Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
55
How Big Things Get Done by Bent Flyvbjerg and Dan Gardner is a fascinating look at why some megaprojects fail so resoundingly and why others succeed under budget and under schedule. It’s an exploration of planning methods, the role of expertise, the value of benchmarking similar projects, and much more. Not directly software engineering related, but very relevant to the work. Also, just well written. “Think slow, act fast” It’s fine for planning to be slow (p17), as long as delivery is fast. Each moment during delivery (the actual execution of a task) is a moment something can go wrong, so condensing that timeline is essential to reduce risk. That is of course, actually condensing the timeline, not just lying about it as discussed in the “Honest Numbers” section below. Planning phase is preferable to delivery phase because (p18) “the costs of iteration are relatively low” during planning. The example of Pixar is used, where they storyboard films up to eight times before moving into...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Irrational Exuberance

Commenting on Notion docs via OpenAI and Zapier.

One of my side quests at work is to get a simple feedback loop going where we can create knowledge bases that comment on Notion documents. I was curious if I could hook this together following these requirements: No custom code hosting Prompt is editable within Notion rather than requiring understanding of Zapier Should be be fairly quickly Ultimately, I was able to get it working. So a quick summary of how it works, some comments on why I don’t particularly like this approach, then some more detailed comments on getting it working. General approach Create a Notion database of prompts. Create a specific prompt for providing feedback on RFCs. Create a Notion database for all RFCs. Add an automation into this database that calls a Zapier webhook. The Zapier webhook does a variety of things that culminate in using the RFC prompt to provide feedback on the specific RFC as a top-level comment in the RFC. Altogether this works fairly well. The challenges with this approach The best thing about this approach is that it actually works, and it works fairly well. However, as we dig into the implementation details, you’ll also see that a series of things are unnaturally difficult with Zapier: Managing rich text in Notion because it requires navigating the blocks datastructure Allowing looping API constructs such as making it straightforward to leave multiple comments on specific blocks rather than a single top-level comment Notion only allows up to 2,000 characters per block, but chunking into multiple blocks is moderately unnatural. In a true Python environment, it would be trivial to translate to and from Markdown using something like md2notion Ultimately, I could only recommend this approach as an initial validation. It’s definitely not the right long-term resting place for this kind of approach. Zapier implementation I already covered the Notion side of the integration, so let’s dig into the Zapier pieces a bit. Overall it had eight steps. I’ve skipped the first step, which was just a default webhook receiver. The second step was retrieving a statically defined Notion page containing the prompt. (In later steps I just use the Notion API directly, which I would do here if I was redoing this, but this worked too. The advantage of the API is that it returns a real JSON object, this doesn’t, probably because I didn’t specify the content-type header or some such.) This is the configuration page of step 2, where I specify the prompt’s page explicitly. ) Probably because I didn’t set content-type, I think I was getting post formatted data here, so I just regular expressed the data out. It’s a bit sloppy, but hey it worked, so there’s that. ) Here is using the Notion API request tool to retrieve the updated RFC (as opposed to the prompt which we already retrieved). ) The API request returns a JSON object that you can navigate without writing regular expressions, so that’s nice. ) Then we send both the prompt as system instructions and the RFC as the user message to Open AI. ) Then pass the response from OpenAI to json.dumps to encode it for being included in an API call. This is mostly solving for newlines being \n rather than literal newlines. ) Then format the response into an API request to add a comment to the document. Anyway, this wasn’t beautiful, and I think you could do a much better job by just doing all of this in Python, but it’s a workable proof of concept.

a week ago 9 votes
Moving from an orchestration-heavy to leadership-heavy management role.

For managers who have spent a long time reporting to a specific leader or working in an organization with well‑understood goals, it’s easy to develop skill gaps without realizing it. Usually this happens because those skills were not particularly important in the environment you grew up in. You may become extremely confident in your existing skills, enter a new organization that requires a different mix of competencies, and promptly fall on your face. There are a few common varieties of this, but the one I want to discuss here is when managers grow up in an organization that operates from top‑down plans (“orchestration‑heavy roles”) and then find themselves in a sufficiently senior role, or in a bottom‑up organization, that expects them to lead rather than orchestrate (“leadership‑heavy roles”). Orchestration versus leadership You can break the components of solving a problem down in a number of ways, and I’m not saying this is the perfect way to do it, but here are six important components of directing a team’s work: Problem discovery: Identifying which problems to work on Problem selection: Aligning with your stakeholders on the problems you’ve identified Solution discovery: Identifying potential solutions to the selected problem Solution selection: Aligning with your stakeholders on the approach you’ve chosen Execution: Implementing the selected solution Ongoing revision: Keeping your team and stakeholders aligned as you evolve the plan In an orchestration‑heavy management role, you might focus only on the second half of these steps. In a leadership‑heavy management role, you work on all six steps. Folks who’ve only worked in orchestration-heavy roles often have no idea that they are expected to perform all of these. So, yes, there’s a skill gap in performing the work, but more importantly there’s an awareness gap that the work actually exists to be done. Here are a few ways you can identify an orchestration‑heavy manager that doesn’t quite understand their current, leadership‑heavy circumstances: Focuses on prioritization as “solution of first resort.” When you’re not allowed to change the problem or the approach, prioritization becomes one of the best tools you have. Accepts problems and solutions as presented. If a stakeholder asks for something, questions are around priority rather than whether the project makes sense to do at all, or suggestions of alternative approaches. There’s no habit of questioning whether the request makes sense—that’s left to the stakeholder or to more senior functional leadership. Focuses on sprint planning and process. With the problem and approach fixed, protecting your team from interruption and disruption is one of your most valuable tools. Operating strictly to a sprint cadence (changing plans only at the start of each sprint) is a powerful technique. All of these things are still valuable in a leadership‑heavy role, but they just aren’t necessarily the most valuable things you could be doing. Operating in a leadership-heavy role There is a steep learning curve for managers who find themselves in a leadership‑heavy role, because it’s a much more expansive role. However, it’s important to realize that there are no senior engineering leadership roles focused solely on orchestration. You either learn this leadership style or you get stuck in mid‑level roles (even in organizations that lean orchestration-heavy). Further, the technology industry generally believes it overinvested in orchestration‑heavy roles in the 2010s. Consequently, companies are eliminating many of those roles and preventing similar roles from being created in the next generation of firms. There’s a pervasive narrative attributing this shift to the increased productivity brought by LLMs, but I’m skeptical of that relationship—this change was already underway before LLMs became prominent. My advice for folks working through the leadership‑heavy role learning curve is: Think of your job’s core loop as four steps: Identify the problems your team should be working on Decide on a destination that solves those problems Explain to your team, stakeholders, and executives the path the team will follow to reach that destination Communicate both data and narratives that provide evidence you’re walking that path successfully If you are not doing these four things, you are not performing your full role, even if people say you do some parts well. Similarly, if you want to get promoted or secure more headcount, those four steps are the path to doing so (I previously discussed this in How to get more headcount). Ask your team for priorities and problems to solve. Mining for bottom‑up projects is a critical part of your role. If you wait only for top‑down and lateral priorities, you aren’t performing the first step of the core loop. It’s easy to miss this expectation—it’s invisible to you but obvious to everyone else, so they don’t realize it needs to be said. If you’re not sure, ask. If your leadership chain is running the core loop for your team, it’s because they lack evidence that you can run it yourself. That’s a bad sign. What’s “business as usual” in an orchestration‑heavy role actually signals a struggling manager in a leadership‑heavy role. Get your projects prioritized by following the core loop. If you have a major problem on your team and wonder why it isn’t getting solved, that’s on you. Leadership‑heavy roles won’t have someone else telling you how to frame your team’s work—unless they think you’re doing a bad job. Picking the right problems and solutions is your highest‑leverage work. No, this is not only your product manager’s job or your tech lead’s—it is your job. It’s also theirs, but leadership overlaps because getting it right is so valuable. Generalizing a bit, your focus now is effectiveness of your team’s work, not efficiency in implementing it. Moving quickly on the wrong problem has no value. Understand your domain and technology in detail. You don’t have to write all the software—but you should have written some simple pull requests to verify you can reason about the codebase. You don’t have to author every product requirement or architecture proposal, but you should write one occasionally to prove you understand the work. If you don’t feel capable of that, that’s okay. But you need to urgently write down steps you’ll take to close that gap and share that plan with your team and manager. They currently see you as not meeting expectations and want to know how you’ll start meeting them. If you think that gap cannot be closed or that it’s unreasonable to expect you to close it, you misunderstand your role. Some organizations will allow you to misunderstand your role for a long time, provided you perform parts of it well, but they rarely promote you under those circumstances—and most won’t tolerate it for senior leaders. Align with your team and cross‑functional stakeholders as much as you align with your executive. If your executive is wrong and you follow them, it is your fault that your team and stakeholders are upset: part of your job is changing your executive’s mind. Yes, it can feel unfair if you’re the type to blame everything on your executive. But it’s still true: expecting your executive to get everything right is a sure way to feel superior without accomplishing much. Now that I’ve shared my perspective, I admit I’m being a bit extreme on purpose—people who don’t pick up on this tend to dispute its validity strongly unless there is no room to debate. There is room for nuance, but if you think my entire point is invalid, I encourage you to have a direct conversation with your manager and team about their expectations and how they feel you’re meeting them.

a week ago 13 votes
Advancing the industry, part two.

I’m turning forty in a few weeks, and there’s a listicle archetype along the lines of “Things I’ve learned in the first half of my career as I turn forty and have now worked roughly twenty years in the technology industry.” How do you write that and make it good? Don’t ask me. I don’t know! As I considered what I would write to summarize my career learnings so far, I kept thinking about updating my post Advancing the industry from a few years ago, where I described using that concept as a north star for my major career decisions. So I wrote about that instead. Recapping the concept Adopting advancing the industry as my framework for career decisions came down to three things: The opportunity to be more intentional: After ~15 years in the industry, I entered a “third stage” of my career where neither financial considerations (1st stage) nor controlling pace to support an infant/toddler (2nd stage) were my highest priorities. Although I might not be working wholly by choice, I had enough flexibility that I could no longer hide behind “maximizing financial return” to guide, or excuse, my decision making. My decade goals kept going stale. Since 2020, I’ve tracked against my decade goals for the 2020s, and annual tracking has been extremely valuable. Part of that value was realizing that I’d made enough progress on several initial goals that they weren’t meaningful to continue measuring. For example, I had written and published three professional books. Publishing another book was not a goal for me. That’s not to say I wouldn’t write another—in fact, I have—but it would serve another goal, not be a goal in itself. As a second example, I set a goal to get twenty people I’ve managed or mentored into VPE/CTO roles running engineering organizations of 50+ people or $100M+ valuation. By the end of last year, ten people met that criteria after four years. Based on that, it seems quite likely I’ll reach twenty within the next six years, and I’d already increased that goal from ten to twenty a few years ago, so I’m not interested in raising it again. “Advancing the industry” offered a solution to both, giving me a broader goal to work toward and reframe my decade and annual goals. That mission still resonates with me: it’s large, broad, and ambiguous enough to support many avenues of progress while feeling achievable within two decades. Though the goal resonates, my thinking about the best mechanism to make progress toward it has shifted over the past few years. Writing from primary to secondary mechanism Roughly a decade ago, I discovered the most effective mechanism I’ve found to advance the industry: learn at work, write blog posts about those learnings, and then aggregate the posts into a book. An Elegant Puzzle was the literal output of that loop. Staff Engineer was a more intentional effort but still the figurative output. My last two books have been more designed than aggregated, but still generally followed this pattern. That said, as I finish up Crafting Engineering Strategy, I think the loop remains valid, but it’s run its course for me personally. There are several reasons: First, what was energizing four books ago feels like a slog today. Making a book is a lot of work, and much of it isn’t fun, so you need to be really excited about the fun parts to balance it out. I used to check my Amazon sales standing every day, thrilled to see it move up and down the charts. Each royalty payment felt magical: something I created that people paid real money for. It’s still cool, but the excitement has tempered over six years. Second, most of my original thinking is already captured in my books or fits shorter-form content like blog posts. I won’t get much incremental leverage from another book. I do continue to get leverage from shorter-form writing and will keep doing it. Finally, as I wrote in Writers who operate, professional writing quality often suffers when writing becomes the “first thing” rather than the “second thing.” Chasing distribution subtly damages quality. I’ve tried hard to keep writing as a second thing, but over the past few years my topic choices have been overly pulled toward filling book chapters instead of what’s most relevant to my day-to-day work. If writing is second, what is first? My current thinking on how to best advance the industry rests on four pillars: Industry leadership and management practices are generally poor. We can improve these by making better practices more accessible (my primary focus in years past but where I’ve seen diminishing returns). We can improve practices by growing the next generation of industry leaders (the rationale behind my decade goal to mentor/manage people into senior roles, but I can’t scale it much through executive roles alone) We can improve practices by modeling them authentically in a very successful company and engineering organization. The fourth pillar is my current focus and likely will remain so for the upcoming decade, though who knows—your focus can change a lot over ten years. Why now? Six years ago, I wouldn’t have believed I could influence my company enough to make this impact, but the head of engineering roles I’ve pursued are exactly those that can. With access to such roles at companies with significant upward trajectories, I have the best laboratory to validate and evolve ways to advance the industry: leading engineering in great companies. Cargo-culting often spreads the most influential ideas—20% time at Google, AI adoption patterns at Spotify, memo culture at Amazon, writing culture at Stripe, etc. Hopefully, developing and documenting ideas with integrity will hopefully be even more effective than publicity-driven cargo-culting. That said, I’d be glad to accept the “mere” success of ideas like 20% time. Returning to the details Most importantly for me personally, focusing on modeling ideas in my own organization aligns “advancing the industry” with something I’ve been craving for a long time now: spending more time in the details of the work. Writing for broad audiences is a process of generalizing, but day-to-day execution succeeds or fails on particulars. I’ve spent much of the past decade translating between the general and the particular, and I’m relieved to return fully to the particulars. Joining Imprint six weeks ago gave me a chance to practice this: I’ve written/merged/deployed six pull requests at work, tweaked our incident tooling to eliminate gaps in handoff with Zapier integrations, written an RFC, debugged a production incident, and generally been two or three layers deeper than at Carta. Part of that is that Imprint’s engineering team is currently much smaller— 40 rather than 350—and another part is that industry expectations in the post-ZIRP reentrenchment and LLM boom pull leaders towards the details. But mostly, it’s just where my energy is pulling me lately.

a week ago 10 votes
What can agents actually do?

There’s a lot of excitement about what AI (specifically the latest wave of LLM-anchored AI) can do, and how AI-first companies are different from the prior generations of companies. There are a lot of important and real opportunities at hand, but I find that many of these conversations occur at such an abstract altitude that they’re a bit too abstract. Sort of like saying that your company could be much better if you merely adopted software. That’s certainly true, but it’s not a particularly helpful claim. This post is an attempt to concisely summarize how AI agents work, apply that summary to a handful of real-world use cases for AI, and make the case that the potential of AI agents is equivalent to the potential of this generation of AI. By the end of this writeup, my hope is that you’ll be well-armed to have a concrete discussion about how LLMs and agents could change the shape of your company. How do agents work? At its core, using an LLM is an API call that includes a prompt. For example, you might call Anthropic’s /v1/message with a prompt: How should I adopt LLMs in my company? That prompt is used to fill the LLM’s context window, which conditions the model to generate certain kinds of responses. This is the first important thing that agents can do: use an LLM to evaluate a context window and get a result. Prompt engineering, or context engineering as it’s being called now, is deciding what to put into the context window to best generate the responses you’re looking for. For example, In-Context Learning (ICL) is one form of context engineering, where you supply a bunch of similar examples before asking a question. If I want to determine if a transaction is fraudulent, then I might supply a bunch of prior transactions and whether they were, or were not, fraudulent as ICL examples. Those examples make generating the correct answer more likely. However, composing the perfect context window is very time intensive, benefiting from techniques like metaprompting to improve your context. Indeed, the human (or automation) creating the initial context might not know enough to do a good job of providing relevant context. For example, if you prompt, Who is going to become the next mayor of New York City?, then you are unsuited to include the answer to that question in your prompt. To do that, you would need to already know the answer, which is why you’re asking the question to begin with! This is where we see model chat experiences from OpenAI and Anthropic use web search to pull in context that you likely don’t have. If you ask a question about the new mayor of New York, they use a tool to retrieve web search results, then add the content of those searches to your context window. This is the second important thing that agents can do: use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response. However, it’s important to clarify how “tool usage” actually works. An LLM does not actually call a tool. (You can skim OpenAI’s function calling documentation if you want to see a specific real-world example of this.) Instead there is a five-step process to calling tools that can be a bit counter-intuitive: The program designer that calls the LLM API must also define a set of tools that the LLM is allowed to suggest using. Every API call to the LLM includes that defined set of tools as options that the LLM is allowed to recommend The response from the API call with defined functions is either: Generated text as any other call to an LLM might provide A recommendation to call a specific tool with a specific set of parameters, e.g. an LLM that knows about a get_weather tool, when prompted about the weather in Paris, might return this response: [{ "type": "function_call", "name": "get_weather", "arguments": "{\"location\":\"Paris, France\"}" }] The program that calls the LLM API then decides whether and how to honor that requested tool use. The program might decide to reject the requested tool because it’s been used too frequently recently (e.g. rate limiting), it might check if the associated user has permission to use the tool (e.g. maybe it’s a premium only tool), it might check if the parameters match the user’s role-based permissions as well (e.g. the user can check weather, but only admin users are allowed to check weather in France). If the program does decide to call the tool, it invokes the tool, then calls the LLM API with the output of the tool appended to the prior call’s context window. The important thing about this loop is that the LLM itself can still only do one interesting thing: taking a context window and returning generated text. It is the broader program, which we can start to call an agent at this point, that calls tools and sends the tools’ output to the LLM to generate more context. What’s magical is that LLMs plus tools start to really improve how you can generate context windows. Instead of having to have a very well-defined initial context window, you can use tools to inject relevant context to improve the initial context. This brings us to the third important thing that agents can do: they manage flow control for tool usage. Let’s think about three different scenarios: Flow control via rules has concrete rules about how tools can be used. Some examples: it might only allow a given tool to be used once in a given workflow (or a usage limit of a tool for each user, etc) it might require that a human-in-the-loop approves parameters over a certain value (e.g. refunds more than $100 require human approval) it might run a generated Python program and return the output to analyze a dataset (or provide error messages if it fails) apply a permission system to tool use, restricting who can use which tools and which parameters a given user is able to use (e.g. you can only retrieve your own personal data) a tool to escalate to a human representative can only be called after five back and forths with the LLM agent Flow control via statistics can use statistics to identify and act on abnormal behavior: if the size of a refund is higher than 99% of other refunds for the order size, you might want to escalate to a human if a user has used a tool more than 99% of other users, then you might want to reject usage for the rest of the day it might escalate to a human representative if tool parameters are more similar to prior parameters that required escalation to a human agent LLMs themselves absolutely cannot be trusted. Anytime you rely on an LLM to enforce something important, you will fail. Using agents to manage flow control is the mechanism that makes it possible to build safe, reliable systems with LLMs. Whenever you find yourself dealing with an unreliable LLM-based system, you can always find a way to shift the complexity to a tool to avoid that issue. As an example, if you want to do algebra with an LLM, the solution is not asking the LLM to directly perform algebra, but instead providing a tool capable of algebra to the LLM, and then relying on the LLM to call that tool with the proper parameters. At this point, there is one final important thing that agents do: they are software programs. This means they can do anything software can do to build better context windows to pass on to LLMs for generation. This is an infinite category of tasks, but generally these include: Building general context to add to context window, sometimes thought of as maintaining memory Initiating a workflow based on an incoming ticket in a ticket tracker, customer support system, etc Periodically initiating workflows at a certain time, such as hourly review of incoming tickets Alright, we’ve now summarized what AI agents can do down to four general capabilities. Recapping a bit, those capabilities are: Use an LLM to evaluate a context window and get a result Use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response Manage flow control for tool usage via rules or statistical analysis Agents are software programs, and can do anything other software programs do Armed with these four capabilities, we’ll be able to think about the ways we can, and cannot, apply AI agents to a number of opportunities. Use Case 1: Customer Support Agent One of the first scenarios that people often talk about deploying AI agents is customer support, so let’s start there. A typical customer support process will have multiple tiers of agents who handle increasingly complex customer problems. So let’s set a goal of taking over the easiest tier first, with the goal of moving up tiers over time as we show impact. Our approach might be: Allow tickets (or support chats) to flow into an AI agent Provide a variety of tools to the agent to support: Retrieving information about the user: recent customer support tickets, account history, account state, and so on Escalating to next tier of customer support Refund a purchase (almost certainly implemented as “refund purchase” referencing a specific purchase by the user, rather than “refund amount” to prevent scenarios where the agent can be fooled into refunding too much) Closing the user account on request Include customer support guidelines in the context window, describe customer problems, map those problems to specific tools that should be used to solve the problems Flow control rules that ensure all calls escalate to a human if not resolved within a certain time period, number of back-and-forth exchanges, if they run into an error in the agent, and so on. These rules should be both rules-based and statistics-based, ensuring that gaps in your rules are neither exploitable nor create a terrible customer experience Review agent-customer interactions for quality control, making improvements to the support guidelines provided to AI agents. Initially you would want to review every interaction, then move to interactions that lead to unusual outcomes (e.g. escalations to human) and some degree of random sampling Review hourly, then daily, and then weekly metrics of agent performance Based on your learnings from the metric reviews, you should set baselines for alerts which require more immediate response. For example, if a new topic comes up frequently, it probably means a serious regression in your product or process, and it requires immediate review rather than periodical review. Note that even when you’ve moved “Customer Support to AI agents”, you still have: a tier of human agents dealing with the most complex calls humans reviewing the periodic performance statistics humans performing quality control on AI agent-customer interactions You absolutely can replace each of those downstream steps (reviewing performance statistics, etc) with its own AI agent, but doing that requires going through the development of an AI product for each of those flows. There is a recursive process here, where over time you can eliminate many human components of your business, in exchange for increased fragility as you have more tiers of complexity. The most interesting part of complex systems isn’t how they work, it’s how they fail, and agent-driven systems will fail occasionally, as all systems do, very much including human-driven ones. Applied with care, the above series of actions will work successfully. However, it’s important to recognize that this is building an entire software pipeline, and then learning to operate that software pipeline in production. These are both very doable things, but they are meaningful work, turning customer support leadership into product managers and requiring an engineering team building and operating the customer support agent. Use Case 2: Triaging incoming bug reports When an incident is raised within your company, or when you receive a bug report, the first problem of the day is determining how severe the issue might be. If it’s potentially quite severe, then you want on-call engineers immediately investigating; if it’s certainly not severe, then you want to triage it in a less urgent process of some sort. It’s interesting to think about how an AI agent might support this triaging workflow. The process might work as follows: Pipe all created incidents and all created tickets to this agent for review. Expose these tools to the agent: Open an incident Retrieve current incidents Retrieve recently created tickets Retrieve production metrics Retrieve deployment logs Retrieve feature flag change logs Toggle known-safe feature flags Propose merging an incident with another for human approval Propose merging a ticket with another ticket for human approval Redundant LLM providers for critical workflows. If the LLM provider’s API is unavailable, retry three times over ten seconds, then resort to using a second model provider (e.g. Anthropic first, if unavailable try OpenAI), and then finally create an incident that the triaging mechanism is unavailable. For critical workflows, we can’t simply assume the APIs will be available, because in practice all major providers seem to have monthly availability issues. Merge duplicates. When a ticket comes in, first check ongoing incidents and recently created tickets for potential duplicates. If there is a probable duplicate, suggest merging the ticket or incident with the existing issue and exit the workflow. Assess impact. If production statistics are severely impacted, or if there is a new kind of error in production, then this is likely an issue that merits quick human review. If it’s high priority, open an incident. If it’s low priority, create a ticket. Propose cause. Now that the incident has been sized, switch to analyzing the potential causes of the incident. Look at the code commits in recent deploys and suggest potential issues that might have caused the current error. In some cases this will be obvious (e.g. spiking errors with a traceback of a line of code that changed recently), and in other cases it will only be proximity in time. Apply known-safe feature flags. Establish an allow list of known safe feature flags that the system is allowed to activate itself. For example, if there are expensive features that are safe to disable, it could be allowed to disable them, e.g. restricting paginating through deeper search results when under load might be a reasonable tradeoff between stability and user experience. Defer to humans. At this point, rely on humans to drive incident, or ticket, remediation to completion. Draft initial incident report. If an incident was opened, the agent should draft an initial incident report including the timeline, related changes, and the human activities taken over the course of the incident. This report should then be finalized by the human involved in the incident. Run incident review. Your existing incident review process should take the incident review and determine how to modify your systems, including the triaging agent, to increase reliability over time. Safeguard to reenable feature flags. Since we now have an agent disabling feature flags, we also need to add a periodic check (agent-driven or otherwise) to reenable the “known safe” feature flags if there isn’t an ongoing incident to avoid accidentally disabling them for long periods of time. This is another AI agent that will absolutely work as long as you treat it as a software product. In this case, engineering is likely the product owner, but it will still require thoughtful iteration to improve its behavior over time. Some of the ongoing validation to make this flow work includes: The role of humans in incident response and review will remain significant, merely aided by this agent. This is especially true in the review process, where an agent cannot solve the review process because it’s about actively learning what to change based on the incident. You can make a reasonable argument that an agent could decide what to change and then hand that specification off to another agent to implement it. Even today, you can easily imagine low risk changes (e.g. a copy change) being automatically added to a ticket for human approval. Doing this for more complex, or riskier changes, is possible but requires an extraordinary degree of care and nuance: it is the polar opposite of the idea of “just add agents and things get easy.” Instead, enabling that sort of automation will require immense care in constraining changes to systems that cannot expose unsafe behavior. For example, one startup I know has represented their domain logic in a domain-specific language (DSL) that can be safely generated by an LLM, and are able to represent many customer-specific features solely through that DSL. Expanding the list of known-safe feature flags to make incidents remediable. To do this widely will require enforcing very specific requirements for how software is developed. Even doing this narrowly will require changes to ensure the known-safe feature flags remain safe as software is developed. Periodically reviewing incident statistics over time to ensure mean-time-to-resolution (MTTR) is decreasing. If the agent is truly working, this should decrease. If the agent isn’t driving a reduction in MTTR, then something is rotten in the details of the implementation. Even a very effective agent doesn’t relieve the responsibility of careful system design. Rather, agents are a multiplier on the quality of your system design: done well, agents can make you significantly more effective. Done poorly, they’ll only amplify your problems even more widely. Do AI Agents Represent Entirety of this Generation of AI? If you accept my definition that AI agents are any combination of LLMs and software, then I think it’s true that there’s not much this generation of AI can express that doesn’t fit this definition. I’d readily accept the argument that LLM is too narrow a term, and that perhaps foundational model would be a better term. My sense is that this is a place where frontier definitions and colloquial usage have deviated a bit. Closing thoughts LLMs and agents are powerful mechanisms. I think they will truly change how products are designed and how products work. An entire generation of software makers, and company executives, are in the midst of learning how these tools work. Software isn’t magic, it’s very logical, but what it can accomplish is magical. The same goes for agents and LLMs. The more we can accelerate that learning curve, the better for our industry.

2 weeks ago 22 votes
What is the competitive advantage of authors in the age of LLMs?

Over the past 19 months, I’ve written Crafting Engineering Strategy, a book on creating engineering strategy. I’ve also been working increasingly with large language models at work. Unsurprisingly, the intersection of those two ideas is a topic that I’ve been thinking about a lot. What, I’ve wondered, is the role of the author, particularly the long-form author, in a world where an increasingly large percentage of writing is intermediated by large language models? One framing I’ve heard somewhat frequently is the view that LLMs are first and foremost a great pillaging of authors’ work. It’s true. They are that. At some point there was a script to let you check which books had been loaded into Meta’s LLaMa, and every book I’d written at that point was included, none of them with my consent. However, I long ago made my peace with plagiarism online, and this strikes me as not particularly different, albeit conducted by larger players. The folks using this writing are going to keep using it beyond the constraints I’d prefer it to be used in, and I’m disinterested in investing my scarce mental energy chasing through digital or legal mazes. Instead, I’ve been thinking about how this transition might go right for authors. My favorite idea that I’ve come up with is the idea of written content as “datapacks” for thinking. Buy someone’s book / “datapack”, then upload it into your LLM, and you can immediately operate almost as if you knew the book’s content. Let’s start with an example. Imagine you want help onboarding as an executive, and you’ve bought a copy of The Engineering Executive’s Primer, you could create a project in Anthropic’s Claude, and upload the LLM-optimized book into your project. Here is what your Claude project might look like. Once you have it set up, you can ask it to help you create your onboarding plan. This guidance makes sense, largely pulled from Your first 90 days as CTO. As always, you can iterate on your initial prompt–including more details you want to include into the plan–along with follow ups to improve the formatting and so on. One interesting thing here, is that I don’t currently have a datapack for The Engineering Executive’s Primer! To solve that, I built one from all my blog posts marked with the “executive” tag. I did that using this script that packages Hugo blog posts, that I generated using this prompt with Claude 3.7 Sonnet. The output of that script gets passed into repomix via: repomix --include "`./scripts/tags.py content executive | paste -d, -s -`" The mess with paste is to turn the multiline output from tags.py into a comma-separated list that repomix knows how to use. This is a really neat pattern, and starts to get at where I see the long-term advantage of writers in the current environment: if you’re a writer and have access to your raw content, you can create a problem-specific datapack to discuss the problem. You can also give that datapack to someone else, or use it to answer their questions. For example, someone asked me a very detailed followup question about a recent blog post. It was a very long question, and I was on a weekend trip. I already had a Claude project setup with the contents of Crafting Engineering Strategy, so I just passed the question verbatim into that project, and sent the answer back to the person who asked it. (I did have to ask Claude to revise the answer once to focus more on what I thought the most important part of the answer was.) This, for what it’s worth, wasn’t a perfect answer, but it’s pretty good. If the question asker had the right datapack, they could have gotten it themselves, without needing me to decide to answer it. However, this post is less worried about the reader than it is about the author. What is our competitive advantage as authors in a future where people are not reading our work? Well, maybe they’re still buying our work in the form of datapacks and such, but it certainly seems likely that book sales, like blog traffic, will be impacted negatively. In trade, it’s now possible for machines to understand our thinking that we’ve recorded down into words over time. There’s a running joke in my executive learning circle that I’ve written a blog post on every topic that comes up, and that’s kind of true. That means that I am on the cusp of the opportunity to uniquely scale myself by connecting “intelligence on demand for a few cents” with the written details of my thinking built over the past two decades of being a writer who operates. The tools that exist today are not quite there yet, although a combination of selling datapacks like the one for Crafting Engineering Strategy and tools like Claude’s projects are a good start. There are many ways the exact details might come together, but I’m optimistic that writing will become more powerful rather than less in this new world, even if the particular formats change. (For what it’s worth, I don’t think human readers are going away either.) If you’re interested in the fully fleshed out version of this idea, starting here you can read the full AI Companion to Crafting Engineering Strategy. The datapack will be available via O’Reilly in the next few months. If you’re an existing O’Reilly author who’s skepical of this idea, don’t worry: I worked with them to sign a custom contract, this usage–as best I understood it, although I am not a lawyer and am not providing legal advice–is outside of the scope of the default contract I signed with my prior book, and presumably most others’ contracts as well.

a month ago 23 votes

More in programming

Building competency is better than therapy

The world is waking to the fact that talk therapy is neither the only nor the best way to cure a garden-variety petite depression. Something many people will encounter at some point in their lives. Studies have shown that exercise, for example, is a more effective treatment than talk therapy (and pharmaceuticals!) when dealing with such episodes. But I'm just as interested in the role building competence can have in warding off the demons. And partly because of this meme: I've talked about it before, but I keep coming back to the fact that it's exactly backwards. That signing up for an educational quest into Linux, history, or motorcycle repair actually is an incredibly effective alternative to therapy! At least for men who'd prefer to feel useful over being listened to, which, in my experience, is most of them. This is why I find it so misguided when people who undertake those quests sell their journey short with self-effacing jibes about how much an unattractive nerd it makes them to care about their hobby. Mihaly Csikszentmihalyi detailed back in 1990 how peak human happiness arrives exactly in these moments of flow when your competence is stretched by a difficult-but-doable challenge. Don't tell me those endorphins don't also help counter the darkness. But it's just as much about the fact that these pursuits of competence usually offer a great opportunity for community as well that seals the deal. I've found time and again that people are starved for the kind of topic-based connections that, say, learning about Linux offers in spades. You're not just learning, you're learning with others. That is a time-tested antidote to depression: Forming and cultivating meaningful human connections. Yes, doing so over the internet isn't as powerful as doing it in person, but it's still powerful. It still offers community, involvement, and plenty of invitation to carry a meaningful burden. Open source nails this trifecta of motivations to a T. There are endless paths of discovery and mastery available. There are tons of fellow travelers with whom to connect and collaborate. And you'll find an unlimited number of meaningful burdens in maintainerships open for the taking. So next time you see that meme, you should cheer that the talk therapy table is empty. Leave it available for the severe, pathological cases that exercise and the pursuit of competence can't cure. Most people just don't need therapy, they need purpose, they need competence, they need exercise, and they need community.

2 days ago 5 votes
Programming Language Escape Hatches

The excellent-but-defunct blog Programming in the 21st Century defines "puzzle languages" as languages were part of the appeal is in figuring out how to express a program idiomatically, like a puzzle. As examples, he lists Haskell, Erlang, and J. All puzzle languages, the author says, have an "escape" out of the puzzle model that is pragmatic but stigmatized. But many mainstream languages have escape hatches, too. Languages have a lot of properties. One of these properties is the language's capabilities, roughly the set of things you can do in the language. Capability is desirable but comes into conflicts with a lot of other desirable properties, like simplicity or efficiency. In particular, reducing the capability of a language means that all remaining programs share more in common, meaning there's more assumptions the compiler and programmer can make ("tractability"). Assumptions are generally used to reason about correctness, but can also be about things like optimization: J's assumption that everything is an array leads to high-performance "special combinations". Rust is the most famous example of mainstream language that trades capability for tractability.1 Rust has a lot of rules designed to prevent common memory errors, like keeping a reference to deallocated memory or modifying memory while something else is reading it. As a consequence, there's a lot of things that cannot be done in (safe) Rust, like interface with an external C function (as it doesn't have these guarantees). To do this, you need to use unsafe Rust, which lets you do additional things forbidden by safe Rust, such as deference a raw pointer. Everybody tells you not to use unsafe unless you absolutely 100% know what you're doing, and possibly not even then. Sounds like an escape hatch to me! To extrapolate, an escape hatch is a feature (either in the language itself or a particular implementation) that deliberately breaks core assumptions about the language in order to add capabilities. This explains both Rust and most of the so-called "puzzle languages": they need escape hatches because they have very strong conceptual models of the language which leads to lots of assumptions about programs. But plenty of "kitchen sink" mainstream languages have escape hatches, too: Some compilers let C++ code embed inline assembly. Languages built on .NET or the JVM has some sort of interop with C# or Java, and many of those languages make assumptions about programs that C#/Java do not. The SQL language has stored procedures as an escape hatch and vendors create a second escape hatch of user-defined functions. Ruby lets you bypass any form of encapsulation with send. Frameworks have escape hatches, too! React has an entire page on them. (Does eval in interpreted languages count as an escape hatch? It feels different, but it does add a lot of capability. Maybe they don't "break assumptions" in the same way?) The problem with escape hatches In all languages with escape hatches, the rule is "use this as carefully and sparingly as possible", to the point where a messy solution without an escape hatch is preferable to a clean solution with one. Breaking a core assumption is a big deal! If the language is operating as if its still true, it's going to do incorrect things. I recently had this problem in a TLA+ contract. TLA+ is a language for modeling complicated systems, and assumes that the model is a self-contained universe. The client wanted to use the TLA+ to test a real system. The model checker should send commands to a test device and check the next states were the same. This is straightforward to set up with the IOExec escape hatch.2 But the model checker assumed that state exploration was pure and it could skip around the state randomly, meaning it would do things like set x = 10, then skip to set x = 1, then skip back to inc x; assert x == 11. Oops! We eventually found workarounds but it took a lot of clever tricks to pull off. I'll probably write up the technique when I'm less busy with The Book. The other problem with escape hatches is the rest of the language is designed around not having said capabilities, meaning it can't support the feature as well as a language designed for them from the start. Even if your escape hatch code is clean, it might not cleanly integrate with the rest of your code. This is why people complain about unsafe Rust so often. It should be noted though that all languages with automatic memory management are trading capability for tractability, too. If you can't deference pointers, you can't deference null pointers. ↩ From the Community Modules (which come default with the VSCode extension). ↩

3 days ago 9 votes
How We Migrated the Parse API From Ruby to Golang (Resurrected)

I wrote a lot of blog posts over my time at Parse, but they all evaporated after Facebook killed the product. Most of them I didn’t care about (there were, ahem, a lot of status updates and “service reliability announcements”, but I was mad about losing this one in particular, a deceptively casual retrospective of […]

3 days ago 10 votes
It's a Beelink, baby

It's only been two months since I discovered the power and joy of this new generation of mini PCs. My journey started out with a Minisforum UM870, which is a lovely machine, but since then, I've come to really appreciate the work of Beelink.  In a crowded market for mini PCs, Beelink stands out with their superior build quality, their class-leading cooling and silent operation, and their use of fully Linux-compatible components (the UM870 shipped with a MediaTek bluetooth/wifi card that doesn't work with Linux!). It's the complete package at three super compelling price points. For $289, you can get the EQR5, which runs an 8-core AMD Zen3 5825U that puts out 1723/6419 in Geekbench, and comes with 16GB RAM and 500GB NVMe. I've run Omarchy on it, and it flies. For me, the main drawback was the lack of a DisplayPort, which kept me from using it with an Apple display, and the fact that the SER8 exists. But if you're on a budget, and you're fine with HDMI only, it's a wild bargain. For $499, you can get the SER8. That's the price-to-performance sweet spot in the range. It uses the excellent 8-core AMD Zen4 8745HS that puts out 2595/12985 in Geekbench (~M4 multi-core numbers!), and runs our HEY test suite with 30,000 assertions almost as fast as an M4 Max! At that price, you get 32GB RAM + 1TB NVMe, as well as a DisplayPort, so it works with both the Apple 5K Studio Display and the Apple 6K XDR Display (you just need the right cable). Main drawback is limited wifi/bluetooth range, but Beelink tells me there's a fix on the way for that. For $929, you can get the SER9 HX370. This is the top dog in this form factor. It uses the incredible 12-core AMD Zen5 HX370 that hits 2990/15611 in Geekbench, and runs our HEY test suite faster than any Apple M chip I've ever tested. The built-in graphics are also very capable. Enough to play a ton of games at 1080p. It also sorted the SER8's current wifi/bluetooth range issue. I ran the SER8 as my main computer for a while, but now I'm using the SER9, and I just about never feel like I need anything more. Yes, the Framework Desktop, with its insane AMD Max 395+ chip, is even more bonkers. It almost cuts the HEY test suite time in half(!), but it's also $1,795, and not yet generally available. (But preorders are open for the ballers!). Whichever machine fits your budget, it's frankly incredible that we have this kind of performance and efficiency available at these prices with all of these Beelinks drawing less than 10 watt at idle and no more than 100 watt at peak! So it's no wonder that Beelink has been selling these units like hotcakes since I started talking about them on X as the ideal, cheap Omarchy desktop computers. It's such a symbiotic relationship. There are a ton of programmers who have become Linux curious, and Beelink offers no-brainer options to give that a try at a bargain. I just love when that happens. The perfect intersection of hardware, software, and timing. That's what we got here. It's a Beelink, baby! (And no, before you ask, I don't get any royalties, there's no affiliate link, and I don't own any shares in Beelink. I just love discovering great technology and seeing people start their Linux journey with an awesome, affordable computer!)

4 days ago 12 votes
How to Network as a Developer (Without Feeling Sleazy)

“One of the comments that sparked this article,” our founder Paul McMahon told me, “was someone saying, ‘I don’t really want to do networking because it seems kind of sleazy. I’m not that kind of person.’” I guess that’s the key misconception people have when they hear ‘networking.’ They think it’s like some used car salesman kind of approach where you have to go and get something out of the person. That’s a serious error, according to Paul, and it worries him that so many developers share that mindset. Instead, Paul considers networking a mix of making new friends, growing a community, and enjoying serendipitous connections that might not bear fruit until years later, but which could prove to be make-or-break career moments. It’s something that you don’t get quick results on and that doesn’t make a difference at all until it does. And it’s just because of the one connection you happen to make at an event you went to once, this rainy Tuesday night when you didn’t really feel like going, but told yourself you have to go—and that can make all the difference. As Paul has previously shared, he can attribute much of his own career success—and, interestingly enough, his peace of mind—to the huge amount of networking he’s done over the years. This is despite the fact that Paul is, in his own words, “not such a talkative person when it comes to small talk or whatever.” Recently I sat down with Paul to discuss exactly how developers are networking “wrong,” and how they can get it right instead. In our conversation, we covered: What networking really is, and why you need to start ASAP Paul’s top tip for anyone who wants to network Advice for networking as an introvert Online vs offline networking—which is more effective? And how to network in Japan, even when you don’t speak Japanese What is networking, really, and why should you start now? “Sometimes,” Paul explained, “people think of hiring fairs and various exhibitions as the way to network, but that’s not networking to me. It’s purely transactional. Job seekers are focused on getting interviews, recruiters on making hires. There’s no chance to make friends or help people outside of your defined role.” Networking is getting to know other people, understanding how maybe you can help them and how they can help you. And sometime down the road, maybe something comes out of it, maybe it doesn’t, but it’s just expanding your connections to people. One reason developers often avoid or delay networking is that, at its core, networking is a long game. Dramatic impacts on your business or career are possible—even probable—but they don’t come to fruition immediately. “A very specific example would be TokyoDev,” said Paul. “One of our initial clients that posted to the list came through networking.” Sounds like a straightforward result? It’s a bit more complicated than that. “There was a Belgian guy, Peter, whom I had known through the Ruby and tech community in Japan for a while,” Paul explained. “We knew each other, and Peter had met another Canadian guy, Jack, who [was] looking to hire a Ruby developer. “So Peter knew about me and TokyoDev and introduced me to Jack, and that was the founder of Degica, who became one of our first clients. . . . And that just happened because I had known Peter through attending events over the years.” Another example is how Paul’s connection to the Ruby community helped him launch Doorkeeper. His participation in Ruby events played a critical role in helping the product succeed, but only because he’d already volunteered at them for years. “Because I knew those people,” he said, “they wanted to support me, and I guess they also saw that I was genuine about this stuff, and I wasn’t participating in these events with some big plan about, ‘If I do this, then they’re going to use my system,’ or whatever. Again, it was people helping each other out.” These delayed and indirect impacts are why Paul thinks you should start networking right now. “You need to do it in advance of when you actually need it,” he said. “People say they’re looking for a job, and they’re told ‘You could network!’ Yeah, that could potentially help, but it’s almost too late.” You should have been networking a couple years ago when you didn’t need to be doing it, because then you’ve already built up the relationships. You can have this karma you’re building over time. . . . Networking has given me a lot of wealth. I don’t mean so much in money per se, but more it’s given me a safety net. “Now I’m confident,” he said, “that if tomorrow TokyoDev disappeared, I could easily find something just through my connections. I don’t think I’ll, at least in Japan, ever have to apply for a job again.” “I think my success with networking is something that anyone can replicate,” Paul went on, “provided they put in the time. I don’t consider myself to be especially skilled in networking, it’s just that I’ve spent over a decade making connections with people.” How to network (the non-sleazy way) Paul has a fair amount of advice for those who want to network in an effective, yet genuine fashion. His first and most important tip:  Be interested in other people. Asking questions rather than delivering your own talking points is Paul’s number one method for forging connections. It also helps avoid those “used car salesman” vibes. “ That’s why, at TokyoDev,” Paul explained, “we typically bar recruiters from attending our developer events. Because there are these kinds of people who are just going around wanting to get business cards from everyone, wanting to get their contact information, wanting to then sell them on something later. It’s quite obvious that they’re like that, and that leads to a bad environment, [if] someone’s trying to sell you on something.” Networking for introverts The other reason Paul likes asking questions is that it helps him to network as an introvert. “That’s actually one of the things that makes networking easier for someone who isn’t naturally so talkative. . . . When you meet new people, there are some standard questions you can ask them, and it’s like a blank slate where you’re filling in the details about this person.” He explained further that going to events and being social can be fun for him, but he doesn’t exactly find it relaxing. “When it comes to talking about something I’m really interested in, I can do it, but I stumble in these social situations. Despite that, I think I have been pretty successful when it comes to networking.” “What has worked well for me,” he went on, “has been putting myself in those situations that require me to do some networking, like going to an event.” Even if you aren’t that proactive, you’re going to meet a couple of people there. You’re making more connections than you would if you stayed home and played video games. The more often you do it, the easier it gets, and not just because of practice: there’s a cumulative effect to making connections. “Say you’re going to an event, and maybe last time you met a couple of people, you could just say ‘Hi’ to those people again. And maybe they are talking with someone else they can introduce you to.” Or, you can be the one making the introductions. “What has also worked well for me, is that I like to introduce other people,” Paul said. It’s always a great feeling when I’m talking to someone at an event, and I hear about what they’re doing or what they’re wanting to do, and then I can introduce someone else who maybe matches that. “And it’s also good for me, then I can just be kind of passive there,” Paul joked. “I don’t have to be out there myself so much, if they’re talking to each other.” His last piece of advice for introverts is somewhat counterintuitive. “Paradoxically,” he told me, “it helps if you’re in some sort of leadership position.” If you’re an introvert, my advice would be one, just do it, but then also look for opportunities for helping in some more formal capacity, whether it’s organizing an event yourself, volunteering at an event . . . [or] making presentations. “Like for me, when I’ve organized a Tokyo Rubyist Meetup,” Paul said, “[then] naturally as the organizer there people come to talk to me and ask me questions. . . . And it’s been similar when I’ve presented at an event, because then people have something that they know that you know something about, and maybe they want to know more about it, and so then they can ask you more questions and lead the conversation that way.” Offline vs online networking When it comes to offline vs online networking, Paul prefers offline. In-person events are great for networking because they create serendipity. You meet people through events you wouldn’t meet otherwise just because you’re in the same physical space as them. Those time and space constraints add pressure to make conversation—in a good way. “It’s natural when you are meeting someone, you ask about what they’re doing, and you make that small connection there. Then, after seeing them at multiple different events, you get a bit of a stronger connection to them.” “Physical events are [also] much more constrained in the number of people, so it’s easier to help people,” he added. “Like with TokyoDev, I can’t help every single person online there, but if someone meets me at the event [and is] asking for advice or something like that, of course I’ve got to answer them. And I have more time for them there, because we’re in the same place at the same time.” As humans, we’re more likely to help other people we have met in person, I think just because that’s how our brains work. That being said, Paul’s also found success with online networking. For example, several TokyoDev contributors—myself included—started working with Paul after interacting with him online. I commented on TokyoDev’s Dungeons and Dragons article, which led to Paul checking my profile and asking to chat about my experience. Scott, our community moderator and editor, joined TokyoDev in a paid position after being active on the TokyoDev Discord. Michelle was also active on the Discord, and Paul initially asked her to write an article for TokyoDev on being a woman software engineer in Japan, before later bringing her onto the team. Key to these results was that they involved no stereotypical “networking” strategies on either side: we all connected simply by playing a role in a shared, online community. Consistent interactions with others, particularly over a longer period of time, builds mutual trust and understanding. Your online presence can help with offline networking. As TokyoDev became bigger and more people knew about me through my blog, it became a lot easier to network with people at events because they’re like, ‘Hey, you’re Paul from TokyoDev. I like that site.’ “It just leads to more opportunities,” he continued. “If you’ve interacted with someone before online, and then you meet them offline, you already do have a bit of a relationship with them, so you’re more likely to have a place to start the conversation. [And] if you’re someone who is struggling with doing in-person networking, the more you can produce or put out there [online], the more opportunities that can lead to.” Networking in Japanese While there are a number of events throughout Japan that are primarily in English, for best networking results, developers should take advantage of Japanese events as well—even if your Japanese isn’t that good. In 2010, Paul created the Tokyo Rubyist Meetup, with the intention of bringing together Japanese and international developers. To ensure it succeeded, he knew he needed more connections to the Japanese development community. “So I started attending a lot of Japanese developer events where I was the only non-Japanese person there,” said Paul. “I didn’t have such great Japanese skills. I couldn’t understand all the presentations. But it still gave me a chance to make lots of connections, both with people who would later present at [Tokyo Rubyist Meetup], but also with other Japanese developers whom I would work with either on my own products or also on other client projects.” I think it helped being kind of a visible minority. People were curious about me, about why I was attending these events. Their curiosity not only helped him network, but also gave him a helping hand when it came to Japanese conversation. “It’s a lot easier for me in Japanese to be asked questions and answer them,” he admitted. But Paul wasn’t just attending those seminars and events in a passive manner. He soon started delivering presentations himself, usually as part of Lightning Talks—again, despite his relatively low level of Japanese. “It doesn’t matter if you do a bad job of it,” he said. Japanese people I think are really receptive to people trying to speak in Japanese and making an effort. I think they’re happy to have someone who isn’t Japanese present, even if they don’t do a great job. He also quickly learned that the most important networking doesn’t take place at the meetup itself. “At least in the past,” he explained, “it was really split . . . [there’s the] seminar time where everyone goes and watches someone present. Everyone’s pretty passive there and there isn’t much conversation going on between attendees. “Then afterwards—and maybe less than half of the people attend—but they go to a restaurant and have drinks after the event. And that’s where all the real socialization happens, and so that’s where I was able to really make the most connections.” That said, Paul noted that the actual “drinking” part of the process has noticeably diminished. “Drinking culture in Japan is changing a lot,” he told me. “I noticed that even when hosting the Tokyo Rubyist Meetup. When we were first hosting it, we [had] an average of 2.5 beers per participant. And more recently, the average is one or less per participant there. “I think there is not so much of an expectation for people to drink a lot. Young Japanese people don’t drink at the same rate, so don’t feel like you actually have to get drunk at these events. You probably shouldn’t,” he added with a laugh. What you should do is be persistent, and patient. It took Paul about a year of very regularly attending events before he felt he was treated as a member of the community. “Literally I was attending more than the typical Japanese person,” he said. “At the peak, there were a couple events per week.” His hard work paid off, though. “I think one thing about Japanese culture,” he said, “is that it’s really group based.” Initially, as foreigners, we see ourselves in the foreign group versus the Japanese group, and there’s kind of a barrier there. But if you can find some other connection, like in my case Ruby, then with these developers I became part of the “Ruby developer group,” and then I felt much more accepted. Eventually he experienced another benefit. “I think it was after a year of volunteering, maybe two years. . . . RubyKaigi, the biggest Ruby conference in Japan and one of the biggest developer conferences in Japan [in general], used Doorkeeper, the event registration system [I created], to manage their event. “That was a big win for us because it showed that we were a serious system to lots of people there. It exposed us to lots of potential users and was one of the things that I think led to us, for a time, being the most popular event registration system among the tech community in Japan.” Based on his experiences, Paul would urge more developers to try attending Japanese dev events. “Because I think a lot of non-Japanese people are still too intimidated to go to these events, even if they have better Japanese ability than I did. “If you look at most of the Japanese developer events happening now, I think the participants are almost exclusively Japanese, but still, that doesn’t need to be the case.” Takeaways What Paul hopes other developers will take away from this article is that networking shouldn’t feel sleazy. Instead, good networking looks like: Being interested in other people. Asking them questions is the easiest way to start a conversation and make a genuine connection. Occasionally just making yourself go to that in-person event. Serendipity can’t happen if you don’t create opportunities for it. Introducing people to each other—it’s a fast and stress-free way to make more connections. Volunteering for events or organizing your own. Supporting offline events with a solid online presence as well. Not being afraid to attend Japanese events, even if your Japanese isn’t good. Above all, Paul stressed, don’t overcomplicate what networking is at its core. Really what networking comes down to is learning about what other people are doing, and how you can help them or how they can help you. Whether you’re online, offline, or doing it in Japanese, that mindset can turn networking from an awkward, sleazy-feeling experience into something you actually enjoy—even on a rainy Tuesday night.

4 days ago 10 votes