More from Alice GG
Every 6 months or so, I decide to leave my cave and check out what the cool kids are doing with AI. Apparently the latest trend is to use fancy command line tools to write code using LLMs. This is a very nice change, since it suddenly makes AI compatible with my allergy to getting out of the terminal. The most popular of these tools seems to be Claude Code. It promises to be able to build in total autonomy, being able to use search code, write code, run tests, lint, and commit the changes. While this sounds great on paper, I’m not keen on getting locked into vendor tools from an unprofitable company. At some point, they will either need to raise their prices, enshittify their product, or most likely do both. So I went looking for what the free and open source alternatives are. Picking a model There’s a large amount of open source large language models on the market, with new ones getting released all the time. However, they are not all ready to be used locally in coding tasks, so I had to try a bunch of them before settling on one. deepseek-r1:8b Deepseek is the most popular open source model right now. It was created by the eponymous Chinese company. It made the news by beating numerous benchmarks while being trained on a budget that is probably lower than the compensation of some OpenAI workers. The 8b variant only weights 5.2 GB and runs decently on limited hardware, like my three years old Mac. This model is famous for forgetting about world events from 1989, but also seems to have a few issues when faced with concrete coding tasks. It is a reasoning model, meaning it “thinks” before acting, which should lead to improved accuracy. In practice, it regularly gets stuck indefinitely searching where it should start and jumping from one problem to the other in a loop. This can happen even on simple problems, and made it unusable for me. mistral:7b Mistral is the French alternative to American and Chinese models. I have already talked about their 7b model on this blog. It is worth noting that they have kept updating their models, and it should now be much more accurate than two years ago. Mistral is not a reasoning model, so it will jump straight to answering. This is very good if you’re working with tasks where speed and low compute use are a priority. Sadly, the accuracy doesn’t seem good enough for coding. Even on simple tasks, it will hallucinate functions or randomly delete parts of the code I didn’t want to touch. qwen3:8b Another model from China, qwen3 was created by the folks at Alibaba. It also claims impressive benchmark results, and can work as both a reasoning or non-thinking model. It was made with modern AI tooling in mind, by supporting MCPs and a framework for agentic development. This model actually seems to work as expected, providing somewhat accurate code output while not hanging in the reasoning part. Since it runs decently on my local setup, I decided to stick to that model for now. Setting up a local API with Ollama Ollama is now the default way to download and run local LLMs. It can be simply installed by downloading it from their website. Once installed, it works like Docker for models, by giving us access to commands like pull, run, or rm. Ollama will expose an API on localhost which can be used by other programs. For example, you can use it from your Python programs through ollama-python. Pair programming with aider The next piece of software I installed is aider. I assume it’s pronounced like the French word, but I could not confirm that. Aider describes itself as a “pair programming” application. Its main job is to pass context to the model, let it write the output to files, run linters, and commit the changes. Getting started It can be installed using the official Python package or via Homebrew if you use Mac. Once it is installed, just navigate to your code repository and launch it: export OLLAMA_API_BASE=http://127.0.0.1:11434 aider --model ollama_chat/qwen3:8b The CLI should automatically create some configuration files and add them to the repo’s .gitignore. Usage Aider isn’t meant to be left alone in complete autonomy. You’ll have to guide the AI through the process of making changes to your repository. To start, use the /add command to add files you want to focus on. Those files will be passed entirely to the model’s context and the model will be able to write in them. You can then ask questions using the /ask command. If you want to generate code, a good strategy can be to starting by requesting a plan of actions. When you want it to actually write to the files, you can prompt it using the /code command. This is also the default mode. There’s no absolute guarantee that it will follow a plan if you agreed on one previously, but it is still a good idea to have one. The /architect command seems to automatically ask for a plan, accept it, and write the code. The specificity of this command is that it lets you use different models to plan and write the changes. Refactoring I tried coding with aider in a few situations to see how it performs in practice. First, I tried making it do a simple refactoring on Itako, which is a project of average complexity. When pointed to the exact part of code where the issues happened, and explained explicitly what to do, the model managed to change the target struct according to the instructions. It did unexpectedly change a function that was outside the scope of what I asked, but this was easy to spot. On paper, this looks like a success. In practice, the time spent crafting a prompt, waiting for the AI to run and fixing the small issue that came up immensely exceeds the 10 minutes it would have taken me to edit the file myself. I don’t think coding that way would lead me to a massive performance improvement for now. Greenfield project For a second scenario, I wanted to see how it would perform on a brand-new project. I quickly set up a Python virtual environment, and asked aider to work with me at building a simple project. We would be opening a file containing Japanese text, parsing it with fugashi, and counting the words. To my surprise, this was a disaster. All I got was a bunch on hallucination riddled python that wouldn’t run under any circumstances. It may be that the lack of context actually made it harder for the model to generate code. Troubleshooting Finally, I went back to Itako, and decided to check how it would perform on common troubleshooting tasks. I introduced a few bugs to my code and gathered some error messages. I then proceeded to simply give aider the files mentioned by the error message and just use /ask to have it explain the errors to me, without requiring it to implement the code. This part did work very well. If I compare it with Googling unknown error messages, I think this can cut the time spent on the issue by half This is not just because Google is getting worse every day, but the model having access to the actual code does give it a massive advantage. I do think this setup is something I can use instead of the occasional frustration of scrolling through StackOverflow threads when something unexpected breaks. What about the Qwen CLI? With everyone jumping on the trend of CLI tools for LLMs, the Qwen team released its own Qwen Code. It can be installed using npm, and connects to a local model if configured like this: export OPENAI_API_KEY="ollama" export OPENAI_BASE_URL="http://localhost:11434/v1/" export OPENAI_MODEL="qwen3:8b" Compared to aider, it aims at being fully autonomous. For example, it will search your repository using grep. However, I didn’t manage to get it to successfully write any code. The tool seems optimized for larger, online models, with context sizes up to 1M tokens. Our local qwen3 context only has a 40k tokens context size, which can get overwhelmed very quickly when browsing entire code repositories. Even when I didn’t run out of context, the tool mysteriously failed when trying to write files. It insists it can only write to absolute paths, which the model doesn’t seem to agree with providing. I did not investigate the issue further.
Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our container orchestrator is called a “task”. A task represents a single container. It contains configuration data, like the container’s name, image and exposed ports. Most importantly, it indicates the container state, and so acts as a state machine. The state of a task can be Pending, Scheduled, Running, Completed or Failed. Each task will need to interact with a container runtime, through a client. In the book, we use Docker (aka Moby). The client will get its configuration from the task and then proceed to pull the image, create the container and start it. When it is time to finish the task, it will stop the container and remove it. The workers Above the task, we have workers. Each machine in the cluster runs a worker. Workers expose an API through which they receive commands. Those commands are added to a queue to be processed asynchronously. When the queue gets processed, the worker will start or stop tasks using the container client. In addition to exposing the ability to start and stop tasks, the worker must be able to list all the tasks running on it. This demands keeping a task database in the worker’s memory and updating it every time a task change’s state. The worker also needs to be able to provide information about its resources, like the available CPU and memory. The book suggests reading the /proc Linux file system using goprocinfo, but since I use a Mac, I used gopsutil. The manager On top of our cluster of workers, we have the manager. The manager also exposes an API, which allows us to start, stop, and list tasks on the cluster. Every time we want to create a new task, the manager will call a scheduler component. The scheduler has to list the workers that can accept more tasks, assign them a score by suitability and return the best one. When this is done, the manager will send the work to be done using the worker’s API. In the book, the author also suggests that the manager component should keep track of every tasks state by performing regular health checks. Health checks typically consist of querying an HTTP endpoint (i.e. /ready) and checking if it returns 200. In case a health check fails, the manager asks the worker to restart the task. I’m not sure if I agree with this idea. This could lead to the manager and worker having differing opinions about a task state. It will also cause scaling issues: the manager workload will have to grow linearly as we add tasks, and not just when we add workers. As far as I know, in Kubernetes, Kubelet (the equivalent of the worker here) is responsible for performing health checks. The CLI The last part of the project is to create a CLI to make sure our new orchestrator can be used without having to resort to firing up curl. The CLI needs to implement the following features: start a worker start a manager run a task in the cluster stop a task get the task status get the worker node status Using cobra makes this part fairly straightforward. It lets you create very modern feeling command-line apps, with properly formatted help commands and easy argument parsing. Once this is done, we almost have a fully functional orchestrator. We just need to add authentication. And maybe some kind of DaemonSet implementation would be nice. And a way to handle mounting volumes…
In the past few years, social media use has gained a bad reputation. More or less everyone is now aware that TikTok is ruining your attention span, and Twitter is radicalizing you into extreme ideologies. But, despite its enormous popularity amongst technology enthusiasts, there’s not a lot of attention given to Discord. I personally have been using Discord so much for so long that the majority of my social circle is made of people I met through the platform. I even spent two years of my life helping run the infrastructure behind the most popular Bot available on Discord. In this article, I will try to give my perspective on Discord, why I think it is harmful, and what can we do about it. appshunter.io A tale of two book clubs To explain my point of view about Discord, I will compare the experience between joining a real-life book-club, and one that communicates exclusively through Discord. This example is about books, but the same issues would apply if it was a community talking about investing, knitting, or collecting stamps. As Marshall McLuhan showed last century, examining media should be done independently of their content. In the first scenario, we have Bob. Bob enjoys reading books, which is generally a solitary hobby. To break this solitude, Bob decides to join a book club. This book club reunites twice a month in a library where they talk about a new book each time. In the second scenario, we have Alice. Alice also likes books. Alice also wants to meet fellow book lovers. Being a nerd, Alice decides to join a Discord server. This server does not have fixed meeting times. Most users simply use the text channels to talk about what they are reading anytime during the day. Crumbs of Belongingness In Bob’s book club, a session typically lasts an hour. First, the librarian takes some time to welcome everyone and introduce newcomers. After, that each club member talks about the book they were expected to read. They can talk about what they liked and disliked, how the book made them feel, and the chapters they found particularly noteworthy. Once each member had the time to talk about the book, they vote on the book they are going to read for the next date. After the session is concluded, some members move to the nearest coffeehouse to keep talking. During this session of one hour, Bob spent around one hour socializing. The need for belongingness that drove Bob to join this book club is fully met. On Alice’s side, the server is running 24/7. When she opens the app, even if there are sometimes more than 4000 members of her virtual book club online, most of the time, nobody is talking. If she was to spend an entire hour staring at the server she might witness a dozen or so messages. Those messages may be part of small conversations in which Alice can take part. Sadly, most of the time they will be simple uploads of memes, conversations about books she hasn’t read, or messages that do not convey enough meaning to start a conversation. In one hour of constant Discord use, Alice’s need for socializing has not been met. Susan Q Yin The shop is closed Even if Bob’s library is open every day, the book club is only open for a total of two hours a month. It is enough for Bob. Since the book club fulfills his need, he doesn’t want it to be around for longer. He has not even entertained the thought of joining a second book club, because too many meetings would be overwhelming. For Alice, Discord is always available. No matter if she is at home or away, it is always somewhere in her phone or taskbar. At any moment of the day, she might notice a red circle above the icon. It tells her there are unread messages on Discord. When she notices that, she instinctively stops her current task and opens the app to spend a few minutes checking her messages. Most of the time those messages do not lead to a meaningful conversation. Reading a few messages isn’t enough to meet her need for socialization. So, after having scrolled through the messages, she goes back to waiting for the next notification. Each time she interrupts her current task to check Discord, getting back into the flow can take several minutes or not happen at all. This can easily happen dozens of times a day and cost Alice hundreds of hours each month. Book hopping When Bob gets home, the club only requires him to read the next book. He may also choose to read two books at the same time, one for the book club and one from his personal backlog. But, if he were to keep his efforts to a strict minimum, he would still have things to talk about in the next session. Alice wants to be able to talk with other users about the books they are reading. So she starts reading the books that are trending and get mentionned often. The issue is, Discord’s conversation are instantaneous, and instantaneity compresses time. A book isn’t going to stay popular and relevant for two whole weeks, if it manages to be the thing people talk about for two whole days, it’s already great. Alice might try to purchase and read two to three books a week to keep up with the server rythm. Even if books are not terribly expensive, this can turn a 20 $/month hobby into a 200 $/month hobby. In addition to that, if reading a book takes Alice on average 10 hours, reading 3 books a week would be like adding a part-time job to her schedule. All this, while being constantly interrupted by the need to check if new conversations have been posted to the server. visnu deva Quitting Discord If you are in Alice’s situation, the solution is quite simple: use Discord less, ideally not at all. On my side, I’ve left every server that is not relevant to my current work. I blocked discord.com from the DNS of my coding computer (using NextDNS) and uninstalled the app from my phone. This makes the platform only usable as a direct messaging app, exclusively from my gaming device, which I cannot carry with me. I think many people realize the addictive nature of Discord, yet keep using the application all the time. One common objection to quitting the platform, is that there’s a need for an alternative: maybe we should go back to forums, or IRC, or use Matrix, etc… I don’t think any alternative internet chat platform can solve the problem. The real problem is that we want to be able to talk to people without leaving home, at any time, without any inconvenience. But what we should do is exactly that, leave home and join a real book club, one that is not open 24/7, and one where the members take the time to listen to each other. In the software community, we have also been convinced that every one of our projects needs to be on Discord. Every game needs a server, open-source projects offer support on Discord, and a bunch of AI startups even use it as their main user interface. I even made a server for Dice’n Goblins. I don’t think it’s really that useful. I’m not even sure it’s that convenient. Popular games are not popular because they have big servers, they have big servers because they are popular. Successful open-source projects often don’t even have a server.
Two weeks ago we released Dice’n Goblins, our first game on Steam. This project allowed me to discover and learn a lot of new things about game development and the industry. I will use this blog post to write down what I consider to be the most important lessons from the months spent working on this. The development started around 2 years ago when Daphnée started prototyping a dungeon crawler featuring a goblin protagonist. After a few iterations, the game combat started featuring dice, and then those dice could be used to make combos. In May 2024, the game was baptized Dice’n Goblins, and a Steam page was created featuring some early gameplay screenshots and footage. I joined the project full-time around this period. Almost one year later, after amassing more than 8000 wishlists, the game finally released on Steam on April 4th, 2025. It was received positively by the gaming press, with great reviews from PCGamer and LadiesGamers. It now sits at 92% positive reviews from players on Steam. Building RPGs isn’t easy As you can see from the above timeline, building this game took almost two years and two programmers. This is actually not that long if you consider that other indie RPGs have taken more than 6 years to come out. The main issue with the genre is that you need to create a believable world. In practice, this requires programming many different systems that will interact together to give the impression of a cohesive universe. Every time you add a new system, you need to think about how it will fit all the existing game features. For example, players typically expect an RPG to have a shop system. Of course, this means designing a shop non-player character (or building) and creating a UI that is displayed when you interact with it. But this also means thinking through a lot of other systems: combat needs to be changed to reward the player with gold, every item needs a price tag, chests should sometimes reward the player with gold, etc… Adding too many systems can quickly get into scope creep territory, and make the development exponentially longer. But you can only get away with removing so much until your game stops being an RPG. Making a game without a shop might be acceptable, but the experience still needs to have more features than “walking around and fighting monsters” to feel complete. RPGs are also, by definition, narrative experiences. While some games have managed to get away with procedurally generating 90% of the content, in general, you’ll need to get your hands dirty, write a story, and design a bunch of maps. Creating enough content for a game to fit 12h+ without having the player go through repetitive grind will by itself take a lot of time. Having said all that, I definitely wouldn’t do any other kind of games than RPGs, because this is what I enjoy playing. I don’t think I would be able to nail what makes other genres fun if I don’t play them enough to understand what separates the good from the mediocre. Marketing isn’t that complicated Everyone in the game dev community knows that there are way too many games releasing on Steam. To stand out amongst the 50+ games coming out every day, it’s important not only to have a finished product but also to plan a marketing campaign well in advance. For most people coming from a software engineering background, like me, this can feel extremely daunting. Our education and jobs do not prepare us well for this kind of task. In practice, it’s not that complicated. If your brain is able to provision a Kubernetes cluster, then you are most definitely capable of running a marketing campaign. Like anything else, it’s a skill that you can learn over time by practicing it, and iteratively improving your methods. During the 8 months following the Steam page release, we tried basically everything you can think of as a way to promote the game. Every time something was having a positive impact, we would do it more, and we quickly stopped things with low impact. The most important thing to keep in mind is your target audience. If you know who wants the game of games you’re making, it is very easy to find where they hang out and talk to them. This is however not an easy question to answer for every game. For a long while, we were not sure who would like Dice’n Goblins. Is it people who like Etrian Odyssey? Fans of Dicey Dungeons? Nostalgic players of Paper Mario? For us, the answer was mostly #1, with a bit of #3. Once we figured out what was our target audience, how to communicate with them, and most importantly, had a game that was visually appealing enough, marketing became very straightforward. This is why we really struggled to get our first 1000 wishlists, but getting the last 5000 was actually not that complicated. Publishers aren’t magic At some point, balancing the workload of actually building the game and figuring out how to market it felt too much for a two-person team. We therefore did what many indie studios do, and decided to work with a publisher. We worked with Rogue Duck Interactive, who previously published Dice & Fold, a fairly successful dice roguelike. Without getting too much into details, it didn’t work out as planned and we decided, by mutual agreement, to go back to self-publishing Dice’n Goblins. The issue simply came from the audience question mentioned earlier. Even though Dice & Fold and Dice’n Goblins share some similarities, they target a different audience, which requires a completely different approach to marketing. The lesson learned is that when picking a publisher, the most important thing you can do is to check that their current game catalog really matches the idea you have of your own game. If you’re building a fast-paced FPS, a publisher that only has experience with cozy simulation games will not be able to help you efficiently. In our situation, a publisher with experience in roguelikes and casual strategy games wasn’t a good fit for an RPG. In addition to that, I don’t think the idea of using a publisher to remove marketing toil and focus on making the game is that much of a good idea in the long term. While it definitely helps to remove the pressure from handling social media accounts and ad campaigns, new effort will be required in communicating and negotiating with the publishing team. In the end, the difference between the work saved and the work gained might not have been worth selling a chunk of your game. Conclusion After all this was said and done, one big question I haven’t answered is: would I do it again? The answer is definitely yes. Not only building this game was an extremely satisfying endeavor, but so much has been learned and built while doing it, it would be a shame not to go ahead and do a second one.
Neovim is by far my favorite text editor. The clutter-free interface and keyboard-only navigation are what keep me productive in my daily programming. In an earlier post, I explained how I configure it into a minimalist development environment. Today, I will show you how to use it with Godot and GDScript. Configure Godot First, we need to tell Godot to use nvim as a text editor instead of the built-in one. Open Godot, and head to Editor Settings > General > Text Editor > External. There, you will need to tick the box Use external editor, indicate your Neovim installation path, and use --server /tmp/godothost --remote-send "<C-\><C-N>:n {file}<CR>{line}G{col}|" as execution flags. While in the settings, head to Network > Language Server and note down the remote port Godot is using. By default, it should be 6005. We will need that value later. Connecting to Godot with vim-godot Neovim will be able to access Godot features by using a plugin called vim-godot. We will need to edit the nvim configuration file to install plugins and configure Neovim. On Mac and Linux, it is located at ~/.config/nvim/init.vim I use vim-plug to manage my plugins, so I can just add it to my configuration like this: call plug#begin('~/.vim/plugged') " ... Plug 'habamax/vim-godot' " ... call plug#end() Once the configuration file is modified and saved, use the :PlugInstall command to install it. You’ll also need to indicate Godot’s executable path. Add this line to your init.vim: let g:godot_executable = '/Applications/Godot.app/Contents/MacOS/Godot' For vim-godot to communicate with the Godot editor, it will need to listen to the /tmp/godothost file we configured in the editor previously. To do that, simply launch nvim with the flag --listen /tmp/godothost. To save you some precious keypress, I suggest creating a new alias in your bashrc/zshrc like this: alias gvim="nvim --listen /tmp/godothost" Getting autocompletion with coc.nvim Godot ships with a language server. It means the Godot editor can provide autocompletion, syntax highlighting, and advanced navigation to external editors like nvim. While Neovim now has built-in support for the language server protocol, I’ve used the plugin coc.nvim to obtain these functionalities for years and see no reason to change. You can also install it with vim-plug by adding the following line to your plugin list: Plug 'neoclide/coc.nvim', {'branch':'release'} Run :PlugInstall again to install it. You’ll need to indicate the Godot language server address and port using the command :CocConfig. It should open Coc’s configuration file, which is a JSON file normally located at ~/.config/nvim/coc-settings.json. In this file enter the following data, and make sure the port number matches the one located in your editor: { "languageserver": { "godot": { "host": "127.0.0.1", "filetypes": ["gdscript"], "port": 6005 } } } I recommend adding Coc’s example configuration to your init.vim file. You can find it on GitHub. It will provide you with a lot of useful shortcuts, such as using gd to go to a function definition and gr to list its references. Debugging using nvim-dap If you want to use the debugger from inside Neovim, you’ll need to install another plugin called nvim-dap. Add the following to your plugins list: Plug 'mfussenegger/nvim-dap' The plugin authors suggest configuring it using Lua, so let’s do that by adding the following in your init.vim: lua <<EOF local dap = require("dap") dap.adapters.godot = { type = "server", host = "127.0.0.1", port = 6006, } dap.configurations.gdscript = { { type = "godot", request = "launch", name = "Launch scene", project = "${workspaceFolder}", launch_scene = true, }, } vim.api.nvim_create_user_command("Breakpoint", "lua require'dap'.toggle_breakpoint()", {}) vim.api.nvim_create_user_command("Continue", "lua require'dap'.continue()", {}) vim.api.nvim_create_user_command("StepOver", "lua require'dap'.step_over()", {}) vim.api.nvim_create_user_command("StepInto", "lua require'dap'.step_into()", {}) vim.api.nvim_create_user_command("REPL", "lua require'dap'.repl.open()", {}) EOF This will connect to the language server (here on port 6005), and allow you to pilot the debugger using the following commands: :Breakpoint to create (or remove) a breakpoint :Continue to launch the game or run until the next breakpoint :StepOver to step over a line :StepInto to step inside a function definition :REPL to launch a REPL (useful if you want to examine values) Conclusion I hope you’ll have a great time developing Godot games with Neovim. If it helps you, you can check out my entire init.vim file on GitHub gist.
More in programming
.title {text-wrap:balance;} #content > p:first-child {text-wrap:balance;} If Git had a nemesis, it’d be large files. Large files bloat Git’s storage, slow down git clone, and wreak havoc on Git forges. In 2015, GitHub released Git LFS—a Git extension that hacked around problems with large files. But Git LFS added new complications and storage costs. Meanwhile, the Git project has been quietly working on large files. And while LFS ain’t dead yet, the latest Git release shows the path towards a future where LFS is, finally, obsolete. What you can do today: replace Git LFS with Git partial clone Git LFS works by storing large files outside your repo. When you clone a project via LFS, you get the repo’s history and small files, but skip large files. Instead, Git LFS downloads only the large files you need for your working copy. In 2017, the Git project introduced partial clones that provide the same benefits as Git LFS: Partial clone allows us to avoid downloading [large binary assets] in advance during clone and fetch operations and thereby reduce download times and disk usage. – Partial Clone Design Notes, git-scm.com Git’s partial clone and LFS both make for: Small checkouts – On clone, you get the latest copy of big files instead of every copy. Fast clones – Because you avoid downloading large files, each clone is fast. Quick setup – Unlike shallow clones, you get the entire history of the project—you can get to work right away. What is a partial clone? A Git partial clone is a clone with a --filter. For example, to avoid downloading files bigger than 100KB, you’d use: git clone --filter='blobs:size=100k' <repo> Later, Git will lazily download any files over 100KB you need for your checkout. By default, if I git clone a repo with many revisions of a noisome 25 MB PNG file, then cloning is slow and the checkout is obnoxiously large: $ time git clone https://github.com/thcipriani/noise-over-git Cloning into '/tmp/noise-over-git'... ... Receiving objects: 100% (153/153), 1.19 GiB real 3m49.052s Almost four minutes to check out a single 25MB file! $ du --max-depth=0 --human-readable noise-over-git/. 1.3G noise-over-git/. $ ^ 🤬 And 50 revisions of that single 25MB file eat 1.3GB of space. But a partial clone side-steps these problems: $ git config --global alias.pclone 'clone --filter=blob:limit=100k' $ time git pclone https://github.com/thcipriani/noise-over-git Cloning into '/tmp/noise-over-git'... ... Receiving objects: 100% (1/1), 24.03 MiB real 0m6.132s $ du --max-depth=0 --human-readable noise-over-git/. 49M noise-over-git/ $ ^ 😻 (the same size as a git lfs checkout) My filter made cloning 97% faster (3m 49s → 6s), and it reduced my checkout size by 96% (1.3GB → 49M)! But there are still some caveats here. If you run a command that needs data you filtered out, Git will need to make a trip to the server to get it. So, commands like git diff, git blame, and git checkout will require a trip to your Git host to run. But, for large files, this is the same behavior as Git LFS. Plus, I can’t remember the last time I ran git blame on a PNG 🙃. Why go to the trouble? What’s wrong with Git LFS? Git LFS foists Git’s problems with large files onto users. And the problems are significant: 🖕 High vendor lock-in – When GitHub wrote Git LFS, the other large file systems—Git Fat, Git Annex, and Git Media—were agnostic about the server-side. But GitHub locked users to their proprietary server implementation and charged folks to use it.1 💸 Costly – GitHub won because it let users host repositories for free. But Git LFS started as a paid product. Nowadays, there’s a free tier, but you’re dependent on the whims of GitHub to set pricing. Today, a 50GB repo on GitHub will cost $40/year for storage. In contrast, storing 50GB on Amazon’s S3 standard storage is $13/year. 😰 Hard to undo – Once you’ve moved to Git LFS, it’s impossible to undo the move without rewriting history. 🌀 Ongoing set-up costs – All your collaborators need to install Git LFS. Without Git LFS installed, your collaborators will get confusing, metadata-filled text files instead of the large files they expect. The future: Git large object promisors Large files create problems for Git forges, too. GitHub and GitLab put limits on file size2 because big files cost more money to host. Git LFS keeps server-side costs low by offloading large files to CDNs. But the Git project has a new solution. Earlier this year, Git merged a new feature: large object promisers. Large object promisors aim to provide the same server-side benefits as LFS, minus the hassle to users. This effort aims to especially improve things on the server side, and especially for large blobs that are already compressed in a binary format. This effort aims to provide an alternative to Git LFS – Large Object Promisors, git-scm.com What is a large object promisor? Large object promisors are special Git remotes that only house large files. In the bright, shiny future, large object promisors will work like this: You push a large file to your Git host. In the background, your Git host offloads that large file to a large object promisor. When you clone, the Git host tells your Git client about the promisor. Your client will clone from the Git host, and automagically nab large files from the promisor remote. But we’re still a ways off from that bright, shiny future. Git large object promisors are still a work in progress. Pieces of large object promisors merged to Git in March of 2025. But there’s more to do and open questions yet to answer. And so, for today, you’re stuck with Git LFS for giant files. But once large object promisors see broad adoption, maybe GitHub will let you push files bigger than 100MB. The future of large files in Git is Git. The Git project is thinking hard about large files, so you don’t have to. Today, we’re stuck with Git LFS. But soon, the only obstacle for large files in Git will be your half-remembered, ominous hunch that it’s a bad idea to stow your MP3 library in Git. Edited by Refactoring English Later, other Git forges made their own LFS servers. Today, you can push to multiple Git forges or use an LFS transfer agent, but all this makes set up harder for contributors. You’re pretty much locked-in unless you put in extra effort to get unlocked.↩︎ File size limits: 100MB for GitHub, 100MB for GitLab.com↩︎
Conrad Irwin has an article on the Zed blog “Why LLMs Can't Really Build Software”. He says it boils down to: the distinguishing factor of effective engineers is their ability to build and maintain clear mental models We do this by: Building a mental model of what you want to do Building a mental model of what the code does Reducing the difference between the two It’s kind of an interesting observation about how we (as humans) problem solve vs. how we use LLMs to problem solve: With LLMs, you stuff more and more information into context until it (hopefully) has enough to generate a solution. With your brain, you tweak, revise, or simplify your mental model more and more until the solution presents itself. One adds information — complexity you might even say — to solve a problem. The other eliminates it. You know what that sort of makes me think of? NPM driven development. Solving problems with LLMs is like solving front-end problems with NPM: the “solution” comes through installing more and more things — adding more and more context, i.e. more and more packages. LLM: Problem? Add more context. NPM: Problem? There’s a package for that. Contrast that with a solution that comes through simplification. You don’t add more context. You simplify your mental model so you need less to solve a problem — if you solve it at all, perhaps you eliminate the problem entirely! Rather than install another package to fix what ails you, you simplify your mental model which often eliminates the problem you had in the first place; thus eliminating the need to solve any problem at all, or to add any additional context or complexity (or dependency). As I’m typing this, I’m thinking of that image of the evolution of the Raptor engine, where it evolved in simplicity: This stands in contrast to my working with LLMs, which often wants more and more context from me to get to a generative solution: I know, I know. There’s probably a false equivalence here. This entire post started as a note and I just kept going. This post itself needs further thought and simplification. But that’ll have to come in a subsequent post, otherwise this never gets published lol. Email · Mastodon · Bluesky
Measuring, analyzing, and optimizing loops using Linux perf, Top-Down Microarchitectural Analysis, and the CPU’s micro-op cache
You can just change things! That's the power of open source. But for a lot of people, it might seem like a theoretical power. Can you really change, say, Chrome? Well, yes! We've made a micro fork of Chromium for Omarchy (our new 37signals Linux distribution). Just to add one feature needed for live theming. And now it's released as a package anyone can install on any flavor of Arch using the AUR (Arch User Repository). We got it all done in just four days. From idea, to solicitation, to successful patch, to release, to incorporation. And now it'll be part of the next release of Omarchy. There are no speed limits in open source. Nobody to ask for permission. You have the code, so you can make the change. All you need is skill and will (and maybe, if you need someone else to do it for you, a $5,000 incentive 😄).
Jan Miksovsky lays out his idea for website creation as content transformation. He starts by talking about tools that hide what’s happening “under the hood”: A framework’s marketing usually pretends it is unnecessary for you to understand how its core transformation works — but without that knowledge, you can’t achieve the beautiful range of results you see in the framework’s sample site gallery. This is a great callout. Tools will say, “You don’t have to worry about the details.” But the reality is, you end up worrying about the details — at least to some degree. Why? Because what you want to build is full of personalization. That’s how you differentiate yourself, which means you’re going to need a tool that’s expressive enough to help you. So the question becomes: how hard is it to understand the details that are being intentionally hidden away? A lot of the time those details are not exposed directly. Instead they’re exposed through configuration. But configuration doesn’t really help you learn how something works. I mean, how many of you have learned how typescript works under the hood by using tsconfig.json? As Jan says: Configuration can lead to as many problems as it solves Nailed it. He continues: Configuring software is itself a form of programming, in fact a rather difficult and often baroque form. It can take more data files or code to configure a framework’s transformation than to write a program that directly implements that transformation itself. I’m not a Devops person, but that sounds like Devops in a nutshell right there. (It also perfectly encapsulates my feelings on trying to setup configuration in GitHub Actions.) Jan moves beyond site creation to also discuss site hosting. He gives good reasons for keeping your website’s architecture simple and decoupled from your hosting provider (something I’ve been a long time proponent of): These site hosting platforms typically charge an ongoing subscription fee. (Some offer a free tier that may meet your needs.) The monthly fee may not be large, but it’s forever. Ten years from now you’ll probably still want your content to be publicly available, but will you still be happy paying that monthly fee? If you stop paying, your site disappears. In subscription pricing, any price (however small) is recurring. Stated differently: pricing is forever. Anyhow, it’s a good read from Jan and lays out his vision for why he’s building Web Origami: a tool for that encourages you to understand (and customize) how you transform content to a website. He just launched version 0.4.0 which has some exciting stuff I’m excited to try out further (I’ll have to write about all that later). Email · Mastodon · Bluesky