-nothing)) (define (nothing? x) (eq? x nothing)) Any unique (as in eq?) object would do, such as (list ’nothing), but I chose to use a record type because I like the way it prints. In addition to nothing, the propagator model also has a notion of contradictions. If one source of information says there are four lights, but another says there are five, then we have a contradiction. Propagation networks do not fall apart in the presence of contradictory information. There’s a data type that captures information about them and they can be resolved in a context-specific manner. I mention contradictions only for the sake of completeness, as a general-purpose propagator system needs to handle them. This prototype does not create any contradictions, so I won’t mention them again. Now we can define a cell type: (define-record-type <cell> (%make-cell relations neighbors content strongest equivalent? merge find-strongest handle-contradiction) cell? (relations cell-relations) (neighbors cell-neighbors set-cell-neighbors!) (content cell-content set-cell-content!) (strongest cell-strongest set-cell-strongest!) ;; Dispatch table: (equivalent? cell-equivalent?) (merge cell-merge) (find-strongest cell-find-strongest) (handle-contradiction cell-handle-contradiction)) The details of how a cell does things like merge old information with new information is left intentionally unanswered at this level of abstraction. Different systems built on propagators will want to handle things in different ways. In the propagator literature, you’ll see generic procedures used extensively for this purpose. For the sake of simplicity, I use a dispatch table instead. It would be easy to layer generic merge on top later, if we wanted. The constructor for cells sets the default contents to nothing: (define default-equivalent? equal?) ;; But what about partial information??? (define (default-merge old new) new) (define (default-find-strongest content) content) (define (default-handle-contradiction cell) (values)) (define* (make-cell name #:key (equivalent? default-equivalent?) (merge default-merge) (find-strongest default-find-strongest) (handle-contradiction default-handle-contradiction)) (let ((cell (%make-cell (make-relations name) '() nothing nothing equivalent? merge find-strongest handle-contradiction))) (add-child! (current-parent) cell) cell)) The default procedures used for the dispatch table are either no-ops or trivial. The default merge doesn’t merge at all, it just clobbers the old with the new. It’s up to the layers on top to provide more useful implementations. Cells can have neighbors (which will be propagators): (define (add-cell-neighbor! cell neighbor) (set-cell-neighbors! cell (lset-adjoin eq? (cell-neighbors cell) neighbor))) Since cells accumulate information, there are procedures for adding new content and finding the current strongest value contained within: (define (add-cell-content! cell new) (match cell (($ <cell> _ neighbors content strongest equivalent? merge find-strongest handle-contradiction) (let ((content* (merge content new))) (set-cell-content! cell content*) (let ((strongest* (find-strongest content*))) (cond ;; New strongest value is equivalent to the old one. No need ;; to alert propagators. ((equivalent? strongest strongest*) (set-cell-strongest! cell strongest*)) ;; Uh oh, a contradiction! Call handler. ((contradiction? strongest*) (set-cell-strongest! cell strongest*) (handle-contradiction cell)) ;; Strongest value has changed. Alert the propagators! (else (set-cell-strongest! cell strongest*) (for-each alert-propagator! neighbors)))))))) Next up is the propagator type. Propagators can be activated to create information using content stored in cells and store their results in some other cells, forming a graph. Data flow is not forced to be directional. Cycles are not only permitted, but very common in practice. So, propagators keep track of both their input and output cells: (define-record-type <propagator> (%make-propagator relations inputs outputs activate) propagator? (relations propagator-relations) (inputs propagator-inputs) (outputs propagator-outputs) (activate propagator-activate)) Propagators can be alerted to schedule themselves to be re-evaluted: (define (alert-propagator! propagator) (queue-task! (propagator-activate propagator))) The constructor for propagators adds the new propagator as a neighbor to all input cells and then calls alert-propagator! to bootstrap it: (define (make-propagator name inputs outputs activate) (let ((propagator (%make-propagator (make-relations name) inputs outputs activate))) (add-child! (current-parent) propagator) (for-each (lambda (cell) (add-cell-neighbor! cell propagator)) inputs) (alert-propagator! propagator) propagator)) There are two main classes of propagators that will be used: primitive propagators and constraint propagators. Primitive propagators are directional; they apply a function to the values of some input cells and write the result to an output cell: (define (unusable-value? x) (or (nothing? x) (contradiction? x))) (define (primitive-propagator name f) (match-lambda* ((inputs ... output) (define (activate) (let ((args (map cell-strongest inputs))) (unless (any unusable-value? args) (add-cell-content! output (apply f args))))) (make-propagator name inputs (list output) activate)))) We can use primitive-propagator to lift standard Scheme procedures into the realm of propagators. Here’s how we’d make and use an addition propagator: (define p:+ (primitive-propagator +)) (define a (make-cell)) (define b (make-cell)) (define c (make-cell)) (p:+ a b c) (add-cell-content! a 1) (add-cell-content! b 3) ;; After the scheduler runs… (cell-strongest c) ;; => 4 It is from these primitive propagators that we can build more complicated, compound propagators. Compound propagators compose primitive propagators (or other compound propagators) and lazily construct their section of the network upon first activation: (define (compound-propagator name inputs outputs build) (let ((built? #f)) (define (maybe-build) (unless (or built? (and (not (null? inputs)) (every unusable-value? (map cell-strongest inputs)))) (parameterize ((current-parent (propagator-relations propagator))) (build) (set! built? #t)))) (define propagator (make-propagator name inputs outputs maybe-build)) propagator)) By this point you may be wondering what all the references to current-parent are about. It is for tracking the parent/child relationships of the cells and propagators in the network. This could be helpful for things like visualizing the network, but we aren’t going to do anything with it today. I’ve omitted all of the other relation code for this reason. Constraint propagators are compound propagators whose inputs and outputs are the same, which results in bidirectional propagation: (define (constraint-propagator name cells build) (compound-propagator name cells cells build)) Using primitive propagators for addition and subtraction, we can build a constraint propagator for the equation a + b = c: (define p:+ (primitive-propagator +)) (define p:- (primitive-propagator -)) (define (c:sum a b c) (define (build) (p:+ a b c) (p:- c a b) (p:- c b a)) (constraint-propagator 'sum (list a b c) build)) (define a (make-cell)) (define b (make-cell)) (define c (make-cell)) (c:sum a b c) (add-cell-content! a 1) (add-cell-content! c 4) ;; After the scheduler runs… (cell-strongest b) ;; => 3 With a constraint, we can populate any two cells and the propagation system will figure out the value of the third. Pretty cool! This is a good enough propagation system for the FRP prototype. FRP implementation If you’re familiar with terminology from other FRP systems like “signals” and “behaviors” then set that knowledge aside for now. We need some new nouns. But first, a bit about the problems that need solving in order to implement FRP on top of general-purpose propagators: The propagator model does not enforce any ordering of when propagators will be re-activated in relation to each other. If we’re not careful, something in the network could compute a value using a mix of fresh and stale data, resulting in a momentary “glitch” that could be noticeable in the UI. The presence of cycles introduce a crisis of identity. It’s not sufficient for every time-varying value to be treated as its own self. In the color picker, the RGB values and the HSV values are two representations of the same thing. We need a new notion of identity to capture this and prevent unnecessary churn and glitches in the network. For starters, we will create a “reactive identifier” (needs a better name) data type that serves two purposes: To create shared identity between different information sources that are logically part of the same thing To create localized timestamps for values associated with this identity (define-record-type <reactive-id> (%make-reactive-id name clock) reactive-id? (name reactive-id-name) (clock reactive-id-clock set-reactive-id-clock!)) (define (make-reactive-id name) (%make-reactive-id name 0)) (define (reactive-id-tick! id) (let ((t (1+ (reactive-id-clock id)))) (set-reactive-id-clock! id t) `((,id . ,t)))) Giving each logical identity in the FRP system its own clock eliminates the need for a global clock, avoiding a potentially troublesome source of centralization. This is kind of like how Lamport timestamps are used in distributed systems. We also need a data type that captures the value of something at a particular point in time. Since the cruel march of time is unceasing, these are ephemeral values: (define-record-type <ephemeral> (make-ephemeral value timestamps) ephemeral? (value ephemeral-value) ;; Association list mapping identity -> time (timestamps ephemeral-timestamps)) Ephemerals are boxes that contain some arbitrary data with a bunch of shipping labels slapped onto the outside explaining from whence they came. This is the partial information structure that our propagators will manipulate and add to cells. Here’s how to say “the mouse position was (1, 2) at time 3” in code: (define mouse-position (make-reactive-id ’mouse-position)) (make-ephemeral #(1 2) `((,mouse-position . 3))) We need to perform a few operations with ephemerals: Test if one ephemeral is fresher (more recent) than another Merge two ephemerals when cell content is added Compose the timestamps from several inputs to form an aggregate timestamp for an output, but only if all timestamps for each distinct identifier match (no mixing of fresh and stale values) (define (ephemeral-fresher? a b) (let ((b-inputs (ephemeral-timestamps b))) (let lp ((a-inputs (ephemeral-timestamps a))) (match a-inputs (() #t) (((key . a-time) . rest) (match (assq-ref b-inputs key) (#f (lp rest)) (b-time (and (> a-time b-time) (lp rest))))))))) (define (merge-ephemerals old new) (cond ((nothing? old) new) ((nothing? new) old) ((ephemeral-fresher? new old) new) (else old))) (define (merge-ephemeral-timestamps ephemerals) (define (adjoin-keys alist keys) (fold (lambda (key+value keys) (match key+value ((key . _) (lset-adjoin eq? keys key)))) keys alist)) (define (check-timestamps id) (let lp ((ephemerals ephemerals) (t #f)) (match ephemerals (() t) ((($ <ephemeral> _ timestamps) . rest) (match (assq-ref timestamps id) ;; No timestamp for this id in this ephemeral. Continue. (#f (lp rest t)) (t* (if t ;; If timestamps don't match then we have a mix of ;; fresh and stale values, so return #f. Otherwise, ;; continue. (and (= t t*) (lp rest t)) ;; Initialize timestamp and continue. (lp rest t*)))))))) ;; Build a set of all reactive identifiers across all ephemerals. (let ((ids (fold (lambda (ephemeral ids) (adjoin-keys (ephemeral-timestamps ephemeral) ids)) '() ephemerals))) (let lp ((ids ids) (timestamps '())) (match ids (() timestamps) ((id . rest) ;; Check for consistent timestamps. If they are consistent ;; then add it to the alist and continue. Otherwise, return ;; #f. (let ((t (check-timestamps id))) (and t (lp rest (cons (cons id t) timestamps))))))))) Example usage: (define e1 (make-ephemeral #(3 4) `((,mouse-position . 4)))) (define e2 (make-ephemeral #(1 2) `((,mouse-position . 3)))) (ephemeral-fresher? e1 e2) ;; => #t (merge-ephemerals e1 e2) ;; => e1 (merge-ephemeral-timestamps (list e1 e2)) ;; => #f (define (mouse-max-coordinate e) (match e (($ <ephemeral> #(x y) timestamps) (make-ephemeral (max x y) timestamps)))) (define e3 (mouse-max-coordinate e1)) (merge-ephemeral-timestamps (list e1 e3)) ;; => ((mouse-position . 4)) Now we can build a primitive propagator constructor that lifts ordinary Scheme procedures so that they work with ephemerals: (define (ephemeral-wrap proc) (match-lambda* ((and ephemerals (($ <ephemeral> args) ...)) (match (merge-ephemeral-timestamps ephemerals) (#f nothing) (timestamps (make-ephemeral (apply proc args) timestamps)))))) (define* (primitive-reactive-propagator name proc) (primitive-propagator name (ephemeral-wrap proc))) Reactive UI implementation Now we need some propagators that live at the edges of our network that know how to interact with the DOM and can do the following: Sync a DOM element attribute with the value of a cell Create a two-way data binding between an element’s value attribute and a cell Render the markup in a cell and place it into the DOM tree in the right location Syncing an element attribute is a directional operation and the easiest to implement: (define (r:attribute input elem attr) (let ((attr (symbol->string attr))) (define (activate) (match (cell-strongest input) (($ <ephemeral> val) (attribute-set! elem attr (obj->string val))) ;; Ignore unusable values. (_ (values)))) (make-propagator 'r:attribute (list input) '() activate))) Two-way data binding is more involved. First, a new data type is used to capture the necessary information: (define-record-type <binding> (make-binding id cell default group) binding? (id binding-id) (cell binding-cell) (default binding-default) (group binding-group)) (define* (binding id cell #:key (default nothing) (group '())) (make-binding id cell default group)) And then a reactive propagator applies that binding to a specific DOM element: (define* (r:binding binding elem) (match binding (($ <binding> id cell default group) (define (update new) (unless (nothing? new) (let ((timestamp (reactive-id-tick! id))) (add-cell-content! cell (make-ephemeral new timestamp)) ;; Freshen timestamps for all cells in the same group. (for-each (lambda (other) (unless (eq? other cell) (match (cell-strongest other) (($ <ephemeral> val) (add-cell-content! other (make-ephemeral val timestamp))) (_ #f)))) group)))) ;; Sync the element's value with the cell's value. (define (activate) (match (cell-strongest cell) (($ <ephemeral> val) (set-value! elem (obj->string val))) (_ (values)))) ;; Initialize element value with the default value. (update default) ;; Sync the cell's value with the element's value. (add-event-listener! elem "input" (procedure->external (lambda (event) (update (string->obj (value elem)))))) (make-propagator 'r:binding (list cell) '() activate)))) A simple method for rendering to the DOM is to replace some element with a newly created element based on the current ephemeral value of a cell: (define (r:dom input elem) (define (activate) (match (cell-strongest input) (($ <ephemeral> exp) (let ((new (sxml->dom exp))) (replace-with! elem new) (set! elem new))) (_ (values)))) (make-propagator 'dom (list input) '() activate)) The sxml->dom procedure deserves some further explanation. To create a subtree of new elements, we have two options: Use something like the innerHTML element property to insert arbitrary HTML as a string and let the browser parse and build the elements. Use a Scheme data structure that we can iterate over and make the relevant document.createTextNode, document.createElement, etc. calls. Option 1 might be a shortcut and would be fine for a quick prototype, but it would mean that to generate the HTML we’d be stuck using raw strings. While string-based templating is commonplace, we can certainly do better in Scheme. Option 2 is actually not too much work and we get to use Lisp’s universal templating system, quasiquote, to write our markup. Thankfully, SXML already exists for this purpose. SXML is an alternative XML syntax that uses s-expressions. Since Scheme uses s-expression syntax, it’s a natural fit. Example: '(article (h1 "SXML is neat") (img (@ (src "cool.jpg") (alt "cool image"))) (p "Yeah, SXML is " (em "pretty neato!"))) Instead of using it to generate HTML text, we’ll instead generate a tree of DOM elements. Furthermore, because we’re now in full control of how the element tree is built, we can build in support for reactive propagators! Check it out: (define (sxml->dom exp) (match exp ;; The simple case: a string representing a text node. ((? string? str) (make-text-node str)) ((? number? num) (make-text-node (number->string num))) ;; A cell containing SXML (or nothing) ((? cell? cell) (let ((elem (cell->elem cell))) (r:dom cell elem) elem)) ;; An element tree. The first item is the HTML tag. (((? symbol? tag) . body) ;; Create a new element with the given tag. (let ((elem (make-element (symbol->string tag)))) (define (add-children children) ;; Recursively call sxml->dom for each child node and ;; append it to elem. (for-each (lambda (child) (append-child! elem (sxml->dom child))) children)) (match body ((('@ . attrs) . children) (for-each (lambda (attr) (match attr (((? symbol? name) (? string? val)) (attribute-set! elem (symbol->string name) val)) (((? symbol? name) (? number? val)) (attribute-set! elem (symbol->string name) (number->string val))) (((? symbol? name) (? cell? cell)) (r:attribute cell elem name)) ;; The value attribute is special and can be ;; used to setup a 2-way data binding. (('value (? binding? binding)) (r:binding binding elem)))) attrs) (add-children children)) (children (add-children children))) elem)))) Notice the calls to r:dom, r:attribute, and r:binding. A cell can be used in either the context of an element (r:dom) or an attribute (r:attribute). The value attribute gets the additional superpower of r:binding. We will make use of this when it is time to render the color picker UI! Color picker implementation Alright, I’ve spent a lot of time explaining how I built a minimal propagator and FRP system from first principles on top of Hoot-flavored Scheme. Let’s finally write the dang color picker! First we need some data types to represent RGB and HSV colors: (define-record-type <rgb-color> (rgb-color r g b) rgb-color? (r rgb-color-r) (g rgb-color-g) (b rgb-color-b)) (define-record-type <hsv-color> (hsv-color h s v) hsv-color? (h hsv-color-h) (s hsv-color-s) (v hsv-color-v)) And procedures to convert RGB to HSV and vice versa: (define (rgb->hsv rgb) (match rgb (($ <rgb-color> r g b) (let* ((cmax (max r g b)) (cmin (min r g b)) (delta (- cmax cmin))) (hsv-color (cond ((= delta 0.0) 0.0) ((= cmax r) (let ((h (* 60.0 (fmod (/ (- g b) delta) 6.0)))) (if (< h 0.0) (+ h 360.0) h))) ((= cmax g) (* 60.0 (+ (/ (- b r) delta) 2.0))) ((= cmax b) (* 60.0 (+ (/ (- r g) delta) 4.0)))) (if (= cmax 0.0) 0.0 (/ delta cmax)) cmax))))) (define (hsv->rgb hsv) (match hsv (($ <hsv-color> h s v) (let* ((h' (/ h 60.0)) (c (* v s)) (x (* c (- 1.0 (abs (- (fmod h' 2.0) 1.0))))) (m (- v c))) (define-values (r' g' b') (cond ((<= 0.0 h 60.0) (values c x 0.0)) ((<= h 120.0) (values x c 0.0)) ((<= h 180.0) (values 0.0 c x)) ((<= h 240.0) (values 0.0 x c)) ((<= h 300.0) (values x 0.0 c)) ((<= h 360.0) (values c 0.0 x)))) (rgb-color (+ r' m) (+ g' m) (+ b' m)))))) We also need some procedures to convert colors into the hexadecimal representations we’re used to seeing: (define (uniform->byte x) (inexact->exact (round (* x 255.0)))) (define (rgb->int rgb) (match rgb (($ <rgb-color> r g b) (+ (* (uniform->byte r) (ash 1 16)) (* (uniform->byte g) (ash 1 8)) (uniform->byte b))))) (define (rgb->hex-string rgb) (list->string (cons #\# (let lp ((i 0) (n (rgb->int rgb)) (out '())) (if (= i 6) out (lp (1+ i) (ash n -4) (cons (integer->char (let ((digit (logand n 15))) (+ (if (< digit 10) (char->integer #\0) (- (char->integer #\a) 10)) digit))) out))))))) (define (rgb-hex->style hex) (string-append "background-color: " hex ";")) Now we can lift the color API into primitive reactive propagator constructors: (define-syntax-rule (define-primitive-reactive-propagator name proc) (define name (primitive-reactive-propagator 'name proc))) (define-primitive-reactive-propagator r:rgb-color rgb-color) (define-primitive-reactive-propagator r:rgb-color-r rgb-color-r) (define-primitive-reactive-propagator r:rgb-color-g rgb-color-g) (define-primitive-reactive-propagator r:rgb-color-b rgb-color-b) (define-primitive-reactive-propagator r:hsv-color hsv-color) (define-primitive-reactive-propagator r:hsv-color-h hsv-color-h) (define-primitive-reactive-propagator r:hsv-color-s hsv-color-s) (define-primitive-reactive-propagator r:hsv-color-v hsv-color-v) (define-primitive-reactive-propagator r:rgb->hsv rgb->hsv) (define-primitive-reactive-propagator r:hsv->rgb hsv->rgb) (define-primitive-reactive-propagator r:rgb->hex-string rgb->hex-string) (define-primitive-reactive-propagator r:rgb-hex->style rgb-hex->style) From those primitive propagators, we can build the necessary constraint propagators: (define (r:components<->rgb r g b rgb) (define (build) (r:rgb-color r g b rgb) (r:rgb-color-r rgb r) (r:rgb-color-g rgb g) (r:rgb-color-b rgb b)) (constraint-propagator 'r:components<->rgb (list r g b rgb) build)) (define (r:components<->hsv h s v hsv) (define (build) (r:hsv-color h s v hsv) (r:hsv-color-h hsv h) (r:hsv-color-s hsv s) (r:hsv-color-v hsv v)) (constraint-propagator 'r:components<->hsv (list h s v hsv) build)) (define (r:rgb<->hsv rgb hsv) (define (build) (r:rgb->hsv rgb hsv) (r:hsv->rgb hsv rgb)) (constraint-propagator 'r:rgb<->hsv (list rgb hsv) build)) At long last, we are ready to define the UI! Here it is: (define (render exp) (append-child! (document-body) (sxml->dom exp))) (define* (slider id name min max default #:optional (step "any")) `(div (@ (class "slider")) (label (@ (for ,id)) ,name) (input (@ (id ,id) (type "range") (min ,min) (max ,max) (step ,step) (value ,default))))) (define (uslider id name default) ; [0,1] slider (slider id name 0 1 default)) (define-syntax-rule (with-cells (name ...) body . body*) (let ((name (make-cell 'name #:merge merge-ephemerals)) ...) body . body*)) (with-cells (r g b rgb h s v hsv hex style) (define color (make-reactive-id 'color)) (define rgb-group (list r g b)) (define hsv-group (list h s v)) (r:components<->rgb r g b rgb) (r:components<->hsv h s v hsv) (r:rgb<->hsv rgb hsv) (r:rgb->hex-string rgb hex) (r:rgb-hex->style hex style) (render `(div (h1 "Color Picker") (div (@ (class "preview")) (div (@ (class "color-block") (style ,style))) (div (@ (class "hex")) ,hex)) (fieldset (legend "RGB") ,(uslider "red" "Red" (binding color r #:default 1.0 #:group rgb-group)) ,(uslider "green" "Green" (binding color g #:default 0.0 #:group rgb-group)) ,(uslider "blue" "Blue" (binding color b #:default 1.0 #:group rgb-group))) (fieldset (legend "HSV") ,(slider "hue" "Hue" 0 360 (binding color h #:group hsv-group)) ,(uslider "saturation" "Saturation" (binding color s #:group hsv-group)) ,(uslider "value" "Value" (binding color v #:group hsv-group)))))) Each color channel (R, G, B, H, S, and V) has a cell which is bound to a slider (<input type="range">). All six sliders are identified as color, so adjusting any of them increments color’s timestamp. The R, G, and B sliders form one input group, and the H, S, and V sliders form another. By grouping the related sliders together, whenever one of the sliders is moved, all members of the group will have their ephemeral value refreshed with the latest timestamp. This behavior is crucial because otherwise the r:components<->rgb and r:components<->hsv propagators would see that one color channel has a fresher value than the other two and do nothing. Since the underlying propagator infrastructure does not enforce activation order, reactive propagators must wait until their inputs reach a consistent state where the timestamps for a given reactive identifier are all the same. With this setup, changing a slider on the RGB side will cause a new color value to propagate over to the HSV side. Because the relationship is cyclical, the HSV side will then attempt to propagate an equivalent color value back to the RGB side! This could be bad news, but since the current RGB value is equally fresh (same timestamp), the propagation stops right there. Redundant work is minimized and an unbounded loop is avoided. And that’s it! Phew! Complete source code can be found here. Reflections I think the results of this prototype are promising. I’d like to try building some larger demos to see what new problems arise. Since propagation networks include cycles, they cannot be garbage collected until there are no references to any part of the network from the outside. Is this acceptable? I didn’t optimize, either. A more serious implementation would want to do things like use case-lambda for all n-ary procedures to avoid consing an argument list in the common cases of 1, 2, 3, etc. arguments. There is also a need for a more pleasing domain-specific language, using Scheme’s macro system, for describing FRP graphs. Alexey Radul’s dissertation was published in 2009. Has anyone made a FRP system based on propagators since then that’s used in real software? I don’t know of anything but it’s a big information superhighway out there. Update: Since publishing, I have learned about the following: Holograph: A visual editor for propagator networks! Amazing! Scoped Propagators: A WIP propagator system with some notable differences from “traditional” propagators. I wish I had read Alexey Radul's disseration 10 years ago when I was first exploring FRP. It would have saved me a lot of time spent running into problems that have already been solved that I was not equipped to solve on my own. I have even talked to Gerald Sussman (a key figure in propagator research) in person about the propagator model. That conversation was focused on AI, though, and I didn’t realize that propagators could also be used for FRP. It wasn’t until more recently that friend and colleague Christine Lemmer-Webber, who was present for the aforementioned conversation with Sussman, told me about it. Christine has her own research project for propagators. There are so many interesting things to learn out there, but I am also so tired. Better late than never, I guess! Anyway, if you made it this far then I hope you have enjoyed reading about propagators and FRP. ’Til next time!
The Spring Lisp Game Jam 2024 ended one week ago. 48 games were submitted, a new record for the jam! This past week has been a time for participants to play and rate each other’s games. As I explored the entries, I noticed two distinct meta-patterns in how people approached building games with Lisp. I think these patterns apply more broadly to all applications of Lisp. Let’s talk about these patterns in some detail, with examples. But first! Here’s the breakdown of the jam submissions by language: lang entries % (rounded) ---- ------- ----------- guile 15 31 fennel 10 21 clojure 5 10 cl 5 10 racket 4 8 elisp 4 8 s7 3 6 kawa 1 2 owl 1 2 I haven’t rolled up the various Schemes (Guile, Racket, S7, Kawa) into a general scheme category because Scheme is so minimally specified and they are all very distinct implementations for different purposes, not to mention that Racket has a lot more going on than just Scheme. For the first time ever, Guile came out on top with the most submissions! There’s a very specific reason for this outcome. 11 out of the 15 Guile games were built for the web with Hoot, a Scheme-to-WebAssembly compiler that I work on at the Spritely Institute. 2 of those 11 were official Spritely projects. We put out a call for people to try making games with Hoot before the jam started, and a lot of people took us up on it! Very cool! The next most popular language, which is typically the most popular language in these jams, is Fennel. Fennel is a Lisp that compiles to Lua. It’s very cool, too! Also of note, at least to me as a Schemer, is that three games used S7. Hmm, there might be something relevant to this post going on there. The patterns I’m about to talk about could sort of be framed as “The Guile Way vs. The Fennel Way”, but I don’t want to do that. It's not an “us vs. them” thing. It’s wonderful that there are so many flavors of Lisp these days that anyone can find a great implementation that suits their preferences. Not only that, but many of these implementations can be used to make games that anyone can easily play in their web browser! That was not the case several years ago. Incredible! I want to preface the rest of this post by saying that both patterns are valid, and while I prefer one over the other, that is not to say that the other is inferior. I'll also show how these patterns can be thought of as two ends of a spectrum and how, in the end, compromises must be made. Okay, let’s get into it! Lisp as icing The icing pattern is using Lisp as a “scripting” language on top of a cake that is made from C, Rust, and other static languages. The typical way to do this is by embedding a Lisp interpreter into the larger program. If you’re most interested in writing the high-level parts of an application in Lisp then this pattern is the fastest way to get there. All you need is a suitable interpreter/compiler and a way to add the necessary hooks into your application. Since the program is mainly C/Rust/whatever, you can then use emscripten to compile it to WebAssembly and deploy to the web. Instant gratification, but strongly tied to static languages and their toolchains. S7 is an example of an embeddable Scheme. Guile is also used for extending C programs, though typically that involves dynamically linking to libguile rather than embedding the interpreter into the program’s executable. Fennel takes a different approach, recognizing that there are many existing applications that are already extensible through Lua, and provides a lispy language that compiles to Lua. Lisp as cake The cake pattern is using Lisp to implement as much of the software stack as possible. It’s Lisp all the way down... sorta. Rather than embedding Lisp into a non-Lisp program, the cake pattern does the inverse: the majority of the program is written in Lisp. When necessary, shared libraries can be called via a foreign function interface, but this should be kept to a minimum. This approach takes longer to yield results. Time is spent implementing missing libraries for your Lisp of choice and writing wrappers around the C shared libraries you can’t avoid using. Web deployment gets trickier, too, since the project is not so easily emscriptenable. (You may recognize this as the classic embed vs. extend debate. You’re correct! I'm just adding my own thoughts and applying it specifically to some real-world Lisp projects.) I mentioned Guile as an option for icing, but Guile really shines best as cake. The initial vision for Guile was to Emacsify other programs by adding a Scheme interpreter to them. These days, the best practice is to write your program in Scheme to begin with. Common Lisp is probably the best example, though. Implementations like SBCL have good C FFIs and can compile efficient native executables, minimizing the desire to use some C for performance reasons. Case studies Let’s take a look at some of the languages and libraries used for the Lisp Game Jam and evaluate their icing/cake-ness. Fennel + love2d love2d has been a popular choice for solo or small team game development for many years. It is a C++ program that embeds a Lua interpreter, which means it’s a perfect target for Fennel. Most Linux distributions package love2d, so it’s easy to run .love files natively. Additionally, thanks to emscripten, love2d games can be deployed to the web. Thus most Fennel games use love2d. ./soko.bin and Gnomic Vengeance are two games that use this stack. Fennel + love2d is a perfect example of Lisp as icing. Fennel sits at the very top of the stack, but there’s not really a path to spread Lisp into the layers below. It is also the most successful Lisp game development stack to date. S7 + raylib This stack is new to me, but two games used it this time around: GhostHop and Life Predictor. (You really gotta play GhostHop, btw. It’s a great little puzzle game and it is playable on mobile devices.) Raylib is a C library with bindings for many higher-level languages that has become quite popular in recent years. S7 is also implemented in C and is easily embeddable. This makes the combination easy to deploy on the web with emscripten. S7 + raylib is another example of Lisp as icing. I’m curious to see if this stack becomes more popular in future jams. Guile + Chickadee This is the stack that I helped build. Chickadee is a game library for Guile that implements almost all of the interesting parts in Scheme, including rendering. Two games were built with Chickadee in the most recent jam: Turbo Racer 3000 and Bloatrunner. Guile + Chickadee is an example of Lisp as cake. Chickadee wraps some C libraries for low-level tasks such as loading images, audio, and fonts, but it is written in pure Scheme. All the matrix and vector math is in Scheme. Chickadee comes with a set of rendering primitives comparable to love2d and raylib but they’re all implemented in Scheme. I’ve even made progress on rendering vector graphics with Scheme, whereas most other Lisp game libraries use a C library such as nanosvg. Chickadee has pushed the limits of Guile’s compiler and virtual machine, and Guile has been improved as a result. But it’s the long road. Chickadee is mostly developed by me, alone, in my very limited spare time. It is taking a long time to reach feature parity with more popular game development libraries, but it works quite well for what it is. Hoot + HTML5 canvas I also helped build this one. Hoot is a Scheme-to-WebAssembly compiler. Rather than compile the Guile VM (written in C) to Wasm using emscripten, Hoot implements a complete Wasm toolchain and a new backend for Guile’s compiler that emits Wasm directly. Hoot is written entirely in Scheme. Unlike C programs compiled with emscripten that target Wasm 1.0 with linear memory, Hoot targets Wasm 2.0 with GC managed heap types. This gives Hoot a significant advantage: Hoot binaries do not ship a garbage collector and thus are much smaller than Lisp runtimes compiled via emscripten. The Wasm binary for my game weighs in at < 2MiB whereas the love2d game I checked had a nearly 6MiB love.wasm. Hoot programs can also easily interoperate with JavaScript. Scheme objects can easily be passed to JavaScript, and vice versa, as they are managed in the same heap. With all of the browser APIs just a Wasm import away, an obvious choice for games was the built-in HTML5 canvas API for easy 2D rendering. 11 games used Hoot in the jam, including (shameless plug) Cirkoban and Lambda Dungeon. Hoot + HTML5 canvas is mostly dense cake with a bit of icing. On one hand, it took a year and significant funding to boot Hoot. We said “no” to emscripten, built our own toolchain, and extended Guile’s compiler. It's Lisp all the way until you hit the browser runtime! We even have a Wasm interpreter that runs on the Guile VM! Hoot rules! It was a risk but it paid off. On the other hand, the canvas API is very high-level. The more cake thing to do would be to use Hoot’s JS FFI to call WebGL and/or WebGPU. Indeed, this is the plan for the future! Wasm GC needs some improvements to make this feasible, but my personal goal is to get Chickadee ported to Hoot. I want Chickadee games to be easy to play natively and in browsers, just like love2d games. The cake/icing spectrum I must acknowledge the limitations of the cake approach. We’re not living in a world of Lisp machines, but a world of glorified PDP-11s. Even the tallest of Lisp cakes sits atop an even larger cake made mostly of C. All modern Lisp systems bottom out at some point. Emacs rests on a C core. Guile’s VM is written in C. Hoot runs on mammoth JavaScript engines written in C++ like V8. Games on Hoot currently render with HTML5 canvas rather than WebGL/WebGPU. Good luck using OpenGL without libGL; Chickadee uses guile-opengl which uses the C FFI to call into libGL. Then there’s libpng, FreeType, and more. Who the heck wants to rewrite all this in Lisp? Who even has the resources? Does spending all this time taking the scenic route matter at all, or are we just deluding ourselves because we have fun writing Lisp code? I think it does matter. Every piece of the stack that can be reclaimed from the likes of C is a small victory. The parts written in Lisp are much easier to hack on, and some of those things become live hackable while our programs are running. They are also memory safe, typically, thanks to GC managed runtimes. Less FFI calls means less overhead from traversing the Lisp/C boundary and more safety. As more of the stack becomes Lisp, it starts looking less like icing and more like cake. Moving beyond games, we can look to the Guix project as a great example of just how tasty the cake can get. Guix took the functional packaging model from the Nix project and made a fresh implementation, replacing the Nix language with Guile. Why? For code staging, code sharing, and improved hackability. Guix also uses an init system written in Guile rather than systemd. Why? For code staging, code sharing, and improved hackability. These are real advantages that make the trade-off of not using the industry-standard thing worth it. I’ve been using Guix since the early days, and back then it was easy to make the argument that Guix was just reinventing wheels for no reason. But now, over 10 years later, the insistence on maximizing the usage of Lisp has been key to the success of the project. As a user, once you learn the Guix idioms and a bit of Guile, you unlock extraordinary power to craft your OS to your liking. It’s the closest thing you can get to a Lisp machine on modern hardware. The cake approach paid off for Guix, and it could pay off for other projects, too. If Common Lisp is more your thing, and even if it isn’t, you’ll be amazed by the Trial game engine and how much of it is implemented in Common Lisp rather than wrapping C libraries. There’s also projects like Pre-Scheme that give me hope that one day the layers below the managed GC runtime can be implemented in Lisp. Pre-Scheme was developed and successfully used for Scheme 48 and I am looking forward to a modern revival of it thanks to an NLnet grant. I'm a cake boy That’s right, I said it: I’m a cake boy. I want to see projects continue to push the boundaries of what Lisp can do. When it comes to the Lisp Game Jam, what excites me most are not the games themselves, but the small advances made to reclaim another little slice of the cake from stale, dry C. I intend to keep pushing the limits for Guile game development with my Chickadee project. It’s not a piece of cake to bake a lispy cake, and the way is often hazy, but I know we can’t be lazy and just do the cooking by the book. Rewrite it in Rust? No way! Rewrite it in Lisp!
More in programming
Once you’ve written your strategy’s exploration, the next step is working on its diagnosis. Diagnosis is understanding the constraints and challenges your strategy needs to address. In particular, it’s about doing that understanding while slowing yourself down from deciding how to solve the problem at hand before you know the problem’s nuances and constraints. If you ever find yourself wanting to skip the diagnosis phase–let’s get to the solution already!–then maybe it’s worth acknowledging that every strategy that I’ve seen fail, did so due to a lazy or inaccurate diagnosis. It’s very challenging to fail with a proper diagnosis, and almost impossible to succeed without one. The topics this chapter will cover are: Why diagnosis is the foundation of effective strategy, on which effective policy depends. Conversely, how skipping the diagnosis phase consistently ruins strategies A step-by-step approach to diagnosing your strategy’s circumstances How to incorporate data into your diagnosis effectively, and where to focus on adding data Dealing with controversial elements of your diagnosis, such as pointing out that your own executive is one of the challenges to solve Why it’s more effective to view difficulties as part of the problem to be solved, rather than a blocking issue that prevents making forward progress The near impossibility of an effective diagnosis if you don’t bring humility and self-awareness to the process Into the details we go! This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Diagnosis is strategy’s foundation One of the challenges in evaluating strategy is that, after the fact, many effective strategies are so obvious that they’re pretty boring. Similarly, most ineffective strategies are so clearly flawed that their authors look lazy. That’s because, as a strategy is operated, the reality around it becomes clear. When you’re writing your strategy, you don’t know if you can convince your colleagues to adopt a new approach to specifying APIs, but a year later you know very definitively whether it’s possible. Building your strategy’s diagnosis is your attempt to correctly recognize the context that the strategy needs to solve before deciding on the policies to address that context. Done well, the subsequent steps of writing strategy often feel like an afterthought, which is why I think of diagnosis as strategy’s foundation. Where exploration was an evaluation-free activity, diagnosis is all about evaluation. How do teams feel today? Why did that project fail? Why did the last strategy go poorly? What will be the distractions to overcome to make this new strategy successful? That said, not all evaluation is equal. If you state your judgment directly, it’s easy to dispute. An effective diagnosis is hard to argue against, because it’s a web of interconnected observations, facts, and data. Even for folks who dislike your conclusions, the weight of evidence should be hard to shift. Strategy testing, explored in the Refinement section, takes advantage of the reality that it’s easier to diagnose by doing than by speculating. It proposes a recursive diagnosis process until you have real-world evidence that the strategy is working. How to develop your diagnosis Your strategy is almost certain to fail unless you start from an effective diagnosis, but how to build a diagnosis is often left unspecified. That’s because, for most folks, building the diagnosis is indeed a dark art: unspecified, undiscussion, and uncontrollable. I’ve been guilty of this as well, with The Engineering Executive’s Primer’s chapter on strategy staying silent on the details of how to diagnose for your strategy. So, yes, there is some truth to the idea that forming your diagnosis is an emergent, organic process rather than a structured, mechanical one. However, over time I’ve come to adopt a fairly structured approach: Braindump, starting from a blank sheet of paper, write down your best understanding of the circumstances that inform your current strategy. Then set that piece of paper aside for the moment. Summarize exploration on a new piece of paper, review the contents of your exploration. Pull in every piece of diagnosis from similar situations that resonates with you. This is true for both internal and external works! For each diagnosis, tag whether it fits perfectly, or needs to be adjusted for your current circumstances. Then, once again, set the piece of paper aside. Mine for distinct perspectives on yet another blank page, talking to different stakeholders and colleagues who you know are likely to disagree with your early thinking. Your goal is not to agree with this feedback. Instead, it’s to understand their view. The Crux by Richard Rumelt anchors diagnosis in this approach, emphasizing the importance of “testing, adjusting, and changing the frame, or point of view.” Synthesize views into one internally consistent perspective. Sometimes the different perspectives you’ve gathered don’t mesh well. They might well explicitly differ in what they believe the underlying problem is, as is typical in tension between platform and product engineering teams. The goal is to competently represent each of these perspectives in the diagnosis, even the ones you disagree with, so that later on you can evaluate your proposed approach against each of them. When synthesizing feedback goes poorly, it tends to fail in one of two ways. First, the author’s opinion shines through so strongly that it renders the author suspect. Your goal is never to agree with every team’s perspective, just as your diagnosis should typically avoid crowning any perspective as correct: a reader should generally be appraised of the details and unaware of the author. The second common issue is when a group tries to jointly own the synthesis, but create a fractured perspective rather than a unified one. I generally find that having one author who is accountable for representing all views works best to address both of these issues. Test drafts across perspectives. Once you’ve written your initial diagnosis, you want to sit down with the people who you expect to disagree most fervently. Iterate with them until they agree that you’ve accurately captured their perspective. It might be that they disagree with some other view points, but they should be able to agree that others hold those views. They might argue that the data you’ve included doesn’t capture their full reality, in which case you can caveat the data by saying that their team disagrees that it’s a comprehensive lens. Don’t worry about getting the details perfectly right in your initial diagnosis. You’re trying to get the right crumbs to feed into the next phase, strategy refinement. Allowing yourself to be directionally correct, rather than perfectly correct, makes it possible to cover a broad territory quickly. Getting caught up in perfecting details is an easy way to anchor yourself into one perspective prematurely. At this point, I hope you’re starting to predict how I’ll conclude any recipe for strategy creation: if these steps feel overly mechanical to you, adjust them to something that feels more natural and authentic. There’s no perfect way to understand complex problems. That said, if you feel uncertain, or are skeptical of your own track record, I do encourage you to start with the above approach as a launching point. Incorporating data into your diagnosis The strategy for Navigating Private Equity ownership’s diagnosis includes a number of details to help readers understand the status quo. For example the section on headcount growth explains headcount growth, how it compares to the prior year, and providing a mental model for readers to translate engineering headcount into engineering headcount costs: Our Engineering headcount costs have grown by 15% YoY this year, and 18% YoY the prior year. Headcount grew 7% and 9% respectively, with the difference between headcount and headcount costs explained by salary band adjustments (4%), a focus on hiring senior roles (3%), and increased hiring in higher cost geographic regions (1%). If everyone evaluating a strategy shares the same foundational data, then evaluating the strategy becomes vastly simpler. Data is also your mechanism for supporting or critiquing the various views that you’ve gathered when drafting your diagnosis; to an impartial reader, data will speak louder than passion. If you’re confident that a perspective is true, then include a data narrative that supports it. If you believe another perspective is overstated, then include data that the reader will require to come to the same conclusion. Do your best to include data analysis with a link out to the full data, rather than requiring readers to interpret the data themselves while they are reading. As your strategy document travels further, there will be inevitable requests for different cuts of data to help readers understand your thinking, and this is somewhat preventable by linking to your original sources. If much of the data you want doesn’t exist today, that’s a fairly common scenario for strategy work: if the data to make the decision easy already existed, you probably would have already made a decision rather than needing to run a structured thinking process. The next chapter on refining strategy covers a number of tools that are useful for building confidence in low-data environments. Whisper the controversial parts At one time, the company I worked at rolled out a bar raiser program styled after Amazon’s, where there was an interviewer from outside the team that had to approve every hire. I spent some time arguing against adding this additional step as I didn’t understand what we were solving for, and I was surprised at how disinterested management was about knowing if the new process actually improved outcomes. What I didn’t realize until much later was that most of the senior leadership distrusted one of their peers, and had rolled out the bar raiser program solely to create a mechanism to control that manager’s hiring bar when the CTO was disinterested holding that leader accountable. (I also learned that these leaders didn’t care much about implementing this policy, resulting in bar raiser rejections being frequently ignored, but that’s a discussion for the Operations for strategy chapter.) This is a good example of a strategy that does make sense with the full diagnosis, but makes little sense without it, and where stating part of the diagnosis out loud is nearly impossible. Even senior leaders are not generally allowed to write a document that says, “The Director of Product Engineering is a bad hiring manager.” When you’re writing a strategy, you’ll often find yourself trying to choose between two awkward options: Say something awkward or uncomfortable about your company or someone working within it Omit a critical piece of your diagnosis that’s necessary to understand the wider thinking Whenever you encounter this sort of debate, my advice is to find a way to include the diagnosis, but to reframe it into a palatable statement that avoids casting blame too narrowly. I think it’s helpful to discuss a few concrete examples of this, starting with the strategy for navigating private equity, whose diagnosis includes: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. There are many things the authors of this strategy likely feel about their state of reality. First, they are probably upset about the fact that their new private equity ownership is likely to eliminate colleagues. Second, they are likely upset that there is no clear plan around what they need to do, so they are stuck preparing for a wide range of potential outcomes. However they feel, they don’t say any of that, they stick to precise, factual statements. For a second example, we can look to the Uber service migration strategy: Within infrastructure engineering, there is a team of four engineers responsible for service provisioning today. While our organization is growing at a similar rate as product engineering, none of that additional headcount is being allocated directly to the team working on service provisioning. We do not anticipate this changing. The team didn’t agree that their headcount should not be growing, but it was the reality they were operating in. They acknowledged their reality as a factual statement, without any additional commentary about that statement. In both of these examples, they found a professional, non-judgmental way to acknowledge the circumstances they were solving. The authors would have preferred that the leaders behind those decisions take explicit accountability for them, but it would have undermined the strategy work had they attempted to do it within their strategy writeup. Excluding critical parts of your diagnosis makes your strategies particularly hard to evaluate, copy or recreate. Find a way to say things politely to make the strategy effective. As always, strategies are much more about realities than ideals. Reframe blockers as part of diagnosis When I work on strategy with early-career leaders, an idea that comes up a lot is that an identified problem means that strategy is not possible. For example, they might argue that doing strategy work is impossible at their current company because the executive team changes their mind too often. That core insight is almost certainly true, but it’s much more powerful to reframe that as a diagnosis: if we don’t find a way to show concrete progress quickly, and use that to excite the executive team, our strategy is likely to fail. This transforms the thing preventing your strategy into a condition your strategy needs to address. Whenever you run into a reason why your strategy seems unlikely to work, or why strategy overall seems difficult, you’ve found an important piece of your diagnosis to include. There are never reasons why strategy simply cannot succeed, only diagnoses you’ve failed to recognize. For example, we knew in our work on Uber’s service provisioning strategy that we weren’t getting more headcount for the team, the product engineering team was going to continue growing rapidly, and that engineering leadership was unwilling to constrain how product engineering worked. Rather than preventing us from implementing a strategy, those components clarified what sort of approach could actually succeed. The role of self-awareness Every problem of today is partially rooted in the decisions of yesterday. If you’ve been with your organization for any duration at all, this means that you are directly or indirectly responsible for a portion of the problems that your diagnosis ought to recognize. This means that recognizing the impact of your prior actions in your diagnosis is a powerful demonstration of self-awareness. It also suggests that your next strategy’s success is rooted in your self-awareness about your prior choices. Don’t be afraid to recognize the failures in your past work. While changing your mind without new data is a sign of chaotic leadership, changing your mind with new data is a sign of thoughtful leadership. Summary Because diagnosis is the foundation of effective strategy, I’ve always found it the most intimidating phase of strategy work. While I think that’s a somewhat unavoidable reality, my hope is that this chapter has somewhat prepared you for that challenge. The four most important things to remember are simply: form your diagnosis before deciding how to solve it, try especially hard to capture perspectives you initially disagree with, supplement intuition with data where you can, and accept that sometimes you’re missing the data you need to fully understand. The last piece in particular, is why many good strategies never get shared, and the topic we’ll address in the next chapter on strategy refinement.
A Live, Interactive Course for Systems Engineers
I’m sitting in a small coffee shop in Brooklyn. I have a warm drink, and it’s just started to snow outside. I’m visiting New York to see Operation Mincemeat on Broadway – I was at the dress rehearsal yesterday, and I’ll be at the opening preview tonight. I’ve seen this show more times than I care to count, and I hope US theater-goers love it as much as Brits. The people who make the show will tell you that it’s about a bunch of misfits who thought they could do something ridiculous, who had the audacity to believe in something unlikely. That’s certainly one way to see it. The musical tells the true story of a group of British spies who tried to fool Hitler with a dead body, fake papers, and an outrageous plan that could easily have failed. Decades later, the show’s creators would mirror that same spirit of unlikely ambition. Four friends, armed with their creativity, determination, and a wardrobe full of hats, created a new musical in a small London theatre. And after a series of transfers, they’re about to open the show under the bright lights of Broadway. But when I watch the show, I see a story about friendship. It’s about how we need our friends to help us, to inspire us, to push us to be the best versions of ourselves. I see the swaggering leader who needs a team to help him truly achieve. The nervous scientist who stands up for himself with the support of his friends. The enthusiastic secretary who learns wisdom and resilience from her elder. And so, I suppose, it’s fitting that I’m not in New York on my own. I’m here with friends – dozens of wonderful people who I met through this ridiculous show. At first, I was just an audience member. I sat in my seat, I watched the show, and I laughed and cried with equal measure. After the show, I waited at stage door to thank the cast. Then I came to see the show a second time. And a third. And a fourth. After a few trips, I started to see familiar faces waiting with me at stage door. So before the cast came out, we started chatting. Those conversations became a Twitter community, then a Discord, then a WhatsApp. We swapped fan art, merch, and stories of our favourite moments. We went to other shows together, and we hung out outside the theatre. I spent New Year’s Eve with a few of these friends, sitting on somebody’s floor and laughing about a bowl of limes like it was the funniest thing in the world. And now we’re together in New York. Meeting this kind, funny, and creative group of people might seem as unlikely as the premise of Mincemeat itself. But I believed it was possible, and here we are. I feel so lucky to have met these people, to take this ridiculous trip, to share these precious days with them. I know what a privilege this is – the time, the money, the ability to say let’s do this and make it happen. How many people can gather a dozen friends for even a single evening, let alone a trip halfway round the world? You might think it’s silly to travel this far for a theatre show, especially one we’ve seen plenty of times in London. Some people would never see the same show twice, and most of us are comfortably into double or triple-figures. Whenever somebody asks why, I don’t have a good answer. Because it’s fun? Because it’s moving? Because I enjoy it? I feel the need to justify it, as if there’s some logical reason that will make all of this okay. But maybe I don’t have to. Maybe joy doesn’t need justification. A theatre show doesn’t happen without people who care. Neither does a friendship. So much of our culture tells us that it’s not cool to care. It’s better to be detached, dismissive, disinterested. Enthusiasm is cringe. Sincerity is weakness. I’ve certainly felt that pressure – the urge to play it cool, to pretend I’m above it all. To act as if I only enjoy something a “normal” amount. Well, fuck that. I don’t know where the drive to be detached comes from. Maybe it’s to protect ourselves, a way to guard against disappointment. Maybe it’s to seem sophisticated, as if having passions makes us childish or less mature. Or perhaps it’s about control – if we stay detached, we never have to depend on others, we never have to trust in something bigger than ourselves. Being detached means you can’t get hurt – but you’ll also miss out on so much joy. I’m a big fan of being a big fan of things. So many of the best things in my life have come from caring, from letting myself be involved, from finding people who are a big fan of the same things as me. If I pretended not to care, I wouldn’t have any of that. Caring – deeply, foolishly, vulnerably – is how I connect with people. My friends and I care about this show, we care about each other, and we care about our joy. That care and love for each other is what brought us together, and without it we wouldn’t be here in this city. I know this is a once-in-a-lifetime trip. So many stars had to align – for us to meet, for the show we love to be successful, for us to be able to travel together. But if we didn’t care, none of those stars would have aligned. I know so many other friends who would have loved to be here but can’t be, for all kinds of reasons. Their absence isn’t for lack of caring, and they want the show to do well whether or not they’re here. I know they care, and that’s the important thing. To butcher Tennyson: I think it’s better to care about something you cannot affect, than to care about nothing at all. In a world that’s full of cynicism and spite and hatred, I feel that now more than ever. I’d recommend you go to the show if you haven’t already, but that’s not really the point of this post. Maybe you’ve already seen Operation Mincemeat, and it wasn’t for you. Maybe you’re not a theatre kid. Maybe you aren’t into musicals, or history, or war stories. That’s okay. I don’t mind if you care about different things to me. (Imagine how boring the world would be if we all cared about the same things!) But I want you to care about something. I want you to find it, find people who care about it too, and hold on to them. Because right now, in this city, with these people, at this show? I’m so glad I did. And I hope you find that sort of happiness too. Some of the people who made this trip special. Photo by Chloe, and taken from her Twitter. Timing note: I wrote this on February 15th, but I delayed posting it because I didn’t want to highlight the fact I was away from home. [If the formatting of this post looks odd in your feed reader, visit the original article]
One of the biggest mistakes that new startup founders make is trying to get away from the customer-facing roles too early. Whether it's customer support or it's sales, it's an incredible advantage to have the founders doing that work directly, and for much longer than they find comfortable. The absolute worst thing you can do is hire a sales person or a customer service agent too early. You'll miss all the golden nuggets that customers throw at you for free when they're rejecting your pitch or complaining about the product. Seeing these reasons paraphrased or summarized destroy all the nutrients in their insights. You want that whole-grain feedback straight from the customers' mouth! When we launched Basecamp in 2004, Jason was doing all the customer service himself. And he kept doing it like that for three years!! By the time we hired our first customer service agent, Jason was doing 150 emails/day. The business was doing millions of dollars in ARR. And Basecamp got infinitely, better both as a market proposition and as a product, because Jason could funnel all that feedback into decisions and positioning. For a long time after that, we did "Everyone on Support". Frequently rotating programmers, designers, and founders through a day of answering emails directly to customers. The dividends of doing this were almost as high as having Jason run it all in the early years. We fixed an incredible number of minor niggles and annoying bugs because programmers found it easier to solve the problem than to apologize for why it was there. It's not easy doing this! Customers often offer their valuable insights wrapped in rude language, unreasonable demands, and bad suggestions. That's why many founders quit the business of dealing with them at the first opportunity. That's why few companies ever do "Everyone On Support". That's why there's such eagerness to reduce support to an AI-only interaction. But quitting dealing with customers early, not just in support but also in sales, is an incredible handicap for any startup. You don't have to do everything that every customer demands of you, but you should certainly listen to them. And you can't listen well if the sound is being muffled by early layers of indirection.