Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
67
A lot happened for me this year. I continued learning the details of fund accounting at Carta, which is likely the most complex product domain I’ve worked in. My third book was published, and I did a small speaking tour to support it. We started the unironically daunting San Francisco kindergarten application process. I was diagnosed with skin cancer and had successful surgery to remove it. All things considered, it was a much messier year than I intended, but with many good pockets mixed in with the mess. (I love to read other folks year-in writeups – if you write one, please send it my way!) Previously: 2023, 2022, 2021, 2020, 2019, 2018, 2017 Goals Evaluating my goals for this year and decade: [Completed] Write at least four good blog posts each year. Layers of context, Useful tradeoffs are multi-dimensional, Notes on how to use LLMs in your product, Eng org seniority-mix model. [Completed] Write another book about engineering or leadership. I did this in either 2023 or 2024, as I...
3 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Irrational Exuberance

How to resource Engineering-driven projects at Calm? (2020)

One of the recurring challenges in any organization is how to split your attention across long-term and short-term problems. Your software might be struggling to scale with ramping user load while also knowing that you have a series of meaningful security vulnerabilities that need to be closed sooner than later. How do you balance across them? These sorts of balance questions occur at every level of an organization. A particularly frequent format is the debate between Product and Engineering about how much time goes towards developing new functionality versus improving what’s already been implemented. In 2020, Calm was growing rapidly as we navigated the COVID-19 pandemic, and the team was struggling to make improvements, as they felt saturated by incoming new requests. This strategy for resourcing Engineering-driven projects was our attempt to solve that problem. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Reading this document To apply this strategy, start at the top with Policy. To understand the thinking behind this strategy, read sections in reverse order, starting with Explore. More detail on this structure in Making a readable Engineering Strategy document. Policy & Operation Our policies for resourcing Engineering-driven projects are: We will protect one Eng-driven project per product engineering team, per quarter. These projects should represent a maximum of 20% of the team’s bandwidth. Each project must advance a measurable metric, and execution must be designed to show progress on that metric within 4 weeks. These projects must adhere to Calm’s existing Engineering strategies. We resource these projects first in the team’s planning, rather than last. However, only concrete projects are resourced. If there’s no concrete proposal, then the team won’t have time budgeted for Engineering-driven work. Team’s engineering manager is responsible for deciding on the project, ensuring the project is valuable, and pushing back on attempts to defund the project. Project selection does not require CTO approval, but you should escalate to the CTO if there’s friction or disagreement. CTO will review Engineering-driven projects each quarter to summarize their impact and provide feedback to teams’ engineering managers on project selection and execution. They will also review teams that did not perform a project to understand why not. As we’ve communicated this strategy, we’ve frequently gotten conceptual alignment that this sounds reasonable, coupled with uncertainty about what sort of projects should actually be selected. At some level, this ambiguity is an acknowledgment that we believe teams will identify the best opportunities bottoms-up, we also wanted to give two concrete examples of projects we’re greenlighting in the first batch: Code-free media release: historically, we’ve needed to make a number of pull requests to add, organize, and release new pieces of media. This is high urgency work, but Engineering doesn’t exercise much judgment while doing it, and manual steps often create errors. We aim to track and eliminate these pull requests, while also increasing the number of releases that can be facilitated without scaling the content release team. Machine-learning content placement: developing new pieces of media is often a multi-week or month process. After content is ready to release, there’s generally a debate on where to place the content. This matters for the company, as this drives engagement with our users, but it matters even more to the content creator, who is generally evaluated in terms of their content’s performance. This often leads to Product and Engineering getting caught up in debates about how to surface particular pieces of content. This project aims to improve user engagement by surfacing the best content for their interests, while also giving the Content team several explicit positions to highlight content without Product and Engineering involvement. Although these projects are similar, it’s not intended that all Engineering-driven projects are of this variety. Instead it’s happenstance based on what the teams view as their biggest opportunities today. Diagnosis Our assessment of the current situation at Calm is: We are spending a high percentage of our time on urgent but low engineering value tasks. Most significantly, about one-third of our time is going into launching, debugging, and changing content that we release into our product. Engineering is involved due to limitations in our implementation, not because there is any inherent value in Engineering’s involvement. (We mostly just make releases slowly and inadvertently introduce bugs of our own.) We have a bunch of fairly clear ideas around improving the platform to empower the Content team to speed up releases, and to eliminate the Engineering involvement. However, we’ve struggled to find time to implement them, or to validate that these ideas will work. If we don’t find a way to prioritize, and succeed at implementing, a project to reduce Engineering involvement in Content releases, we will struggle to support our goals to release more content and to develop more product functionality this year Our Infrastructure team has been able to plan and make these kinds of investments stick. However, when we attempt these projects within our Product Engineering teams, things don’t go that well. We are good at getting them onto the initial roadmap, but then they get deprioritized due to pressure to complete other projects. Engineering team is not very fungible due to its small size (20 engineers), and because we have many specializations within the team: iOS, Android, Backend, Frontend, Infrastructure, and QA. We would like to staff these kinds of projects onto the Infrastructure team, but in practice that team does not have the product development experience to implement theis kind of project. We’ve discussed spinning up a Platform team, or moving product engineers onto Infrastructure, but that would either (1) break our goal to maintain joint pairs between Product Managers and Engineering Managers, or (2) be indistinguishable from prioritizing within the existing team because it would still have the same Product Manager and Engineering Manager pair. Company planning is organic, occurring in many discussions and limited structured process. If we make a decision to invest in one project, it’s easy for that project to get deprioritized in a side discussion missing context on why the project is important. These reprioritization discussions happen both in executive forums and in team-specific forums. There’s imperfect awareness across these two sorts of forums. Explore Prioritization is a deep topic with a wide variety of popular solutions. For example, many software companies rely on “RICE” scoring, calculating priority as (Reach times Impact times Confidence) divided by Effort. At the other extreme are complex methodologies like [Scaled Agile Framework)(https://en.wikipedia.org/wiki/Scaled_agile_framework). In addition to generalized planning solutions, many companies carve out special mechanisms to solve for particular prioritization gaps. Google historically offered 20% time to allow individuals to work on experimental projects that didn’t align directly with top-down priorities. Stripe’s Foundation Engineering organization developed the concept of Foundational Initiatives to prioritize cross-pillar projects with long-term implications, which otherwise struggled to get prioritized within the team-led planning process. All these methods have clear examples of succeeding, and equally clear examples of struggling. Where these initiatives have succeeded, they had an engaged executive sponsoring the practice’s rollout, including triaging escalations when the rollout inconvenienced supporters of the prior method. Where they lacked a sponsor, or were misaligned with the company’s culture, these methods have consistently failed despite the fact that they’ve previously succeeded elsewhere.

yesterday 5 votes
Is this strategy any good?

We’ve read a lot of strategy at this point in the book. We can judge a strategy’s format, and its construction: both are useful things. However, format is a predictor of quality, not quality itself. The remaining question is, how should we assess whether a strategy is any good? Uber’s service migration strategy unlocked the entire organization to make rapid progress. It also led to a sprawling architecture problem down the line. Was it a great strategy or a terrible one? Folks can reasonably disagree, but it’s worthwhile developing our point of view why we should prefer one interpretation or the other. This chapter will focus on: The various ways that are frequently suggested for evaluating strategies, such as input-only evaluation, output-only evaluation, and so on A rubric for evaluating strategies, and why a useful rubric has to recognize that strategies have to be evaluated in phases rather than as a unified construct Why ending a strategy is often a sign of a good strategist, and sometimes the natural reaction to a new phase in a strategy, rather than a judgment on prior phases How missing context is an unpierceable veil for evaluating other companies' strategies with high-conviction, and why you’ll end up attempting to evaluate them anyway Why you can learn just as much from bad strategies as from good ones, even in circumstances where you are missing much of the underlying context Time to refine our judgment about strategy quality a bit. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. How are strategies graded? Before suggesting my own rubric, I want to explore how the industry appears to grade strategies in practice. That’s not because I particularly agree with them–I generally find each approach is missing an important nuance–understanding their flaws is a foundation to build on. Grading strategy on its outputs is by far the most prevalent approach I’ve found in industry. This is an appealing approach, because it does make sense that a strategy’s results are more important than anything else. However, this line of thinking can go awry. We saw massive companies like Google move to service architectures, and we copied them because if it worked for Google, it would likely work for us. As discussed in the monolith decomposition strategy, it did not work particularly well for most adopters. The challenge with grading outputs is that it doesn’t distinguish between “alpha”, how much better your results are because of your strategy, and “beta”, the expected outcome if you hadn’t used the strategy. For example, the acquisition of Index allowed Stripe to build a point-of-sale business line, but they were also on track to internally build that business. Looking only at outputs can’t distinguish whether it would have been better to build the business via acquisition or internally. But one of those paths must have been the better strategy. Similarly, there are also strategies that succeed, but do so at unreasonably high costs. Stripe’s API deprecation strategy is a good example of a strategy that was extremely well worth the cost for the company’s first decade, but eventually became too expensive to maintain as the evolving regulatory environment created more overhead. Fortunately, Stripe modified their strategy to allow some deprecations, but you can imagine an alternate scenario where they attempted to maintain their original strategy, which would have likely failed due to its accumulating costs. Confronting these problems with judging on outputs, it’s compelling to switch to the opposite lens and evaluate strategy purely on its inputs. In that approach, as long as the sum of the strategy’s parts make sense, it’s a good strategy, even if it didn’t accomplish its goals. This approach is very appealing, because it appears to focus purely on the strategy’s alpha. Unfortunately I find this view similarly deficient. For example, the strategy for adopting LLMs offers a cautious approach to adopting LLMs. If that company is outcompleted by competitors in the incorporation of LLMs, to the loss of significant revenue, I would argue that strategy isn’t a great one, even if it’s rooted in a proper diagnosis and effective policies. Doing good strategy requires reconciling the theoretical with the practical, so we can’t argue that inputs alone are enough to evaluate strategy work. If a strategy is conceptually sound, but struggling to make an impact, then its authors should continue to refine it. If its authors take a single pass and ignore subsequent information that it’s not working, then it’s a failed strategy, regardless of how thoughtful the first pass was. While I find these mechanisms to be incomplete, they’re still instructive. By incorporating bits of each of these observations, we’re surprisingly close to a rubric that avoids each of these particular downfalls. Rubric for strategy Balancing the strengths and flaws of the previous section’s ideas, the rubric I’ve found effective for evaluating strategy is: How quickly is the strategy refined? If a strategy starts out bad, but improves quickly, that’s a better strategy than a mostly right strategy that never evolves. Strategy thrives when its practitioners understand it is a living endeavour. How expensive is the strategy’s refinement for implementing and impacted teams? Just as culture eats strategy for breakfast, good policy loses to poor operational mechanisms every time. Especially early on, good strategy is validated cheaply. Expensive strategies are discarded before they can be validated, let alone improved. How well does the current iteration solve its diagnosis? Ultimately, strategy does have to address the diagnosis it starts from. Even if you’re learning quickly and at a low cost, at some point you do have to actually get to impact. Strategy must eventually be graded on its impact. With this rubric in hand, we can finally assess the Uber’s service migration strategy. It refined rapidly as we improved our tooling, minimized costs because we had to rely on voluntary adoption, and solved its diagnosis extremely well. So this was a great strategy, but how do we think about the fact that its diagnosis missed out on the consequences of a wide-spread service architecture on developer productivity? This brings me to the final component of the strategy quality rubric: the recognition that strategy exists across multiple phases. Each phase is defined by new information–whether or not this information is known by the strategy’s authors–that render the diagnosis incomplete. The Uber strategy can be thought of as existing across two phases: Phase 1 used service provisioning to address developer productivity challenges in the monolith. Phase 2 was engaging with consequences of a sprawling service architecture. All the good grades I gave the strategy are appropriate to the first phase. However, the second phase was ushered in by the negative impacts to developer productivity exposed by the initial rollout. The second phase’s grades on the rate of iteration, the cost, and the outcomes were reasonable, but a bit lower than first phase. In the subsequent years, the second phase was succeeded by a third phase that aimed to address the second’s challenges. Does stopping mean a strategy’s bad? Now that we have a rubric, we can use it to evaluate one of the important questions of strategy: does giving up on a strategy mean that the strategy is a bad one? The vocabulary of strategy phases helps us here, and I think it’s uncontroversial to say that a new phase’s evolution of your prior diagnosis might make it appropriate to abandon a strategy. For example, Digg owned our own servers in 2010, but would certainly not buy their own servers if they started ten years later. Circumstances change. Sometimes I also think that aborting a strategy in its first phase is a good sign. That’s generally true when the rate of learning is outpaced by the cost of learning. I recently sponsored a developer productivity strategy that had some impact, but less than we’d intended. We immortalized a few of the smaller pieces, and returned further exploration to a lower altitude strategy owned by the teams rather than the high altitude strategy that I owned as an executive. Essentially all strategies are competing with strategies at other altitudes, so I think giving up on strategies, especially high altitude strategies, is almost always a good idea. The unpierceable veil Working within our industry, we are often called upon to evaluate strategies from afar. As other companies rolled out LLMs in their products or microservices for their architectures, our companies pushed us on why we weren’t making these changes as well. The exploration step of strategy helps determine where a strategy might be useful for you, but even that doesn’t really help you evaluate whether the strategy or the strategists. There are simply too many dimensions of the rubric that you cannot evaluate when you’re far away. For example, how many phases occurred before the idea that became the external representation of the strategy came into existence? How much did those early stages cost to implement? Is the real mastery in the operational mechanisms that are never reported on? Did the external representation of the strategy ever happen at all, or is it the logical next phase that solves the reality of the internal implementation? With all that in mind, I find that it’s generally impossible to accurately evaluate strategies happening in other companies with much conviction. Even if you want to, the missing context is an impenetrable veil. That’s not to say that you shouldn’t try to evalute their strategies, that’s something that you’ll be forced to do in your own strategy work. Instead, it’s a reminder to keep a low confidence score in those appraisals: you’re guaranteed to be missing something. Learning despite quality issues Although I believe it’s quite valuable for us to judge the quality of strategies, I want to caution against going a step further and making the conclusion that you can’t learn from poor strategies. As long as you are aware of a strategy’s quality, I believe you can learn just as much from failed strategy as from great strategy. Part of this is because often even failed strategies have early phases that work extremely well. Another part is because strategies tend to fail for interesting reasons. I learned just as much from Stripe’s failed rollout of agile which struggled due to missing operational mechanisms. as I did from Calm’s successful transition to focus primarily on product engineering. Without a clear point of view on which of these worked, you’d be at risk of learning the wrong lessons, but with forewarning you don’t have run that risk. Once you’ve determined a strategy was unsuccessful, I find it particularly valuable to determine the strategy’s phases and understand which phase and where in the strategy steps things went wrong. Was it a lack of operational mechanisms? Was the policy itself a poor match for the diagnosis? Was the diagnosis willfully ignoring a truculent executive? Answering these questions will teach you more about strategy than only studying successful strategies, because you’ll develop an intuition for which parts truly matter. Summary Finishing this chapter, you now have a structured rubric for evaluating a strategy, moving beyond “good strategy” and “bad strategy” to a nuanced assessment. This assessment is not just useful for grading strategy, but makes it possible to specifically improve your strategy work. Maybe your approach is sound, but your operational mechanisms are too costly for the rate of learning they facilitate. Maybe you’ve treated strategy as a single iteration exercise, rather than recognizing that even excellent strategy goes stale over time. Keep those ideas in mind as we head into the final chapter on how you personally can get better at strategy work.

a week ago 7 votes
Steps to build an engineering strategy.

Often you’ll see a disorganized collection of ideas labeled as a “strategy.” Even when they’re dense with ideas, these can be hard to parse, and are a major reason why most engineers will claim their company doesn’t have a clear strategy even though my experience is that all companies follow some strategy, even if it’s undocumented. This chapter lays out a repeatable, structured approach to drafting strategy. It introduces each step of that approach, which are then detailed further in their respective chapters. Here we’ll cover: How these five steps fit together to facilitate creating strategy, especially by preventing practicioners from skipping steps that feel awkward or challenging. Step 1: Exploring the wider industry’s ideas and practices around the strategy you’re working on. Exploration is understanding what recent research might change your approach, and how the state of art has changed since you last tackled a similar problem. Step 2: Diagnosing the details of your problem. It’s hard to slow down to understand your problem clearly before attempting to solve it, but it’s even more difficult to solve anything well without a clear diagnosis. Step 3: Refinement is taking a raw, unproven set of ideas and testing them against reality. Three techniques are introduced to support this validation process: strategy testing, systems modeling, and Wardley mapping. Step 4: Policy makes the tradeoffs and decisions to solve your diagnosis. These can range from specifying how software is architected, to how pull requests are reviewed, to how headcount is allocated within an organization. Step 5: Operations are the concrete mechanisms that translate policy into an active force within your organization. These can be nudges that remind you about code changes without associated tests, or weekly meetings where you study progress on a migration. Whether these steps are sacred or are open to adaptation and experimentation, including when you personally should persevere in attempting steps that don’t feel effective. From this chapter’s launching point, you’ll have the high-level summaries of each step in strategy creation, and can decide where you want to read further. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. How the steps become strategy Creating effective strategy is not rote incantation of a formula. You can’t merely follow these steps to guarantee that you’ll create a great strategy. However, I’ve found over and over is that strategies fail more due to avoidable errors than from fundamentally unsound thinking. Busy people skip steps. Especially steps they dislike or have failed at before. These steps are the scaffolding to avoid those errors. By practicing routinely, you’ll build powerful habits and intuition around which approach is most appropriate for the current strategy you’re working on. They also help turn strategy into a community practice that you, your colleagues, and the wider engineering ecosystem can participate in together. Each step is an input that flows into the next step. Your exploration is the foundation of a solid diagnosis. Your diagnosis helps you search the infinite space of policy for what you need now. Operational mechanisms help you turn policy into an active force supporting your strategy rather than an abstract treatise. If you’re skeptical of the steps, you should certainly maintain your skepticism, but do give them a few tries before discarding them entirely. You may also appreciate the discussion in the chapter on bridging between theory and practice when doing strategy. Explore Exploration is the deliberate practice of searching through a strategy’s problem and solution spaces before allowing yourself to commit to a given approach. It’s understanding how other companies and teams have approached similar questions, and whether their approaches might also work well for you. It’s also learning why what brought you so much success at your former employer isn’t necessarily the best solution for your current organization. The Uber service migration strategy used exploration to understand the service ecosystem by reading industry literature: As a starting point, we find it valuable to read Large-scale cluster management at Google with Borg which informed some elements of the approach to Kubernetes, and Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center which describes the Mesos/Aurora approach. It also used a Wardley map to explore the cloud compute ecosystem. For more detail, read the Exploration chapter. Diagnose Diagnosis is your attempt to correctly recognize the context that the strategy needs to solve before deciding on the policies to address that context. Starting from your exploration’s learnings, and your understanding of your current circumstances, building a diagnosis forces you to delay thinking about solutions until you fully understand your problem’s nuances. A diagnosis can be largely data driven, such as the navigating a Private Equity ownership transition strategy: Our Engineering headcount costs have grown by 15% YoY this year, and 18% YoY the prior year. Headcount grew 7% and 9% respectively, with the difference between headcount and headcount costs explained by salary band adjustments (4%), a focus on hiring senior roles (3%), and increased hiring in higher cost geographic regions (1%). It can also be less data driven, instead aiming to summarize a problem, such as the Index acquisition strategy’s summary of the known and unknown elements of the technical integration prior to the acquisition closing: We will need to rapidly integrate the acquired startup to meet this timeline. We only know a small number of details about what this will entail. We do know that point-of-sale devices directly operate on payment details (e.g. the point-of-sale device knows the credit card details of the card it reads). Our compliance obligations restrict such activity to our “tokenization environment”, a highly secured and isolated environment with direct access to payment details. This environment converts payment details into a unique token that other environments can utilize to operate against payment details without the compliance overhead of having direct access to the underlying payment details. The approach, and challenges, of developing a diagnosis are detailed in the Diagnosis chapter. Refine (Test, Map & Model) Strategy refinement is a toolkit of methods to identify which parts of your diagnosis are most important, and verify that your approach to solving the diagnosis actually works. This chapter delves into the details of using three methods in particular: strategy testing, systems modeling, and Wardley mapping. An example of a systems modeling diagram. These techniques are also demonstrated in the strategy case studies, such as the Wardley map of the LLM ecosystem, or the systems model of backfilling roles without downleveling them. For more detail, read the Refinement chapter. Why isn’t refinement earlier (or later)? A frequent point of disagreement is that refinement should occur before the diagnosis. Another is that mapping and modeling are two distinct steps, and mapping should occur before diagnosis, and modeling should occur after policy. A third is that refinement ought to be the final step of strategy, turning the steps into a looping cycle. These are all reasonable observations, so let me unpack my rationale for this structure. By far the biggest risk for most strategies is not that you model too early or map too late, but instead that you simply skip both steps entirely. My foremost concern is minimizing the required investment into mapping and modeling such that more folks do these steps at all. Refining after exploring and diagnosing allows you to concentrate your efforts on a smaller number of load-bearing areas. That said, it’s common to refine many places in your strategy creation. You’re just as likely to have three small refinement steps as one bigger one. Policy Policy is interpreting your diagnosis into a concrete plan. This plan also needs to work, which requires careful study of what’s worked within your company, and what new ideas you’ve discovered while exploring the current problem. Policies can range from providing directional guidance, such as the user data controls strategy’s guidance: Good security discussions don’t frame decisions as a compromise between security and usability. We will pursue multi-dimensional tradeoffs to simultaneously improve security and efficiency. Whenever we frame a discussion on trading off between security and utility, it’s a sign that we are having the wrong discussion, and that we should rethink our approach. We will prioritize mechanisms that can both automatically authorize and automatically document the rationale for accesses to customer data. The most obvious example of this is automatically granting access to a customer support agent for users who have an open support ticket assigned to that agent. (And removing that access when that ticket is reassigned or resolved.) To committing not to make a decision until later, as practiced in the Index acquisition strategy: Defer making a decision regarding the introduction of Java to a later date: the introduction of Java is incompatible with our existing engineering strategy, but at this point we’ve also been unable to align stakeholders on how to address this decision. Further, we see attempting to address this issue as a distraction from our timely goal of launching a joint product within six months. We will take up this discussion after launching the initial release. This chapter further goes into evaluating policies, overcoming ambiguous circumstances that make it difficult to decide on an approach, and developing novel policies. For full detail, read the Policy chapter. Operations Even the best policies have to be interpreted. There will be new circumstances their authors never imagined, and the policies may be in effect long after their authors have left the organization. Operational mechanisms are the concrete implementation of your policy. The simplest mechanisms are an explicit escalation path, as shown in Calm’s product engineering strategy: Exceptions are granted by the CTO, and must be in writing. The above policies are deliberately restrictive. Sometimes they may be wrong, and we will make exceptions to them. However, each exception should be deliberate and grounded in concrete problems we are aligned both on solving and how we solve them. If we all scatter towards our preferred solution, then we’ll create negative leverage for Calm rather than serving as the engine that advances our product. From that starting point, the mechanisms can get far more complex. This chapter works through evaluating mechanisms, composing an operational plan, and the most common sorts of operational mechanisms that I’ve seen across strategies. For more detail, read the Operations chapter. Is the structure sacrosanct? When someone’s struggling to write a strategy document, one of the first tools someone will often recommend is a strategy template. Templates are great: they reduce the ambiguity of an already broad project into something more tractable. If you’re wondering if you should use a template to craft strategy: sure, go ahead! However, I find that well-meaning, thoughtful templates often turn into lumbering, callous documents that serve no one well. The secret to good templates is that someone has to own it, and that person has to care about the template writer first and foremost, rather than the various constituencies that want to insert requirements into the strategy creation process. The security, compliance and cost of your plans matter a lot, but many organizations start to layer in more and more requirements into these sorts of documents until the idea of writing them becomes prohibitively painful. The best advice I can give someone attempting to write strategy, is that you should discard every element of strategy that gets in your way as long as you can explain what that element was intended to accomplish. For example, if you’re drafting a strategy and you don’t find any operational mechanisms that fit. That’s fine, discard that section. Ultimately, the structure is not sacrosanct, it’s the thinking behind the sections that really matter. This topic is explored in more detail in the chapter on Making engineering strategies more readable. Summary Now, you know the foundational steps to conducting strategy. From here, you can dive into the details with the strategy case studies like How should you adopt LLMs? or you can maintain a high altitude starting with how exploration creates the foundation for an effective strategy. Whichever you start with, I encourage yout o eventually work through both to get the full perspective.

a week ago 10 votes
Operational mechanisms for strategy.

Even the best policies fail if they aren’t adopted by the teams they’re intended to serve. Can we persistently change our company’s behaviors with a one-time announcement? No, probably not. I refer to the art of making policies work as “operations” or “strategy operations.” The good news is that effectively operating a policy is two-thirds avoiding common practices that simply don’t work. The other one-third takes some practice, but can be practiced in any engineering role: there’s no need to wait until you’re an executive to start building mastery. This chapter will dig into those mechanisms, with particular focus on: How policies are supported by operations, and how operations are composed of mechanisms that ensure they work well Evaluating operational mechanisms to select between different options, and determine which mechanisms are unlikely to be an effective choice Composing an operational plan for the specific set of policies that you are looking to support Common varieties of effective mechanisms such as approval forums, inspection mechanisms, nudges, and so on. We’ll also explore the sorts of mechanisms that tend to work poorly How to adjust your approach to operations if you are in an engineering role rather than an executive role How cargo-culting remains the largest threat to effective strategy operations Let’s unpack the details of turning your potentially good policy into an impactful policy. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. What are operational mechanisms? Operations are how a policy is implemented and reinforced. Effective operations ensure that your policies actually accomplish something. They can range from a recurring weekly meeting, to an alert that notifies the team when a threshold is exceeded, to a promotion rubric requiring a certain behavior to be promoted. In the strategy for working with new private equity ownership, we introduce a policy to backfill hires at a lower level, and also limit the maximum number of principal engineers: We will move to an “N-1” backfill policy, where departures are backfilled with a less senior level. We will also institute a strict maximum of one Principal Engineer per business unit, with any exceptions approved in writing by the CTO–this applies for both promotions and external hires. That introduces an explicit operational mechanism of escalations going to the CTO, but it also introduces an implicit and undefined mechanism: how do we ensure the backfills are actually down-leveled as the policy instructs? It might be a group chat with engineering recruiting where the CTO approves the level of backfilled roles. Instead, it might be the responsibility of recruiting to enforce that downleveling. In a third approach, it might be taken on trust that hiring managers will do the right thing. Each of those three scenarios is a potential operational solution to implementing this policy. Operations is picking the right one for your circumstances, and then tweaking it as you learn from running it. Operations in government For another interesting take on how critical operations are, Recoding America by Jennifer Pahlka is well worth the read. It explores how well-intended government legislation often isn’t implementable, which results in policies that require massive IT investments but provide little benefit to constituents. How to evaluate mechanisms In order to determine the most effective operational mechanisms for the problems you’re working on, it’s useful to have a standardized rubric for evaluating mechanisms. While this rubric isn’t perfectly universal–customize it for your needs–having any rubric will make it easier to evaluate your options consistently. The rubric I use to evaluate whether an operational mechanism will be effective is: Measurability: Can you measure both leading and lagging indicators to inspect the mechanism’s impact? If you have to choose between the two, measuring leading indicators allows much quicker evaluation and iteration on your mechanisms. Adoption cost: How much work will migrating to this mechanism require? Can this work be done incrementally or does it require a major, coordinated shift? User ease (or burden): After adopting this policy, how much easier (or harder) will it be for users to perform their work? If things will be harder, are those users able to tolerate the additional time? Provider ease (or burden): How much additional ongoing maintenance will this mechanism require from the centralized or platform team providing it? For example, if every new architecture proposal requires a thorough review by your Security team, does the Security team have the actual ability to support those reviews? Reliance on authority: How much does this mechanism depend on a top-down authority’s active support? If the sponsoring executive departs, will this mechanism remain effective? Is that an effective tradeoff in this case? Culturally aligned: Is this something that your organization is going to do, or something that they are going to fight against each step? Is there a way you can adjust the framing to make it more acceptable to your organization’s culture? Generally, I find folks are good at evaluating mechanisms against these critera, but somewhat worse at accepting the consequences of their evaluation. For example, falling in love with a particular mechanism and then trying to force the organization to accept a mechanism whose adoption cost is unbearably high, or introduce a mechanism that creates significant user burden onto a team that is already struggling with tight efficiency goals like a customer support team. Self-awareness helps here, but so does consulting others to point out the errors in your reasoning, which is a core part of how I’ve found success in adopting operational mechanisms. Composing an operational plan Your operational plan is the sum of the mechanisms used to support your policies. While evaluating each individual mechanism in isolation is part of creating an operations plan, it’s also valuable to consider how the mechanisms will work together: Review the policies you’ve developed. What sort of mechanisms seem most likely to support these policies? How might these mechanisms be pooled together to avoid redundancy? Review the operational mechanisms that have worked in your organization. What mechanisms have been used to best effect, and which have left a sufficiently bad taste in the organization’s collective memory that they’ll be hard to reuse effectively? Which new mechanisms showed up in your exploration? In your exploration phase, you’ll frequent encounter mechanisms that your organization hasn’t previously tried. If any of them seem particularly well-suited to the policies you’re considering, and none of your organization’s frequently used mechanisms are good fits, then consider testing a new one. Evaluate mechanisms against the evaluation rubric. For each of the mechanisms you’re considering using, apply the rubric from the above How to evaluate mechanisms to validate they’re good fits. Consolidate into an operational plan. Now that you’ve determined the mechanisms you want to consider, work on fitting the full set of mechanisms into one coherent plan. Be particularly mindful of the ease, or burden, the integrated plan creates for both your users and platform providers. Validate plan with users and providers. Many plans make sense from afar, but fail due to imposing an unreasonable burden. Or the burden might be acceptable, but the actual workflow simply won’t work at all. Consider validating via strategy testing. If you run the above process, and can’t come to an agreement with stakeholders on your proposed plan, then simply commit to running a strategy testing process including the plan. This will create space for everyone to build confidence in the approach before they feel forced to make a commitment to following it long-term. Even if you don’t use strategy testing for your plan, at least commit to scheduling a review in three months reflecting on how things have worked out. Your operational plan is the vehicle that delivers your policies to your organization. It’s extremely tempting to skip refining the details here, but it’s a relatively quick step and will completely change your strategy’s outcomes. Common mechanisms Most companies have a handful of frequently used operational mechanisms. Some of those mechanisms are company specific, such as Amazon’s weekly business review, and others repeat across companies like requiring executive approval. Across the many mechanisms you’ll encounter, you can generally cluster them into recurring categories. This section covers the mechanisms I’ve found consistently effective. Approval and advice forums At a high level, new policies are obvious, simple and apply cleanly to the problem they are intended to solve. However, when you apply those policies to detailed, complex circumstances, it’s often ambiguous how to stay loyal to a policy’s intensions. Approval and advice forums are a common solution to that problem. Calm’s product engineering strategy shows what the simplest, and most common, approval forum looks like in practice: Exceptions are granted by the CTO, and must be in writing. The above policies are deliberately restrictive. Sometimes they may be wrong, and we will make exceptions to them. However, each exception should be deliberate and grounded in concrete problems we are aligned both on solving and how we solve them. If we all scatter towards our preferred solution, then we’ll create negative leverage for Calm rather than serving as the engine that advances our product. All exceptions must be written. If they are not written, then you should operate as if it has not been granted. Our goal is to avoid ambiguity around whether an exception has, or has not, been approved. If there’s no written record that the CTO approved it, then it’s not approved. This example also has several weaknesses that happen in many approval forums. Most importantly, it doesn’t make it clear how to get approvals. It would be stronger if it explicitly explained how to get an approval (perhaps go ask in #cto-approvals), and where to find prior approvals to help someone considering requesting an exception to calibrate their request. Approvals don’t necessarily need to come from senior leadership. Instead, the senior leadership can loan their authority on a topic to another group. The LLM adoption strategy provides a good example of this: Start with Anthropic. We use Anthropic models, which are available through our existing cloud provider via AWS Bedrock. To avoid maintaining multiple implementations, where we view the underlying foundational model quality to be somewhat undifferentiated, we are not looking to adopt a broad set of LLMs at this point. This is anchored in our Wardley map of the LLM ecosystem. Exceptions will be reviewed by the Machine Learning Review in #ml-review In a more community-minded organization, the approval forums might not require senior leadership involvement at all. Instead, the culture might create an environment where the forums’ feedback is taken seriously on its own merits. Every company does approval forums a bit differently, ranging from our experiments at Carta with Navigators, granting executive authority for technical decisions to named engineers in each area, to Andrew Harmel-Law’s discussion of this topic in Facilitating Software Architecture. You can spend a lot of time arguing the details here, my experience is that having the right participants and a good executive sponsor matter a lot, and the other pieces matter a lot less. Inspection While even the best policies can fail, the more common scenario is that a policy will sort-of work, and need some modest adjustments to make it more successful. An inspect mechanism allows you to evaluate whether your policy’s is succeeding and if you need to make adjustments. The user-data access strategy provides an example: Measure progress on percentage of customer data access requests justified by a user-comprehensible, automated rationale. This will anchor our approach on simultaneously improving the security of user data and the usability of our colleagues’ internal tools. If we only expand requirements for accessing customer data, we won’t view this as progress because it’s not automated (and consequently is likely to encourage workarounds as teams try to solve problems quickly). Similarly, if we only improve usability, charts won’t represent this as progress, because we won’t have increased the number of supported requests. As part of this effort, we will create a private channel where the security and compliance team has visibility into all manual rationales for user-data access, and will directly message the manager of any individual who relies on a manual justification for accessing user data. This example is a good start, but fully realizing an inspection mechanism requires concretely specifying where and how the data will be tracked. A better version of this would include a link to the dashboard you’ll look at, and a commitment to reviewing the data on a certain frequency. For a recent inspection mechanism, I created a recurring invite with a link to the relevant data dashboard, and a specific chat channel for discussion, and invited the working group who had agreed to review the data on that cadence. This wasn’t a synchronous meeting, but rather a commitment to independently review, and discuss anything that felt surprising. Your particular mechanisms could be threshold-triggered alerts, something you fold into an existing metrics review meeting, a script you commit to running and reviewing periodically, or something else. The most important thing is that it cannot silently fail. Nudges While it’s common to hear complaints about how a team isn’t following a new policy, as if it were a deliberate choice they’d made, I find it more common that people want to do things the new way, but rarely take time to learn how to do it. Nudges are providing individuals with context to inform them about a better way they might do something, and they are an exceptionally effective mechanism. Grounding this in an example, at Stripe we had a policy of allowing teams to self-authorize introducing new cloud hosting costs. This worked well almost all the time. However, sometimes teams would accidentally introduce large cost increases without realizing it, and teams that introduced those spikes almost never had any awareness that they had caused the problem. Even if we’d told them they must not introduce unapproved spending spikes, they simply didn’t perceive they’d done it. We had the choice between preventing all teams from introducing new spend, or we could try using a nudge. The nudge we added informed teams when their cloud spend accelerated month over month, directed to charts that explained the acceleration, and told them where to go to ask questions. Nudges pair well with inspections, and there was also a monthly review by the Efficiency Engineering team to review any spikes and reach out where necessary. Maybe we could have forced all teams to review new spend, but this nudge approach didn’t require an authoritative mandate to implement. It also meant we only spent time advising teams that actually spent too much, instead of having to discuss with every team that might spend too much. As another example making that point, a working group at Carta added a nudge to inform managers of untested pull requests merged by their team. Some managers had previously said they simply didn’t know when and why their team had merged untested pull requests, and this nudge made it easy to detect. The nudge also respected their attention by not sending a notification at all if there wasn’t a new, untested pull request. With poor ergonomics, nudges can be an overwhelming assault on your colleagues attention, but done well, I continue to believe they are the most effective operational mechanism. Documentation Policies can’t be enforced by people who don’t know they exist, or by people who don’t know how to follow those policies. In my experience, nudges are the most effective way of solving both of those problems, because nudges bring information to people at exactly the moment that information would be useful. At most companies, well-done nudges are relatively uncommon, and the far more common solution to lack of information is documentation and training. There are so many approaches to both of these topics, and I’ve not found my own approaches here particularly effective. Consequently, I am hesitant to give much advice on what will work best for you. The best I can offer is that following standard practices for your company, even if the outcomes seem imperfect, is probably your best bet. Internal knowledge bases tend to rot quickly, and introducing yet another knowledge base is almost always the illusion of progress rather than real progress. Even when you really don’t like the current one. Finally, remember that success for documentation and training is not necessarily that everyone in the company knows how a new policy works. Instead, as discussed in the chapter on whether strategy is useful, a more useful goal is informational herd immunity: as long as someone on each team understands your policy, the team will generally be capable of following it. Automation Relying on humans to respond is slow, and the quality of human response is highly varied. In many cases, automation provides the most effective and most scalable mechanism to support your policies’ rollout. Automation was key in the Uber service migration strategy, moving us out of a manual, slow process that was taking up a great deal of user and provider time: Move to structured requests, and out of tickets. Missing or incorrect information in provisioning requests create significant delays in provisioning. Further, collecting this information is the first step of moving to a self-service process. As such, we can get paid twice by reducing errors in manual provisioning while also creating the interface for self-service workflows. In that case, better automation allowed us to eliminate a series of back-and-forth negotiations to collect data, and to instead get the necessary information in a single step. Occasionally we still ran into users who couldn’t fill in the form, but now we could focus on providing a good manual experience for those rare exceptions. As you use automation as a core strategy mechanism, it’s important to recognize that designing an effective user experience is a prerequisite to automation having a positive impact. If you view the user experience of your automation as a secondary concern, then you are unlikely to make much impact with automation. Deferment to future work Sometimes there’s something you really want a policy to do, but you also know that you have no reasonable mechanism to do it. In that case, you may find explicitly deferring action on the topic useful. The strategy for integration the Index acquisition at Stripe uses this mechanism: Defer making a decision regarding the introduction of Java to a later date: the introduction of Java is incompatible with our existing engineering strategy, but at this point we’ve also been unable to align stakeholders on how to address this decision. Further, we see attempting to address this issue as a distraction from our timely goal of launching a joint product within six months. We will take up this discussion after launching the initial release. As did the strategy for working with a private equity acquirer: We believe there are significant opportunities to reduce R&D maintenance investments, but we don’t have conviction about which particular efforts we should prioritize. We will kickoff a working group to identify the features with the highest support load. There’s no shame in deferral. As much as you want to make progress on a certain area, it’s better to explicitly acknowledge that you can’t make progress on it–and clarify when you will be able to–then to allow the organization to churn on an intractable problem. Meetings Meetings are the final mechanism, and you can fit any and all of the above mechanisms into a meeting. They are a universal mechanism, although frequently overused because they can do an adequate job of operating almost any policy. The most common mechanism is a reporting meeting, such as reporting progress in the Executive Weekly Meeting as suggested in the LLM adoption strategy: Develop an LLM-backed process for reactivating departed and suspended drivers in mature markets. Through modeling our driver lifecycle, we determined that improving onboarding time will have little impact on the total number of active drivers. Instead, we are focusing on mechanisms to reactivate departed and suspended drivers, which is the only opportunity to meaningfully impact active drivers. Report on progress monthly in Exec Weekly Meeting, coordinated in #exec-weekly The other common meeting archetype is the weekly working meeting introduced in the chapter on strategy testing. Meetings are almost always the most expensive mechanism you can find to solve a problem, but they are easy to suggest, run, and iterate on. If you can’t find any other mechanism you believe in, then a meeting is a decent starting point. Just don’t get too fond of them, and try to iterate your way to canceling every meeting that you start. Anti-patterns In addition to the effective operational methods discussed above, there are a number of additional mechanisms that are frequently used, but which I consider anti-patterns. They can provide some value, but there’s almost always a better alternative. Top-down pronouncements: Sometimes a policy will be operationalized by simply declaring it must be followed. It’s common to see a leader declare that a policy is now in effect, assuming that the announcement is a useful way to implement the new policy. For example, some “return to office” policies dictate that the team must work from their office, but driving a real change requires motivating thoes individuals to actually return. Education-as-announcements rollouts: The default way that many companies roll out policies is through one-time “education,” often as an all-company announcement for existing employees. They might follow up by updating training for onboarding new-hires. Education sounds great, but a couple trainings will never change organizational behavior. Changing behavior requires ongoing reminders, visible role models, inspection to understand why some teams are not adopting the behavior, and so on. Education can be a good component of operationalizing a policy, but it cannot stand on its own. Mandatory recurring trainings: These are a staple of compliance driven policies, generally because of laws which require providing a certain number of hours of relevant training each year. There are two deep challenges with mandatory trainings. First, because attendance is required, people tend to make little effort to make the content good. Second, many folks don’t pay attention because they expect the content to be low quality. It’s not uncommon to hear people say that they’ve never heard of a policy that they’ve performed annual training on for multiple years. It’s possible to overcome these barriers, but in a situation where you’re accountable for changing outcomes, as opposed to shifting legal obligations away from the company, these tend to work poorly. Just change the culture. Some leaders frame most problems as cultural problems, which is a reasonable frame: most things can be usefully viewed as a cultural problem. Unfortunately, it’s common for those who rely heavily on the cultural frame to also have a simplistic view about how culture is changed. Changing an organization’s culture is tricky, and requires a combination of many techniques to create visible leaders role modeling the new behavior, and reinforcement mechanisms to ensure pockets of dissent are weeded out. Anyone who frames culture change as a simple or instant change is living in an imaginary world. If you’re using one of these approaches, it isn’t necessarily a bad choice. Instead, you should just make sure you can explain why you’re using it, and then you need to also make sure you believe that explanation. If you don’t, look for a mechanism from the earlier What if you’re not an executive? It’s easy to get discouraged when you think about which operational mechanisms are available to you as a non-executive. So many of the frequently seen mechanisms like running mandatory recurring meetings, or a binding architecture review process are not accessible to you. That is true: they’re not accessible to you. However, there’s always a related mechanism that can be implemented with less authority. The binding architecture process can be replaced with an architectural advice process. The mandatory review of pull requests can be replaced with a nudge. Although it may be more common to see the authoritative mechanisms in the companies you work in, my experience working as an executive is that these authoritative mechanisms don’t work particularly well. They do a great job of technically shifting accountability to the wider organization, but they often don’t change behavior at all. So, instead of getting frustrated by what you can’t do, focus instead on the mechanisms that are available to you today. Add nudges, focus on the real dynamics of how colleagues do work in your organization, and build a real dataset. It’s very hard to get an executive to support your initiative before the mechanisms and data exist to support it, and very easy to get their support once they do. Once you’ve done what you can without authority to build confidence, if you really do need more authority, then you’re in a good place to escalate to get an executive to support your policies. Beware cargo-culting The longer that I am in the industry, but more I am surprised by how few strategists seem to care if their approach actually works. Instead, they seem focused on doing something that might work, offloading accountability to either the organization or some team, and then moving off to the next problem. Perhaps this is driven by an unfortunate reality that leaders are often evaluated by how they appear, rather than by what they accomplish. Whether or not that’s the underlying reason for why it happens, it does make it surprisingly difficult to know which patterns to borrow from strategy rollouts and implementations. The best advice, unfortunately, is to remain skeptically optimistic. Collect ideas widely, but force the ideas to prove their merit. Summary Now that you’ve finished this chapter, you’re significantly more qualified to write a complete, useful strategy than I was a decade into my career. Often skipped, the operations behind your strategy are at least as essential as any other step, and any strategy without them will fade quietly into your organization’s history. In addition to being able to rollout a strategy of your own, this chapter also provides a useful rescue toolkit you can use to put an existing, floundering strategy back on track. If you don’t see an opportunity to write new strategy within your organization, then there’s still probably room to flex your operational skill.

2 weeks ago 11 votes
Career advice in 2025.

Yesterday, the tj-actions repository, a popular tool used with Github Actions was compromised (for more background read one of these two articles). Watching the infrastructure and security engineering teams at Carta respond, it highlighted to me just how much LLMs can’t meaningfully replace many essential roles of software professionals. However, I’m also reading Jennifer Palkha’s Recoding America, which makes an important point: decision-makers can remain irrational longer than you can remain solvent. (Or, in this context, remain employed.) I’ve been thinking about this a lot lately, as I’ve ended up having more “2025 is not much fun”-themed career discussions with prior colleagues navigating the current job market. I’ve tried to pull together my points from those conversations here: Many people who first entered senior roles in 2010-2020 are finding current roles a lot less fun. There are a number of reasons for this. First, managers were generally evaluated in that period based on their ability to hire, retain and motivate teams. The current market doesn’t value those skills particularly highly, but instead prioritizes a different set of skills: working in the details, pushing pace, and navigating the technology transition to foundational models / LLMs. This means many members of the current crop of senior leaders are either worse at the skills they currently need to succeed, or are less motivated by those activities. Either way, they’re having less fun. Similarly, the would-be senior leaders from 2010-2020 era who excelled at working in the details, pushing pace and so on, are viewed as stagnate in their careers so are still finding it difficult to move into senior roles. This means that many folks feel like the current market has left them behind. This is, of course, not universal. It is a general experience that many people are having. Many people are not having this experience. The technology transition to Foundational models / LLMs as a core product and development tool is causing many senior leaders’ hard-earned playbooks to be invalidated. Many companies that were stable, durable market leaders are now in tenuous positions because foundational models threaten to erode their advantage. Whether or not their advantage is truly eroded is uncertain, but it is clear that usefully adopting foundational models into a product requires more than simply shoving an OpenAI/Anthropic API call in somewhere. Instead, you have to figure out how to design with progressive validation, with critical data validated via human-in-the-loop techniques before it is used in a critical workflow. It also requires designing for a rapidly improving toolkit: many workflows that were laughably bad in 2023 work surprisingly well with the latest reasoning models. Effective product design requires architecting for both massive improvement, and no improvement at all, of models in 2026-2027. This is equally true of writing software itself. There’s so much noise about how to write software, and much of it’s clearly propaganda–this blog’s opening anecdote regarding the tj-actions repository prove that expertise remains essential–but parts of it aren’t. I spent a few weeks in the evenings working on a new side project via Cursor in January, and I was surprised at how much my workflow changed even through Cursor itself was far from perfect. Even since then, Claude has advanced from 3.5 to 3.7 with extended thinking. Again, initial application development might easily be radically different in 2027, or it might be largely unchanged after the scaffolding step in complex codebases. (I’m also curious to see if context window limitations drive another flight from monolithic architectures.) Sitting out this transition, when we are relearning how to develop software, feels like a high risk proposition. Your well-honed skills in team development are already devalued today relative to three years ago, and now your other skills are at risk of being devalued as well. Valuations and funding are relatively less accessible to non-AI companies than they were three years ago. Certainly elite companies are doing alright, whether or not they have a clear AI angle, but the cutoff for remaining elite has risen. Simultaneously, the public markets are challenged, which means less willingness for both individuals and companies to purchase products, which slows revenue growth, further challenging valuations and funding. The consequence of this if you’re at a private, non-AI company, is that you’re likely to hire less, promote less, see less movement in pay bands, and experience a less predictable path to liquidity. It also means fewer open roles at other companies, so there’s more competition when attempting to trade up into a larger, higher compensated role at another company. The major exception to this is joining an AI company, but generally those companies are in extremely competitive markets and are priced more appropriately for investors managing a basket of investments than for employees trying to deliver a predictable return. If you join one of these companies today, you’re probably joining a bit late to experience a big pop, your equity might go to zero, and you’ll be working extremely hard for the next five to seven years. This is the classic startup contract, but not necessarily the contract that folks have expected over the past decade as maximum compensation has generally come from joining a later-stage company or member of the Magnificent Seven. As companies respond to the reduced valuations and funding, they are pushing their teams harder to find growth with their existing team. In the right environment, this can be motivating, but people may have opted into to a more relaxed experience that has become markedly less relaxed without their consent. If you pull all those things together, you’re essentially in a market where profit and pace are fixed, and you have to figure out how you personally want to optimize between people, prestige and learning. Whereas a few years ago, I think these variables were much more decoupled, that is not what I hear from folks today, even if their jobs were quite cozy a few years ago. Going a bit further, I know folks who are good at their jobs, and have been struggling to find something meaningful for six-plus months. I know folks who are exceptionally strong candidates, who can find reasonably good jobs, but even they are finding that the sorts of jobs they want simply don’t exist right now. I know folks who are strong candidates but with some oddities in their profile, maybe too many short stints, who are now being filtered out because hiring managers need some way to filter through the higher volume of candidates. I can’t give advice on what you should do, but if you’re finding this job market difficult, it’s certainly not personal. My sense is that’s basically the experience that everyone is having when searching for new roles right now. If you are in a role today that’s frustrating you, my advice is to try harder than usual to find a way to make it a rewarding experience, even if it’s not perfect. I also wouldn’t personally try to sit this cycle out unless you’re comfortable with a small risk that reentry is quite difficult: I think it’s more likely that the ecosystem is meaningfully different in five years than that it’s largely unchanged. Altogether, this hasn’t really been the advice that anyone wanted when they chatted with me, but it seems to generally have resonated with them as a realistic appraisal of the current markets. Hopefully there’s something useful for you in here as well.

2 weeks ago 12 votes

More in programming

The blissful zen of a good side project

One of life's greatest simple pleasures is creating something just for yourself.

21 hours ago 2 votes
How to resource Engineering-driven projects at Calm? (2020)

One of the recurring challenges in any organization is how to split your attention across long-term and short-term problems. Your software might be struggling to scale with ramping user load while also knowing that you have a series of meaningful security vulnerabilities that need to be closed sooner than later. How do you balance across them? These sorts of balance questions occur at every level of an organization. A particularly frequent format is the debate between Product and Engineering about how much time goes towards developing new functionality versus improving what’s already been implemented. In 2020, Calm was growing rapidly as we navigated the COVID-19 pandemic, and the team was struggling to make improvements, as they felt saturated by incoming new requests. This strategy for resourcing Engineering-driven projects was our attempt to solve that problem. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Reading this document To apply this strategy, start at the top with Policy. To understand the thinking behind this strategy, read sections in reverse order, starting with Explore. More detail on this structure in Making a readable Engineering Strategy document. Policy & Operation Our policies for resourcing Engineering-driven projects are: We will protect one Eng-driven project per product engineering team, per quarter. These projects should represent a maximum of 20% of the team’s bandwidth. Each project must advance a measurable metric, and execution must be designed to show progress on that metric within 4 weeks. These projects must adhere to Calm’s existing Engineering strategies. We resource these projects first in the team’s planning, rather than last. However, only concrete projects are resourced. If there’s no concrete proposal, then the team won’t have time budgeted for Engineering-driven work. Team’s engineering manager is responsible for deciding on the project, ensuring the project is valuable, and pushing back on attempts to defund the project. Project selection does not require CTO approval, but you should escalate to the CTO if there’s friction or disagreement. CTO will review Engineering-driven projects each quarter to summarize their impact and provide feedback to teams’ engineering managers on project selection and execution. They will also review teams that did not perform a project to understand why not. As we’ve communicated this strategy, we’ve frequently gotten conceptual alignment that this sounds reasonable, coupled with uncertainty about what sort of projects should actually be selected. At some level, this ambiguity is an acknowledgment that we believe teams will identify the best opportunities bottoms-up, we also wanted to give two concrete examples of projects we’re greenlighting in the first batch: Code-free media release: historically, we’ve needed to make a number of pull requests to add, organize, and release new pieces of media. This is high urgency work, but Engineering doesn’t exercise much judgment while doing it, and manual steps often create errors. We aim to track and eliminate these pull requests, while also increasing the number of releases that can be facilitated without scaling the content release team. Machine-learning content placement: developing new pieces of media is often a multi-week or month process. After content is ready to release, there’s generally a debate on where to place the content. This matters for the company, as this drives engagement with our users, but it matters even more to the content creator, who is generally evaluated in terms of their content’s performance. This often leads to Product and Engineering getting caught up in debates about how to surface particular pieces of content. This project aims to improve user engagement by surfacing the best content for their interests, while also giving the Content team several explicit positions to highlight content without Product and Engineering involvement. Although these projects are similar, it’s not intended that all Engineering-driven projects are of this variety. Instead it’s happenstance based on what the teams view as their biggest opportunities today. Diagnosis Our assessment of the current situation at Calm is: We are spending a high percentage of our time on urgent but low engineering value tasks. Most significantly, about one-third of our time is going into launching, debugging, and changing content that we release into our product. Engineering is involved due to limitations in our implementation, not because there is any inherent value in Engineering’s involvement. (We mostly just make releases slowly and inadvertently introduce bugs of our own.) We have a bunch of fairly clear ideas around improving the platform to empower the Content team to speed up releases, and to eliminate the Engineering involvement. However, we’ve struggled to find time to implement them, or to validate that these ideas will work. If we don’t find a way to prioritize, and succeed at implementing, a project to reduce Engineering involvement in Content releases, we will struggle to support our goals to release more content and to develop more product functionality this year Our Infrastructure team has been able to plan and make these kinds of investments stick. However, when we attempt these projects within our Product Engineering teams, things don’t go that well. We are good at getting them onto the initial roadmap, but then they get deprioritized due to pressure to complete other projects. Engineering team is not very fungible due to its small size (20 engineers), and because we have many specializations within the team: iOS, Android, Backend, Frontend, Infrastructure, and QA. We would like to staff these kinds of projects onto the Infrastructure team, but in practice that team does not have the product development experience to implement theis kind of project. We’ve discussed spinning up a Platform team, or moving product engineers onto Infrastructure, but that would either (1) break our goal to maintain joint pairs between Product Managers and Engineering Managers, or (2) be indistinguishable from prioritizing within the existing team because it would still have the same Product Manager and Engineering Manager pair. Company planning is organic, occurring in many discussions and limited structured process. If we make a decision to invest in one project, it’s easy for that project to get deprioritized in a side discussion missing context on why the project is important. These reprioritization discussions happen both in executive forums and in team-specific forums. There’s imperfect awareness across these two sorts of forums. Explore Prioritization is a deep topic with a wide variety of popular solutions. For example, many software companies rely on “RICE” scoring, calculating priority as (Reach times Impact times Confidence) divided by Effort. At the other extreme are complex methodologies like [Scaled Agile Framework)(https://en.wikipedia.org/wiki/Scaled_agile_framework). In addition to generalized planning solutions, many companies carve out special mechanisms to solve for particular prioritization gaps. Google historically offered 20% time to allow individuals to work on experimental projects that didn’t align directly with top-down priorities. Stripe’s Foundation Engineering organization developed the concept of Foundational Initiatives to prioritize cross-pillar projects with long-term implications, which otherwise struggled to get prioritized within the team-led planning process. All these methods have clear examples of succeeding, and equally clear examples of struggling. Where these initiatives have succeeded, they had an engaged executive sponsoring the practice’s rollout, including triaging escalations when the rollout inconvenienced supporters of the prior method. Where they lacked a sponsor, or were misaligned with the company’s culture, these methods have consistently failed despite the fact that they’ve previously succeeded elsewhere.

yesterday 5 votes
Personal tools

I used to make little applications just for myself. Sixteen years ago (oof) I wrote a habit tracking application, and a keylogger that let me keep track of when I was using a computer, and generate some pretty charts. I’ve taken a long break from those kinds of things. I love my hobbies, but they’ve drifted toward the non-technical, and the idea of keeping a server online for a fun project is unappealing (which is something that I hope Val Town, where I work, fixes). Some folks maintain whole ‘homelab’ setups and run Kubernetes in their basement. Not me, at least for now. But I have been tiptoeing back into some little custom tools that only I use, with a focus on just my own computing experience. Here’s a quick tour. Hammerspoon Hammerspoon is an extremely powerful scripting tool for macOS that lets you write custom keyboard shortcuts, UIs, and more with the very friendly little language Lua. Right now my Hammerspoon configuration is very simple, but I think I’ll use it for a lot more as time progresses. Here it is: hs.hotkey.bind({"cmd", "shift"}, "return", function() local frontmost = hs.application.frontmostApplication() if frontmost:name() == "Ghostty" then frontmost:hide() else hs.application.launchOrFocus("Ghostty") end end) Not much! But I recently switched to Ghostty as my terminal, and I heavily relied on iTerm2’s global show/hide shortcut. Ghostty doesn’t have an equivalent, and Mikael Henriksson suggested a script like this in GitHub discussions, so I ran with it. Hammerspoon can do practically anything, so it’ll probably be useful for other stuff too. SwiftBar I review a lot of PRs these days. I wanted an easy way to see how many were in my review queue and go to them quickly. So, this script runs with SwiftBar, which is a flexible way to put any script’s output into your menu bar. It uses the GitHub CLI to list the issues, and jq to massage that output into a friendly list of issues, which I can click on to go directly to the issue on GitHub. #!/bin/bash # <xbar.title>GitHub PR Reviews</xbar.title> # <xbar.version>v0.0</xbar.version> # <xbar.author>Tom MacWright</xbar.author> # <xbar.author.github>tmcw</xbar.author.github> # <xbar.desc>Displays PRs that you need to review</xbar.desc> # <xbar.image></xbar.image> # <xbar.dependencies>Bash GNU AWK</xbar.dependencies> # <xbar.abouturl></xbar.abouturl> DATA=$(gh search prs --state=open -R val-town/val.town --review-requested=@me --json url,title,number,author) echo "$(echo "$DATA" | jq 'length') PR" echo '---' echo "$DATA" | jq -c '.[]' | while IFS= read -r pr; do TITLE=$(echo "$pr" | jq -r '.title') AUTHOR=$(echo "$pr" | jq -r '.author.login') URL=$(echo "$pr" | jq -r '.url') echo "$TITLE ($AUTHOR) | href=$URL" done Tampermonkey Tampermonkey is essentially a twist on Greasemonkey: both let you run your own JavaScript on anybody’s webpage. Sidenote: Greasemonkey was created by Aaron Boodman, who went on to write Replicache, which I used in Placemark, and is now working on Zero, the successor to Replicache. Anyway, I have a few fancy credit cards which have ‘offers’ which only work if you ‘activate’ them. This is an annoying dark pattern! And there’s a solution to it - CardPointers - but I neither spend enough nor care enough about points hacking to justify the cost. Plus, I’d like to know what code is running on my bank website. So, Tampermonkey to the rescue! I wrote userscripts for Chase, American Express, and Citi. You can check them out on this Gist but I strongly recommend to read through all the code because of the afore-mentioned risks around running untrusted code on your bank account’s website! Obsidian Freeform This is a plugin for Obsidian, the notetaking tool that I use every day. Freeform is pretty cool, if I can say so myself (I wrote it), but could be much better. The development experience is lackluster because you can’t preview output at the same time as writing code: you have to toggle between the two states. I’ll fix that eventually, or perhaps Obsidian will add new API that makes it all work. I use Freeform for a lot of private health & financial data, almost always with an Observable Plot visualization as an eventual output. For example, when I was switching banks and one of the considerations was mortgage discounts in case I ever buy a house (ha 😢), it was fun to chart out the % discounts versus the required AUM. It’s been really nice to have this kind of visualization as ‘just another document’ in my notetaking app. Doesn’t need another server, and Obsidian is pretty secure and private.

yesterday 4 votes
All conference talks should start with a small technical glitch that the speaker can easily solve

At a conference a while back, I noticed a couple of speakers get such a confidence boost after solving a small technical glitch. We should probably make that a part of every talk. Have the mic not connect automatically, or an almost-complete puzzle on the stage that the speaker can finish, or have someone forget their badge and the speaker return it to them. Maybe the next time I, or a consenting teammate, have to give a presentation I’ll try to engineer such a situation. All conference talks should start with a small technical glitch that the speaker can easily solve was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 03, 2025.

2 days ago 3 votes
Thomas Aquinas — The world is divine!

A large part of our civilisation rests on the shoulders of one medieval monk: Thomas Aquinas. Amid the turmoil of life, riddled with wickedness and pain, he would insist that our world is good.  And all our success is built on this belief. Note: Before we start, let’s get one thing out of the way: Thomas Aquinas is clearly a Christian thinker, a Saint even. Yet he was also a brilliant philosopher. So even if you consider yourself agnostic or an atheist, stay with me, you will still enjoy his ideas. What is good? Thomas’ argument is rooted in Aristotle’s concept of goodness: Something is good if it fulfills its function. Aristotle had illustrated this idea with a knife. A knife is good to the extent that it cuts well. He made a distinction between an actual knife and its ideal function. That actual thing in your drawer is the existence of a knife. And its ideal function is its essence—what it means to be a knife: to cut well.  So everything is separated into its existence and its ideal essence. And this is also true for humans: We have an ideal conception of what the essence of a human […] The post Thomas Aquinas — The world is divine! appeared first on Ralph Ammer.

2 days ago 6 votes