More from Computer Things
No newsletter next week, I'm teaching a TLA+ workshop. Speaking of which: I spend a lot of time thinking about formal methods (and TLA+ specifically) because it's where the source of almost all my revenue. But I don't share most of the details because 90% of my readers don't use FM and never will. I think it's more interesting to talk about ideas from FM that would be useful to people outside that field. For example, the idea of "property strength" translates to the idea that some tests are stronger than others. Another possible export is how FM approaches nondeterminism. A nondeterministic algorithm is one that, from the same starting conditions, has multiple possible outputs. This is nondeterministic: # Pseudocode def f() { return rand()+1; } When specifying systems, I may not encounter nondeterminism more often than in real systems, but I am definitely more aware of its presence. Modeling nondeterminism is a core part of formal specification. I mentally categorize nondeterminism into five buckets. Caveat, this is specifically about nondeterminism from the perspective of system modeling, not computer science as a whole. If I tried to include stuff on NFAs and amb operations this would be twice as long.1 1. True Randomness Programs that literally make calls to a random function and then use the results. This the simplest type of nondeterminism and one of the most ubiquitous. Most of the time, random isn't truly nondeterministic. Most of the time computer randomness is actually pseudorandom, meaning we seed a deterministic algorithm that behaves "randomly-enough" for some use. You could "lift" a nondeterministic random function into a deterministic one by adding a fixed seed to the starting state. # Python from random import random, seed def f(x): seed(x) return random() >>> f(3) 0.23796462709189137 >>> f(3) 0.23796462709189137 Often we don't do this because the point of randomness is to provide nondeterminism! We deliberately abstract out the starting state of the seed from our program, because it's easier to think about it as locally nondeterministic. (There's also "true" randomness, like using thermal noise as an entropy source, which I think are mainly used for cryptography and seeding PRNGs.) Most formal specification languages don't deal with randomness (though some deal with probability more broadly). Instead, we treat it as a nondeterministic choice: # software if rand > 0.001 then return a else crash # specification either return a or crash This is because we're looking at worst-case scenarios, so it doesn't matter if crash happens 50% of the time or 0.0001% of the time, it's still possible. 2. Concurrency # Pseudocode global x = 1, y = 0; def thread1() { x++; x++; x++; } def thread2() { y := x; } If thread1() and thread2() run sequentially, then (assuming the sequence is fixed) the final value of y is deterministic. If the two functions are started and run simultaneously, then depending on when thread2 executes y can be 1, 2, 3, or 4. Both functions are locally sequential, but running them concurrently leads to global nondeterminism. Concurrency is arguably the most dramatic source of nondeterminism. Small amounts of concurrency lead to huge explosions in the state space. We have words for the specific kinds of nondeterminism caused by concurrency, like "race condition" and "dirty write". Often we think about it as a separate topic from nondeterminism. To some extent it "overshadows" the other kinds: I have a much easier time teaching students about concurrency in models than nondeterminism in models. Many formal specification languages have special syntax/machinery for the concurrent aspects of a system, and generic syntax for other kinds of nondeterminism. In P that's choose. Others don't special-case concurrency, instead representing as it as nondeterministic choices by a global coordinator. This more flexible but also more inconvenient, as you have to implement process-local sequencing code yourself. 3. User Input One of the most famous and influential programming books is The C Programming Language by Kernighan and Ritchie. The first example of a nondeterministic program appears on page 14: For the newsletter readers who get text only emails,2 here's the program: #include /* copy input to output; 1st version */ main() { int c; c = getchar(); while (c != EOF) { putchar(c); c = getchar(); } } Yup, that's nondeterministic. Because the user can enter any string, any call of main() could have any output, meaning the number of possible outcomes is infinity. Okay that seems a little cheap, and I think it's because we tend to think of determinism in terms of how the user experiences the program. Yes, main() has an infinite number of user inputs, but for each input the user will experience only one possible output. It starts to feel more nondeterministic when modeling a long-standing system that's reacting to user input, for example a server that runs a script whenever the user uploads a file. This can be modeled with nondeterminism and concurrency: We have one execution that's the system, and one nondeterministic execution that represents the effects of our user. (One intrusive thought I sometimes have: any "yes/no" dialogue actually has three outcomes: yes, no, or the user getting up and walking away without picking a choice, permanently stalling the execution.) 4. External forces The more general version of "user input": anything where either 1) some part of the execution outcome depends on retrieving external information, or 2) the external world can change some state outside of your system. I call the distinction between internal and external components of the system the world and the machine. Simple examples: code that at some point reads an external temperature sensor. Unrelated code running on a system which quits programs if it gets too hot. API requests to a third party vendor. Code processing files but users can delete files before the script gets to them. Like with PRNGs, some of these cases don't have to be nondeterministic; we can argue that "the temperature" should be a virtual input into the function. Like with PRNGs, we treat it as nondeterministic because it's useful to think in that way. Also, what if the temperature changes between starting a function and reading it? External forces are also a source of nondeterminism as uncertainty. Measurements in the real world often comes with errors, so repeating a measurement twice can give two different answers. Sometimes operations fail for no discernable reason, or for a non-programmatic reason (like something physically blocks the sensor). All of these situations can be modeled in the same way as user input: a concurrent execution making nondeterministic choices. 5. Abstraction This is where nondeterminism in system models and in "real software" differ the most. I said earlier that pseudorandomness is arguably deterministic, but we abstract it into nondeterminism. More generally, nondeterminism hides implementation details of deterministic processes. In one consulting project, we had a machine that received a message, parsed a lot of data from the message, went into a complicated workflow, and then entered one of three states. The final state was totally deterministic on the content of the message, but the actual process of determining that final state took tons and tons of code. None of that mattered at the scope we were modeling, so we abstracted it all away: "on receiving message, nondeterministically enter state A, B, or C." Doing this makes the system easier to model. It also makes the model more sensitive to possible errors. What if the workflow is bugged and sends us to the wrong state? That's already covered by the nondeterministic choice! Nondeterministic abstraction gives us the potential to pick the worst-case scenario for our system, so we can prove it's robust even under those conditions. I know I beat the "nondeterminism as abstraction" drum a whole lot but that's because it's the insight from formal methods I personally value the most, that nondeterminism is a powerful tool to simplify reasoning about things. You can see the same approach in how I approach modeling users and external forces: complex realities black-boxed and simplified into nondeterministic forces on the system. Anyway, I hope this collection of ideas I got from formal methods are useful to my broader readership. Lemme know if it somehow helps you out! I realized after writing this that I already talked wrote an essay about nondeterminism in formal specification just under a year ago. I hope this one covers enough new ground to be interesting! ↩ There is a surprising number of you. ↩
Sorry for missing the newsletter last week! I started writing on Monday as normal, and by Wednesday the piece (about the hierarchy of controls ) was 2000 words and not close to done. So now it'll be a blog post sometime later this month. I also just released a new version of Logic for Programmers! 0.7 adds a bunch of new content (type invariants, modeling access policies, rewrites of the first chapters) but more importantly has new fonts that are more legible than the old ones. Go check it out! For this week's newsletter I want to brainstorm an idea I've been noodling over for a while. Say we have a computational task, like running a simulation or searching a very large graph, and it's taking too long to complete on a computer. There's generally three things that we can do to make it faster: Buy a faster computer ("vertical scaling") Modify the software to use the computer's resources better ("efficiency") Modify the software to use multiple computers ("horizontal scaling") (Splitting single-threaded software across multiple threads/processes is sort of a blend of (2) and (3).) The big benefit of (1) is that we (usually) don't have to make any changes to the software to get a speedup. The downside is that for the past couple of decades computers haven't gotten much faster, except in ways that require recoding (like GPUs and multicore). This means we rely on (2) and (3), and we can do both to a point. I've noticed, though, that horizontal scaling seems to conflict with efficiency. Software optimized to scale well tends to be worse or the N=1 case than software optimized to, um, be optimized. Are there reasons to expect this? It seems reasonable that design goals of software are generally in conflict, purely because exclusively optimizing for one property means making decisions that impede other properties. But is there something in the nature of "efficiency" and "horizontal scalability" that make them especially disjoint? This isn't me trying to explain a fully coherent idea, more me trying to figure this all out to myself. Also I'm probably getting some hardware stuff wrong Amdahl's Law According to Amdahl's Law, the maximum speedup by parallelization is constrained by the proportion of the work that can be parallelized. If 80% of algorithm X is parallelizable, the maximum speedup from horizontal scaling is 5x. If algorithm Y is 25% parallelizable, the maximum speedup is only 1.3x. If you need horizontal scalability, you want to use algorithm X, even if Y is naturally 3x faster. But if Y was 4x faster, you'd prefer it to X. Maximal scalability means finding the optimal balance between baseline speed and parallelizability. Maximal efficiency means just optimizing baseline speed. Coordination Overhead Distributed algorithms require more coordination. To add a list of numbers in parallel via fork-join, we'd do something like this: Split the list into N sublists Fork a new thread/process for sublist Wait for each thread/process to finish Add the sums together. (1), (2), and (3) all add overhead to the algorithm. At the very least, it's extra lines of code to execute, but it can also mean inter-process communication or network hops. Distribution also means you have fewer natural correctness guarantees, so you need more administrative overhead to avoid race conditions. Real world example: Historically CPython has a "global interpreter lock" (GIL). In multithreaded code, only one thread could execute Python code at a time (others could execute C code). The newest version supports disabling the GIL, which comes at a 40% overhead for single-threaded programs. Supposedly the difference is because the specializing adaptor optimization isn't thread-safe yet. The Python team is hoping on getting it down to "only" 10%. Scaling loses shared resources I'd say that intra-machine scaling (multiple threads/processes) feels qualitatively different than inter-machine scaling. Part of that is that intra-machine scaling is "capped" while inter-machine is not. But there's also a difference in what assumptions you can make about shared resources. Starting from the baseline of single-threaded program: Threads have a much harder time sharing CPU caches (you have to manually mess with affinities) Processes have a much harder time sharing RAM (I think you have to use mmap?) Machines can't share cache, RAM, or disk, period. It's a lot easier to solve a problem when the whole thing fits in RAM. But if you split a 50 gb problem across three machines, it doesn't fit in ram by default, even if the machines have 64 gb each. Scaling also means that separate machines can't reuse resources like database connections. Efficiency comes from limits I think the two previous points tie together in the idea that maximal efficiency comes from being able to make assumptions about the system. If we know the exact sequence of computations, we can aim to minimize cache misses. If we don't have to worry about thread-safety, tracking references is dramatically simpler. If we have all of the data in a single database, our query planner has more room to work with. At various tiers of scaling these assumptions are no longer guaranteed and we lose the corresponding optimizations. Sometimes these assumptions are implicit and crop up in odd places. Like if you're working at a scale where you need multiple synced databases, you might want to use UUIDs instead of numbers for keys. But then you lose the assumption "recently inserted rows are close together in the index", which I've read can lead to significant slowdowns. This suggests that if you can find a limit somewhere else, you can get both high horizontal scaling and high efficiency. Supposedly the Tigerbeetle database has both, but that could be because they limit all records to accounts and transfers. This means every record fits in exactly 128 bytes. Does this mean that "assumptions" could be both "assumptions about the computing environment" and "assumptions about the problem"? In the famous essay Scalability! But at what COST, Frank McSherry shows that his single-threaded laptop could outperform 128-node "big data systems" on PageRank and graph connectivity (via label propagation). Afterwards, he discusses how a different algorithm solves graph connectivity even faster: [Union find] is more line of code than label propagation, but it is 10x faster and 100x less embarassing. … The union-find algorithm is fundamentally incompatible with the graph computation approaches Giraph, GraphLab, and GraphX put forward (the so-called “think like a vertex” model). The interesting thing to me is that his alternate makes more "assumptions" than what he's comparing to. He can "assume" a fixed goal and optimize the code for that goal. The "big data systems" are trying to be general purpose compute platforms and have to pick a model that supports the widest range of possible problems. A few years back I wrote clever vs insightful code, I think what I'm trying to say here is that efficiency comes from having insight into your problem and environment. (Last thought to shove in here: to exploit assumptions, you need control. Carefully arranging your data to fit in L1 doesn't matter if your programming language doesn't let you control where things are stored!) Is there a cultural aspect? Maybe there's also a cultural element to this conflict. What if the engineers interested in "efficiency" are different from the engineers interested in "horizontal scaling"? At my first job the data scientists set up a Hadoop cluster for their relatively small dataset, only a few dozen gigabytes or so. One of the senior software engineers saw this and said "big data is stupid." To prove it, he took one of their example queries, wrote a script in Go to compute the same thing, and optimized it to run faster on his machine. At the time I was like "yeah, you're right, big data IS stupid!" But I think now that we both missed something obvious: with the "scalable" solution, the data scientists didn't have to write an optimized script for every single query. Optimizing code is hard, adding more machines is easy! The highest-tier of horizontal scaling is usually something large businesses want, and large businesses like problems that can be solved purely with money. Maximizing efficiency requires a lot of knowledge-intensive human labour, so is less appealing as an investment. Then again, I've seen a lot of work on making the scalable systems more efficient, such as evenly balancing heterogeneous workloads. Maybe in the largest systems intra-machine efficiency is just too small-scale a problem. I'm not sure where this fits in but scaling a volume of tasks conflicts less than scaling individual tasks If you have 1,000 machines and need to crunch one big graph, you probably want the most scalable algorithm. If you instead have 50,000 small graphs, you probably want the most efficient algorithm, which you then run on all 1,000 machines. When we call a problem embarrassingly parallel, we usually mean it's easy to horizontally scale. But it's also one that's easy to make more efficient, because local optimizations don't affect the scaling! Okay that's enough brainstorming for one week. Blog Rec Whenever I think about optimization as a skill, the first article that comes to mind is Mat Klad's Push Ifs Up And Fors Down. I'd never have considered on my own that inlining loops into functions could be such a huge performance win. The blog has a lot of other posts on the nuts-and-bolts of systems languages, optimization, and concurrency.
I occasionally receive emails asking me to look at the writer's new language/library/tool. Sometimes it's in an area I know well, like formal methods. Other times, I'm a complete stranger to the field. Regardless, I'm generally happy to check it out. When starting out, this is the biggest question I'm looking to answer: What does this technology make easy that's normally hard? What justifies me learning and migrating to a new thing as opposed to fighting through my problems with the tools I already know? The new thing has to have some sort of value proposition, which could be something like "better performance" or "more secure". The most universal value and the most direct to show is "takes less time and mental effort to do something". I can't accurately judge two benchmarks, but I can see two demos or code samples and compare which one feels easier to me. Examples Functional programming What drew me originally to functional programming was higher order functions. # Without HOFs out = [] for x in input { if test(x) { out.append(x) } } # With HOFs filter(test, input) We can also compare the easiness of various tasks between examples within the same paradigm. If I know FP via Clojure, what could be appealing about Haskell or F#? For one, null safety is a lot easier when I've got option types. Array Programming Array programming languages like APL or J make certain classes of computation easier. For example, finding all of the indices where two arrays differ. Here it is in Python: x = [1, 4, 2, 3, 4, 1, 0, 0, 0, 4] y = [2, 3, 1, 1, 2, 3, 2, 0, 2, 4] >>> [i for i, (a, b) in enumerate(zip(x, y)) if a == b] [7, 9] And here it is in J: x =: 1 4 2 3 4 1 0 0 0 4 y =: 2 3 1 1 2 3 2 0 2 4 I. x = y 7 9 Not every tool is meant for every programmer, because you might not have any of the problems a tool makes easier. What comes up more often for you: filtering a list or finding all the indices where two lists differ? Statistically speaking, functional programming is more useful to you than array programming. But I have this problem enough to justify learning array programming. LLMs I think a lot of the appeal of LLMs is they make a lot of specialist tasks easy for nonspecialists. One thing I recently did was convert some rst list tables to csv tables. Normally I'd have to do write some tricky parsing and serialization code to automatically convert between the two. With LLMs, it's just Convert the following rst list-table into a csv-table: [table] "Easy" can trump "correct" as a value. The LLM might get some translations wrong, but it's so convenient I'd rather manually review all the translations for errors than write specialized script that is correct 100% of the time. Let's not take this too far A college friend once claimed that he cracked the secret of human behavior: humans do whatever makes them happiest. "What about the martyr who dies for their beliefs?" "Well, in their last second of life they get REALLY happy." We can do the same here, fitting every value proposition into the frame of "easy". CUDA makes it easier to do matrix multiplication. Rust makes it easier to write low-level code without memory bugs. TLA+ makes it easier to find errors in your design. Monads make it easier to sequence computations in a lazy environment. Making everything about "easy" obscures other reason for adopting new things. That whole "simple vs easy" thing Sometimes people think that "simple" is better than "easy", because "simple" is objective and "easy" is subjective. This comes from the famous talk Simple Made Easy. I'm not sure I agree that simple is better or more objective: the speaker claims that polymorphism and typeclasses are "simpler" than conditionals, and I doubt everybody would agree with that. The problem is that "simple" is used to mean both "not complicated" and "not complex". And everybody agrees that "complicated" and "complex" are different, even if they can't agree what the difference is. This idea should probably expanded be expanded into its own newsletter. It's also a lot harder to pitch a technology on being "simpler". Simplicity by itself doesn't make a tool better equipped to solve problems. Simplicity can unlock other benefits, like compositionality or tractability, that provide the actual value. And often that value is in the form of "makes some tasks easier".
I'm making a more focused effort to juggle this year. Mostly boxes, but also classic balls too.1 I've gotten to the point where I can almost consistently do a five-ball cascade, which I thought was the cutoff to being a "good juggler". "Thought" because I now know a "good juggler" is one who can do the five-ball cascade with outside throws. I know this because I can't do the outside five-ball cascade... yet. But it's something I can see myself eventually mastering, unlike the slightly more difficult trick of the five-ball mess, which is impossible for mere mortals like me. In theory there is a spectrum of trick difficulties and skill levels. I could place myself on the axis like this: In practice, there are three tiers: Toddlers Good jugglers who practice hard Genetic freaks and actual wizards And the graph always, always looks like this: This is the jugglers curse, and it's a three-parter: The threshold between you and "good" is the next trick you cannot do. Everything below that level is trivial. Once you've gotten a trick down, you can never go back to not knowing it, to appreciating how difficult it was to learn in the first place.2 Everything above that level is just "impossible". You don't have the knowledge needed to recognize the different tiers.3 So as you get better, the stuff that was impossible becomes differentiable, and you can see that some of it is possible. And everything you learned becomes trivial. So you're never a good juggler until you learn "just one more hard trick". The more you know, the more you know you don't know and the less you know you know. This is supposed to be a software newsletter A monad is a monoid in the category of endofunctors, what's the problem? (src) I think this applies to any difficult topic? Most fields don't have the same stark spectral lines as juggling, but there's still tiers of difficulty to techniques, which get compressed the further in either direction they are from your current level. Like, I'm not good at formal methods. I've written two books on it but I've never mastered a dependently-typed language or a theorem prover. Those are equally hard. And I'm not good at modeling concurrent systems because I don't understand the formal definition of bisimulation and haven't implemented a Raft. Those are also equally hard, in fact exactly as hard as mastering a theorem prover. At the same time, the skills I've already developed are easy: properly using refinement is exactly as easy as writing a wrapped counter. Then I get surprised when I try to explain strong fairness to someone and they just don't get how □◇(ENABLED〈A〉ᵥ) is obviously different from ◇□(ENABLED 〈A〉ᵥ). Juggler's curse! Now I don't actually know if this is actually how everybody experiences expertise or if it's just my particular personality— I was a juggler long before I was a software developer. Then again, I'd argue that lots of people talk about one consequence of the juggler's curse: imposter syndrome. If you constantly think what you know is "trivial" and what you don't know is "impossible", then yeah, you'd start feeling like an imposter at work real quick. I wonder if part of the cause is that a lot of skills you have to learn are invisible. One of my favorite blog posts ever is In Defense of Blub Studies, which argues that software expertise comes through understanding "boring" topics like "what all of the error messages mean" and "how to use a debugger well". Blub is a critical part of expertise and takes a lot of hard work to learn, but it feels like trivia. So looking back on a skill I mastered, I might think it was "easy" because I'm not including all of the blub that I had to learn, too. The takeaway, of course, is that the outside five-ball cascade is objectively the cutoff between good jugglers and toddlers. Rant time: I love cigar box juggling. It's fun, it's creative, it's totally unlike any other kind of juggling. And it's so niche I straight up cannot find anybody in Chicago to practice with. I once went to a juggling convention and was the only person with a cigar box set there. ↩ This particular part of the juggler's curse is also called the curse of knowledge or "expert blindness". ↩ This isn't Dunning-Kruger, because DK says that people think they are better than they actually are, and also may not actually be real. ↩
First of all, I just released version 0.6 of Logic for Programmers! You can get it here. Release notes in the footnote.1 I've been thinking about my next project after the book's done. One idea is to do a survey of new formal specification languages. There's been a lot of new ones in the past few years (P, Quint, etc), plus some old ones I haven't critically examined (SPIN, mcrl2). I'm thinking of a brief overview of each, what's interesting about it, and some examples of the corresponding models. For this I'd want a set of "Rosetta" examples. Rosetta Code is a collection of programming tasks done in different languages. For example, "99 bottles of beer on the wall" in over 300 languages. If I wanted to make a Rosetta Code for specifications of concurrent systems, what examples would I use? What makes a good Rosetta examples? A good Rosetta example would be simple enough to understand and implement but also showcase the differences between the languages. A good example of a Rosetta example is leftpad for code verification. Proving leftpad correct is short in whatever verification language you use. But the proofs themselves are different enough that you can compare what it's like to use code contracts vs with dependent types, etc. A bad Rosetta example is "hello world". While it's good for showing how to run a language, it doesn't clearly differentiate languages. Haskell's "hello world" is almost identical to BASIC's "hello world". Rosetta examples don't have to be flashy, but I want mine to be flashy. Formal specification is niche enough that regardless of my medium, most of my audience hasn't use it and may be skeptical. I always have to be selling. This biases me away from using things like dining philosophers or two-phase commit. So with that in mind, three ideas: 1. Wrapped Counter A counter that starts at 1 and counts to N, after which it wraps around to 1 again. Why it's good This is a good introductory formal specification: it's a minimal possible stateful system without concurrency or nondeterminism. You can use it to talk about the basic structure of a spec, how a verifier works, etc. It also a good way of introducing "boring" semantics, like conditionals and arithmetic, and checking if the language does anything unusual with them. Alloy, for example, defaults to 4-bit signed integers, so you run into problems if you set N too high.2 At the same time, wrapped counters are a common building block of complex systems. Lots of things can be represented this way: N=1 is a flag or blinker, N=3 is a traffic light, N=24 is a clock, etc. The next example is better for showing basic safety and liveness properties, but this will do in a pinch. 2. Threads A counter starts at 0. N threads each, simultaneously try to update the counter. They do this nonatomically: first they read the value of the counter and store that in a thread-local tmp, then they increment tmp, then they set the counter to tmp. The expected behavior is that the final value of the counter will be N. Why it's good The system as described is bugged. If two threads interleave the setlocal commands, one thread update can "clobber" the other and the counter can go backwards. To my surprise, most people do not see this error. So it's a good showcase of how the language actually finds real bugs, and how it can verify fixes. As to actual language topics: the spec covers concurrency and track process-local state. A good spec language should make it possible to adjust N without having to add any new variables. And it "naturally" introduces safety, liveness, and action properties. Finally, the thread spec is endlessly adaptable. I've used variations of it to teach refinement, resource starvation, fairness, livelocks, and hyperproperties. Tweak it a bit and you get dining philosophers. 3. Bounded buffer We have a bounded buffer with maximum length X. We have R reader and W writer processes. Before writing, writers first check if the buffer is full. If full, the writer goes to sleep. Otherwise, the writer wakes up a random sleeping process, then pushes an arbitrary value. Readers work the same way, except they pop from the buffer (and go to sleep if the buffer is empty). The only way for a sleeping process to wake up is if another process successfully performs a read or write. Why it's good This shows process-local nondeterminism (in choosing which sleeping process to wake up), different behavior for different types of processes, and deadlocks: it's possible for every reader and writer to be asleep at the same time. The beautiful thing about this example: the spec can only deadlock if X . This is the kind of bug you'd struggle to debug in real code. An in fact, people did struggle: even when presented with a minimal code sample and told there was a bug, many testing experts couldn't find it. Whereas a formal model of the same code finds the bug in seconds. If a spec language can model the bounded buffer, then it's good enough for production systems. On top of that, the bug happens regardless of what writers actually put in the buffer, so you can abstract that all away. This example can demonstrate that you can leave implementation details out of a spec and still find critical errors. Caveat This is all with a heavy TLA+ bias. I've modeled all of these systems in TLA+ and it works pretty well for them. That is to say, none of these do things TLA+ is bad at: reachability, subtyping, transitive closures, unbound spaces, etc. I imagine that as I cover more specification languages I'll find new Rosettas. Exercises are more compact, answers now show name of exercise in title "Conditionals" chapter has new section on nested conditionals "Crash course" chapter significantly rewritten Starting migrating to use consistently use == for equality and = for definition. Not everything is migrated yet "Beyond Logic" appendix does a slightly better job of covering HOL and constructive logic Addressed various reader feedback Two new exercises ↩ You can change the int size in a model run, so this is more "surprising footgun and inconvenience" than "fundamental limit of the specification language." Something still good to know! ↩
More in programming
Discover how The Epic Programming Principles can transform your web development decision-making, boost your career, and help you build better software.
Denmark has been reaping lots of delayed accolades from its relatively strict immigration policy lately. The Swedes and the Germans in particular are now eager to take inspiration from The Danish Model, given their predicaments. The very same countries that until recently condemned the lack of open-arms/open-border policies they would champion as Moral Superpowers. But even in Denmark, thirty years after the public opposition to mass immigration started getting real political representation, the consequences of culturally-incompatible descendants from MENAPT continue to stress the high-trust societal model. Here are just three major cases that's been covered in the Danish media in 2025 alone: Danish public schools are increasingly struggling with violence and threats against students and teachers, primarily from descendants of MENAPT immigrants. In schools with 30% or more immigrants, violence is twice as prevalent. This is causing a flight to private schools from parents who can afford it (including some Syrians!). Some teachers are quitting the profession as a result, saying "the Quran run the class room". Danish women are increasingly feeling unsafe in the nightlife. The mayor of the country's third largest city, Odense, says he knows why: "It's groups of young men with an immigrant background that's causing it. We might as well be honest about that." But unfortunately, the only suggestion he had to deal with the problem was that "when [the women] meet these groups... they should take a big detour around them". A soccer club from the infamous ghetto area of Vollsmose got national attention because every other team in their league refused to play them. Due to the team's long history of violent assaults and death threats against opposing teams and referees. Bizarrely leading to the situation were the team got to the top of its division because they'd "win" every forfeited match. Problems of this sort have existed in Denmark for well over thirty years. So in a way, none of this should be surprising. But it actually is. Because it shows that long-term assimilation just isn't happening at a scale to tackle these problems. In fact, data shows the opposite: Descendants of MENAPT immigrants are more likely to be violent and troublesome than their parents. That's an explosive point because it blows up the thesis that time will solve these problems. Showing instead that it actually just makes it worse. And then what? This is particularly pertinent in the analysis of Sweden. After the "far right" party of the Swedish Democrats got into government, the new immigrant arrivals have plummeted. But unfortunately, the net share of immigrants is still increasing, in part because of family reunifications, and thus the problems continue. Meaning even if European countries "close the borders", they're still condemned to deal with the damning effects of maladjusted MENAPT immigrant descendants for decades to come. If the intervention stops there. There are no easy answers here. Obviously, if you're in a hole, you should stop digging. And Sweden has done just that. But just because you aren't compounding the problem doesn't mean you've found a way out. Denmark proves to be both a positive example of minimizing the digging while also a cautionary tale that the hole is still there.
One rabbit hole I can never resist going down is finding the original creator of a piece of art. This sounds simple, but it’s often quite difficult. The Internet is a maze of social media accounts that only exist to repost other people’s art, usually with minimal or non-existent attribution. A popular image spawns a thousand copies, each a little further from the original. Signatures get cropped, creators’ names vanish, and we’re left with meaningless phrases like “no copyright intended”, as if that magically absolves someone of artistic theft. Why do I do this? I’ve always been a bit obsessive, a bit completionist. I’ve worked in cultural heritage for eight years, which has made me more aware of copyright and more curious about provenance. And it’s satisfying to know I’ve found the original source, that I can’t dig any further. This takes time. It’s digital detective work, using tools like Google Lens and TinEye, and it’s not always easy or possible. Sometimes the original pops straight to the top, but other times it takes a lot of digging to find the source of an image. So many of us have become accustomed to art as an endless, anonymous stream of “content”. A beautiful image appears in our feed, we give it a quick heart, and scroll on, with no thought for the human who sweated blood and tears to create it. That original artist feels distant, disconected. Whatever benefit they might get from the “exposure” of your work going viral, they don’t get any if their name has been removed first. I came across two examples recently that remind me it’s not just artists who miss out – it’s everyone who enjoys art. I saw a photo of some traffic lights on Tumblr. I love their misty, nighttime aesthetic, the way the bright colours of the lights cut through the fog, the totality of the surrounding darkness. But there was no name – somebody had just uploaded the image to their Tumblr page, it was reblogged a bunch of times, and then it appeared on my dashboard. Who took it? I used Google Lens to find the original photographer: Lucas Zimmerman. Then I discovered it was part of a series. And there was a sequel. I found interviews. Context. Related work. I found all this cool stuff, but only because I knew Lucas’s name. Traffic Lights, by Lucas Zimmerman. Published on Behance.net under a CC BY‑NC 4.0 license, and reposted here in accordance with that license. The second example was a silent video of somebody making tiny chess pieces, just captioned “wow”. It was clearly an edit of another video, with fast-paced cuts to make it accommodate a short attention span – and again with no attribution. This was a little harder to find – I had to search several frames in Google Lens before I found a summary on a Russian website, which had a link to a YouTube video by metalworker and woodworker Левша (Levsha). This video is four times longer than the cut-up version I found, in higher resolution, and with commentary from the original creator. I don’t speak Russian, but YouTube has auto-translated subtitles. Now I know how this amazing set was made, and I have a much better understanding of the materials and techniques involved. (This includes the delightful name Wenge wood, which I’d never heard before.) https://youtube.com/watch?v=QoKdDK3y-mQ A piece of art is more than just a single image or video. It’s a process, a human story. When art is detached from its context and creator, we lose something fundamental. Creators lose the chance to benefit from their work, and we lose the opportunity to engage with it in a deeper way. We can’t learn how it was made, find their other work, or discover how to make similar art for ourselves. The Internet has done many wonderful things for art, but it’s also a machine for endless copyright infringement. It’s not just about generative AI and content scraping – those are serious issues, but this problem existed long before any of us had heard of ChatGPT. It’s a thousand tiny paper cuts. How many of us have used an image from the Internet because it showed up in a search, without a second thought for its creator? When Google Images says “images may be subject to copyright”, how many of us have really thought about what that means? Next time you want to use an image from the web, look to see if it’s shared under a license that allows reuse, and make sure you include the appropriate attribution – and if not, look for a different image. Finding the original creator is hard, sometimes impossible. The Internet is full of shadows: copies of things that went offline years ago. But when I succeed, it feels worth the effort – both for the original artist and myself. When I read a book or watch a TV show, the credits guide me to the artists, and I can appreciate both them and the rest of their work. I wish the Internet was more like that. I wish the platforms we rely on put more emphasis on credit and attribution, and the people behind art. The next time an image catches your eye, take a moment. Who made this? What does it mean? What’s their story? [If the formatting of this post looks odd in your feed reader, visit the original article]
When the iPhone first appeared in 2007, Microsoft was sitting pretty with their mobile strategy. They'd been early to the market with Windows CE, they were fast-following the iPod with their Zune. They also had the dominant operating system, the dominant office package, and control of the enterprise. The future on mobile must have looked so bright! But of course now, we know it wasn't. Steve Ballmer infamously dismissed the iPhone with a chuckle, as he believed all of Microsoft's past glory would guarantee them mobile victory. He wasn't worried at all. He clearly should have been! After reliving that Ballmer moment, it's uncanny to watch this CNBC interview from one year ago with Johny Srouji and John Ternus from Apple on their AI strategy. Ternus even repeats the chuckle!! Exuding the same delusional confidence that lost Ballmer's Microsoft any serious part in the mobile game. But somehow, Apple's problems with AI seem even more dire. Because there's apparently no one steering the ship. Apple has been promising customers a bag of vaporware since last fall, and they're nowhere close to being able to deliver on the shiny concept demos. The ones that were going to make Apple Intelligence worthy of its name, and not just terrible image generation that is years behind the state of the art. Nobody at Apple seems able or courageous enough to face the music: Apple Intelligence sucks. Siri sucks. None of the vaporware is anywhere close to happening. Yet as late as last week, you have Cook promoting the new MacBook Air with "Apple Intelligence". Yikes. This is partly down to the org chart. John Giannandrea is Apple's VP of ML/AI, and he reports directly to Tim Cook. He's been in the seat since 2018. But Cook evidently does not have the product savvy to be able to tell bullshit from benefit, so he keeps giving Giannandrea more rope. Now the fella has hung Apple's reputation on vaporware, promised all iPhone 16 customers something magical that just won't happen, and even spec-bumped all their devices with more RAM for nothing but diminished margins. Ouch. This is what regression to the mean looks like. This is what fiefdom management looks like. This is what having a company run by a logistics guy looks like. Apple needs a leadership reboot, stat. That asterisk is a stain.