More from HTMHell
by Alexis Degryse I think we all know the <datalist> element (and if you don’t, it’s ok). It holds a list of <option> elements, offering suggested choices for its associated input field. It’s not an alternative for the <select> element. A field associated to a <datalist> can still allow any value that is not listed in the <option> elements. Here is a basic example: Pretty cool, isn't it? But what happens if we combine <datalist> with less common field types, like color and date: <label for="favorite-color">What is your favorite color?</label> <input type="color" list="colors-list" id="favorite-color"> <datalist id="colors-list"> <option>#FF0000</option> <option>#FFA500</option> <option>#FFFF00</option> <option>#008000</option> <option>#0000FF</option> <option>#800080</option> <option>#FFC0CB</option> <option>#FFFFFF</option> <option>#000000</option> </datalist> Colors listed in <datalist> are pre-selectable but the color picker is still usable by users if they need to choose a more specific one. <label for="event-choice" class="form-label col-form-label-lg">Choose a historical date</label> <input type="date" list="events" id="event-choice"> <datalist id="events"> <option label="Fall of the Berlin wall">1989-11-09</option> <option label="Maastricht Treaty">1992-02-07</option> <option label="Brexit Referendum">2016-06-23</option> </datalist> Same here: some dates are pre-selectable and the datepicker is still available. Depending on the context, having pre-defined values can possibly speed up the form filling by users. Please, note that <datalist> should be seen as a progressive enhancement because of some points: For Firefox (tested on 133), the <datalist> element is compatible only with textual field types (think about text, url, tel, email, number). There is no support for color, date and time. For Safari (tested on 15.6), it has support for color, but not for date and time. With some screen reader/browser combinations there are issues. For example, suggestions are not announced in Safari and it's not possible to navigate to the datalist with the down arrow key (until you type something matched with suggestions). Refer to a11ysupport.io for more. Find out more datalist experiment by Eiji Kitamura Documentation on MDN
by Schepp Everybody loves fast websites, and everyone despises slow ones even more. Site speed significantly contributes to the overall user experience (UX), determining whether it feels positive or negative. To ensure the fastest possible page load times, it’s crucial to design with performance in mind. However, performance optimization is an art form in itself. While implementing straightforward techniques like file compression or proper cache headers is relatively easy, achieving deeper optimizations can quickly become complex. But what if, instead of solely trying to accelerate the loading process, we triggered it earlier—without the user noticing? One way to achieve this is by prefetching pages the user might navigate to next using <link rel="prefetch"> tags. These tags are typically embedded in your HTML, but they can also be generated dynamically via JavaScript, based on a heuristic of your choice. Alternatively, you can send them as an HTML Link header if you lack access to the HTML code but can modify the server configuration. Browsers will take note of the prefetch directives and fetch the referenced pages as needed. ⚠︎ Caveat: To benefit from this prefetching technique, you must allow the browser to cache pages temporarily using the Cache-Control HTTP header. For example, Cache-Control: max-age=300 would tell the browser to cache a page for five minutes. Without such a header, the browser will discard the pre-fetched resource and fetch it again upon navigation, rendering the prefetch ineffective. In addition to <link rel="prefetch">, Chromium-based browsers support <link rel="prerender">. This tag is essentially a supercharged version of <link rel="prefetch">. Known as "NoState Prefetch," it not only prefetches an HTML page but also scans it for subresources—stylesheets, JavaScript files, images, and fonts referenced via a <link rel="preload" as="font" crossorigin> — loading them as well. The Speculation Rules API A relatively new addition to Chromium browsers is the Speculation Rules API, which offers enhanced prefetching and enables actual prerendering of webpages. It introduces a JSON-based syntax for precisely defining the conditions under which preprocessing should occur. Here’s a simple example of how to use it: <script type="speculationrules"> { "prerender": [{ "urls": ["next.html", "next2.html"] }] } </script> Alternatively, you can place the JSON file on your server and reference it using an HTTP header: Speculation-Rules: "/speculationrules.json". The above list-rule specifies that the browser should prerender the URLs next.html and next2.html so they are ready for instant navigation. The keyword prerender means more than fetching the HTML and subresources—it instructs the browser to fully render the pages in hidden tabs, ready to replace the current page instantly when needed. This makes navigation to these pages feel seamless. Prerendered pages also typically score excellent Core Web Vital metrics. Layout shifts and image loading occur during the hidden prerendering phase, and JavaScript execution happens upfront, ensuring a smooth experience when the user first sees the page. Instead of listing specific URLs, the API also allows for pattern matching using where and href_matches keys: <script type="speculationrules"> { "prerender": [{ "where": { "href_matches": "/*" } }] } </script> For more precise targeting, CSS selectors can be used with the selector_matches key: <script type="speculationrules"> { "prerender": [{ "where": { "selector_matches": ".navigation__link" } }] } </script> These rules, called document-rules, act on link elements as soon as the user triggers a pointerdown or touchstart event, giving the referenced pages a few milliseconds' head start before the actual navigation. If you want the preprocessing to begin even earlier, you can adjust the eagerness setting: <script type="speculationrules"> { "prerender": [{ "where": { "href_matches": "/*" }, "eagerness": "moderate" }] } </script> Eagerness values: immediate: Executes immediately. eager: Currently behaves like immediate but may be refined to sit between immediate and moderate. moderate: Executes after a 200ms hover or on pointerdown for mobile devices. conservative (default): Speculates based on pointer or touch interaction. For even greater flexibility, you can combine prerender and prefetch rules with different eagerness settings: <script type="speculationrules"> { "prerender": [{ "where": { "href_matches": "/*" }, "eagerness": "conservative" }], "prefetch": [{ "where": { "href_matches": "/*" }, "eagerness": "moderate" }] } </script> Limitations and Challenges While the Speculation Rules API is powerful, it comes with some limitations: Browser support: Only Chromium-based browsers support it. Other browsers lack this capability, so treat it as a progressive enhancement. Bandwidth concerns: Over-aggressive settings could waste user bandwidth. Chromium imposes limits to mitigate this: a maximum of 10 prerendered and 50 prefetched pages with immediate or eager eagerness. Server strain: Poorly optimized servers (e.g., no caching, heavy database dependencies) may experience significant load increases due to excessive speculative requests. Compatibility: Prefetching won’t work if a Service Worker is active, though prerendering remains unaffected. Cross-origin prerendering requires explicit opt-in by the target page. Despite these caveats, the Speculation Rules API offers a powerful toolset to significantly enhance perceived performance and improve UX. So go ahead and try them out! I would like to express a big thank you to the Webperf community for always being ready to help with great tips and expertise. For this article, I would like to thank Barry Pollard, Andy Davies, and Noam Rosenthal in particular for providing very valuable background information. ❤️
by Alexander Muzenhardt Introduction Imagine you’re tasked with building a cool new feature for a product. You dive into the work with full energy, and just before the deadline, you manage to finish it. Everyone loves your work, and the feature is set to go live the next day. <button> <i class="icon">📆</i> </button> The Problem You find some good resources explaining that there are people with disabilities who need to be considered in these cases. This is known as accessibility. For example, some individuals have motor impairments and cannot use a mouse. In this particular case, the user is visually impaired and relies on assistive technology like a screen reader, which reads aloud the content of the website or software. The button you implemented doesn’t have any descriptive text, so only the icon is read aloud. In your case, the screen reader says, “Tear-Off Calendar button”. While it describes the appearance of the icon, it doesn’t convey the purpose of the button. This information is meaningless to the user. A button should always describe what action it will trigger when activated. That’s why we need additional descriptive text. The Challenge Okay, you understand the problem now and agree that it should be fixed. However, you don’t want to add visible text to the button. For design and aesthetic reasons, sighted users should only see the icon. Is there a way to keep the button “icon-only” while still providing a meaningful, descriptive text for users who rely on assistive technologies like screen readers? The Solution First, you need to give the button a descriptive name so that a screen reader can announce it. <button> <span>Open Calendar</span> <i class="icon">📆</i> </button> The problem now is that the button’s name becomes visible, which goes against your design guidelines. To prevent this, additional CSS is required. .sr-only { position: absolute; width: 1px; height: 1px; padding: 0; margin: -1px; overflow: hidden; clip: rect(0, 0, 0, 0); white-space: nowrap; border-width: 0; } <button> <span class="sr-only">Open Calendar</span> <i class="icon">📆</i> </button> The CSS ensures that the text inside the span-element is hidden from sighted users but remains readable for screen readers. This approach is so common that well-known CSS libraries like TailwindCSS, Bootstrap, and Material-UI include such a class by default. Although the text of the buttons is not visible anymore, the entire content of the button will be read aloud, including the icon — something you want to avoid. In HTML you are allowed to use specific attributes for accessibility, and in this case, the attribute aria-hidden is what you need. ARIA stands for “Accessible Rich Internet Applications” and is an initiative to make websites and software more accessible to people with disabilities. The attribute aria-hidden hides elements from screen readers so that their content isn’t read. All you need to do is add the attribute aria-hidden with the value “true” to the icon element, which in this case is the “i”-element. <button> <span class="sr-only">Open Calendar</span> <i class="icon" aria-hidden="true">📆</i> </button> Alternative An alternative is the attribute aria-label, which you can assign a descriptive, accessible text to a button without it being visible to sighted users. The purpose of aria-label is to provide a description for interactive elements that lack a visible label or descriptive text. All you need to do is add the attribute aria-label to the button. The attribute aria-hidden and the span-Element can be deleted. <button aria-label="Open Calendar"> <i class="icon">📆</i> </button> With this adjustment, the screen reader will now announce “Open calendar,” completely ignoring the icon. This clearly communicates to the user what the button will do when clicked. Which Option Should You Use? At first glance, the aria-label approach might seem like the smarter choice. It requires less code, reducing the likelihood of errors, and looks cleaner overall, potentially improving code readability. However, the first option is actually the better choice. There are several reasons for this that may not be immediately obvious: Some browsers do not translate aria-label It is difficult to copy aria-label content or otherwise manipulated it as text aria-label content will not show up if styles fail to load These are just a few of the many reasons why you should be cautious when using the aria-label attribute. These points, along with others, are discussed in detail in the excellent article "aria-label is a Code Smell" by Eric Bailey. The First Rule of ARIA Use The “First Rule of ARIA Use” states: If you can use a native HTML element or attribute with the semantics and behavior you require already built in, instead of re-purposing an element and adding an ARIA role, state or property to make it accessible, then do so. Even though the first approach also uses an ARIA attribute, it is more acceptable because aria-hidden only hides an element from screen readers. In contrast, aria-label overrides the standard HTML behavior for handling descriptive names. For this reason, following this principle, aria-hidden is preferable to aria-label in this case. Browser compatibility Both aria-label and aria-hidden are supported by all modern browsers and can be used without concern. Conclusion Ensuring accessibility in web design is more than just a nice-to-have—it’s a necessity. By implementing simple solutions like combining CSS with aria-hidden, you can create a user experience that is both aesthetically pleasing and accessible for everyone, including those who rely on screen readers. While there may be different approaches to solving accessibility challenges, the key is to be mindful of all users' needs. A few small adjustments can make a world of difference, ensuring that your features are truly usable by everyone. Cheers Resources / Links Unicode Character “Tear-Off Calendar” comport Unicode Website mdn web docs aria-label mdn web docs aria-hidden WAI-ARIA Standard Guidlines Tailwind CSS Screen Readers (sr-only) aria-label is a Code Smell First Rule of ARIA Use
by David Luhr The Description List (<dl>) element is useful for many common visual design patterns, but is unfortunately underutilized. It was originally intended to group terms with their definitions, but it's also a great fit for other content that has a key/value structure, such as product attributes or cards that have several supporting details. Developers often mark up these patterns with overused heading or table semantics, or neglect semantics entirely. With the Description List (<dl>) element and its dedicated Description Term (<dt>) and Description Definition (<dd>) elements, we can improve the semantics and accessibility of these design patterns. The <dl> has a unique content model: A parent <dl> containing one or more groups of <dt> and <dd> elements Each term/definition group can have multiple <dt> (Description Term) elements per <dd> (Description Definition) element, or multiple definitions per term The <dl> can optionally accept a single layer of <div> to wrap the <dt> and <dd> elements, which can be useful for styling Examples An initial example would be a simple list of terms and definitions: <dl> <dt>Compression damping</dt> <dd>Controls the rate a spring compresses when it experiences a force</dd> <dt>Rebound damping</dt> <dd>Controls the rate a spring returns to it's extended length after compressing</dd> </dl> A common design pattern is "stat callouts", which feature mini cards of small label text above large numeric values. The <dl> is a great fit for this content: <dl> <div> <dt>Founded</dt> <dd>1988</dd> </div> <div> <dt>Frames built</dt> <dd>8,678</dd> </div> <div> <dt>Race podiums</dt> <dd>212</dd> </div> </dl> And, a final example of a product listing, which has a list of technical specs: <h2>Downhill MTB</h2> <dl> <div> <dt>Front travel:</dt> <dd>160mm</dd> </div> <div> <dt>Wheel size:</dt> <dd>27.5"</dd> </div> <div> <dt>Weight:</dt> <dd>15.2 kg</dd> </div> </dl> Accessibility With this markup in place, common screen readers will convey important semantic and navigational information. In my testing, NVDA on Windows and VoiceOver on MacOS conveyed a list role, the count of list items, your position in the list, and the boundaries of the list. TalkBack on Android only conveyed the term and definition roles of the <dt> and <dd> elements, respectively. If the design doesn't include visible labels, you can at least include them as visually hidden text for assistive technology users. But, I always advocate to visually display them if possible. Wrapping up The <dl> is a versatile element that unfortunately doesn't get much use. In over a decade of coding, I've almost never encountered it in existing codebases. It also doesn't appear anywhere in the top HTML elements lists in the Web Almanac 2024 or an Advanced Web Ranking study of over 11.3 million pages. The next time you're building out a design, look for opportunities where the underrated Description List is a good fit. To go deeper, be sure to check out this article by Ben Myers on the <dl> element.
by Alistair Shepherd Web performance is incredibly important. If you were here for the advent calendar last year you may have already read many of my thoughts on the subject. If not, read Getting started with Web Performance when you’re done here! This year I’m back for more web performance, this time focusing on my favourite HTML snippet for improving the loading performance of web fonts using preloads. This short HTML snippet added to the head of your page, can make a substantial improvement to both perceived and measured performance. <link rel="preload" href="/nova-sans.woff2" as="font" type="font/woff2" crossorigin="anonymous" > Above we have a link element that instructs the browser to preload the /nova-sans.woff2 font. By preloading your critical above-the-fold font we can make a huge impact by reducing potential flashes of unstyled or invisible text and layout shifts caused by font loading, like here in the following video: Recording of a page load illustrating how a font loading late can result in a jarring layout shift How web fonts are loaded To explain how preloading fonts can make such an impact, let’s go through the process of how web fonts are loaded. Font files are downloaded later than you may think, due to a combination of network requests and conservative browser behaviour. In a standard web page, there will be the main HTML document which will include a CSS file using a link element in the head. If you’re using self-hosted custom fonts you’ll have a @font-face rule within your CSS that specifies the font name, the src, and possibly some other font-related properties. In other CSS rules you specify a font-family so elements use your custom font. Once our browser encounters our page it: Starts streaming the HTML document, parsing it as it goes Encounters the link element pointing to our CSS file Starts downloading that CSS file, blocking the render of the page until it’s complete Parses and applies the contents of that file Finds the @font-face rule with our font URL Okay let’s pause here for a moment — It may make sense for step 6 to be “Starts downloading our font file”, however that’s not the case. You see, if a browser downloaded every font within a CSS file when it first encountered them, we could end up loading much more than is needed. We could be specifying fonts for multiple different weights, italics, other character sets/languages, or even multiple different fonts. If we don’t need all these fonts immediately it would be wasteful to download them all, and doing so may slow down higher priority CSS or JS. Instead, the browser is more conservative and simply takes note of the font declaration until it’s explicitly needed. The browser next: Takes a note of our @font-face declarations and their URLs for later Finishes processing CSS and starts rendering the page Discovers a piece of text on the page that needs our font Finally starts downloading our font now it knows it’s needed! So as we can see there’s actually a lot that happens between our HTML file arriving in the browser and our font file being downloaded. This is ideal for lower priority fonts, but for the main or headline font this process can make our custom font appear surprisingly late in the page load. This is what causes the behaviour we saw in the video above, where the page starts rendering but it takes some time before our custom font appears. A waterfall graph showing how our custom ‘lobster.woff2’ font doesn’t start being downloaded until 2 seconds into the page load and isn’t available until after 3 seconds This is an intentional decision by browser makers and spec writers to ensure that pages with lots of fonts aren’t badly impacted by having to load many font files ahead of time. But that doesn’t mean it can’t be optimised! Preloading our font with a link <link rel="preload" href="/nova-sans.woff2" as="font" type="font/woff2" crossorigin="anonymous" > The purpose of my favourite HTML snippet is to inform the browser that this font file will be needed with high priority, before it even has knowledge of it. We’re building our page and know more about how our fonts are used — so we can provide hints to be less conservative! If we start downloading the font as soon as possible then it can be ready ahead of when the browser ‘realises’ it’s needed. Looking back at our list above, by adding a preload we move the start of the font download from step 9 to step 2! Starts streaming the HTML document, parsing it as it goes Encounters our preload and starts downloading our font file in the background Encounters the link element pointing to our CSS file Continues as above Taking a closer look at the snippet, we’re using a link element and rel="preload" to ask the browser to preload a file with the intention of using it early in the page load. Like a CSS file, we provide the URL with the href attribute. We use as="font" and type="font/woff2" to indicate this is a font file in woff2. For modern browsers woff2 is the only format you need as it’s universally supported. Finally there’s crossorigin="anonymous". This comes from the wonderfully transparent and clear world of Cross Origin Resource Sharing. I jest of course, CORS is anything but transparent and clear! For fonts you almost always want crossorigin="anonymous" on your link element, even when the request isn’t cross-origin. Omitting this attribute would mean our preload wouldn’t be used and the file would be requested again. But why? Browser requests can be sent either with or without credentials (cookies, etc), and requests to the same URL with and without credentials are fundamentally different. For a preload to be used by the browser, it needs to match the type of request that the browser would have made normally. By default fonts are always requested without credentials, so we need to add crossorigin="anonymous" to ensure our preload matches a normal font request. By omitting this attribute our preload would not be used and the browser would request the font again. If you’re ever unsure of how your preloads are working, check your browsers’ devtools. In Chrome the Network pane will show a duplicate request, and the Console will log a warning telling you a preload wasn’t used. Screenshot showing the Chrome devtools Console pane, with warnings for an incorrect font preload Result and conclusion By preloading our critical fonts we ensure our browser has the most important fonts available earlier in the page loading process. We can see this by comparing our recording and waterfall charts from earlier: Side-by-side recording of the same page loading in different ways. ‘no-preload’ shows a large layout shift caused by the font switching and finishes loading at 4.4s. ‘preload’ doesn’t have a shift and finishes loading at 3.1s. Side-by-side comparison of two waterfall charts of the same site with font file `lobster.woff2`. For the ‘no-preload’ document the font loads after all other assets and finishes at 3s. The ‘preload’ document shows the font loading much earlier, in parallel with other files and finishing at 2s. As I mentioned in Getting started with Web Performance, it’s best to use preloads sparingly so limit this to your most important font or two. Remember that it’s a balance. By preloading too many resources you run the risk of other high-priority resources such as CSS being slowed down and arriving late. I would recommend preloading just the heading font to start with. With some testing you can see if preloading your main body font is worth it also! With care, font preloads can be a simple and impactful optimisation opportunity and this is why it’s my favourite HTML snippet! This is a great step to improving font loading, and there are plenty of other web font optimisations to try also!
More in programming
Although it looks really good, I have not yet tried the Jujutsu (jj) version control system, mainly because it’s not yet clearly superior to Magit. But I have been following jj discussions with great interest. One of the things that jj has not yet tackled is how to do better than git refs / branches / tags. As I underestand it, jj currently has something like Mercurial bookmarks, which are more like raw git ref plumbing than a high-level porcelain feature. In particular, jj lacks signed or annotated tags, and it doesn’t have branch names that always automatically refer to the tip. This is clearly a temporary state of affairs because jj is still incomplete and under development and these gaps are going to be filled. But the discussions have led me to think about how git’s branches are unsatisfactory, and what could be done to improve them. branch merge rebase squash fork cover letters previous branch workflow questions branch One of the huge improvements in git compared to Subversion was git’s support for merges. Subversion proudly advertised its support for lightweight branches, but a branch is not very useful if you can’t merge it: an un-mergeable branch is not a tool you can use to help with work-in-progress development. The point of this anecdote is to illustrate that rather than trying to make branches better, we should try to make merges better and branches will get better as a consequence. Let’s consider a few common workflows and how git makes them all unsatisfactory in various ways. Skip to cover letters and previous branch below where I eventually get to the point. merge A basic merge workflow is, create a feature branch hack, hack, review, hack, approve merge back to the trunk The main problem is when it comes to the merge, there may be conflicts due to concurrent work on the trunk. Git encourages you to resolve conflicts while creating the merge commit, which tends to bypass the normal review process. Git also gives you an ugly useless canned commit message for merges, that hides what you did to resolve the conflicts. If the feature branch is a linear record of the work then it can be cluttered with commits to address comments from reviewers and to fix mistakes. Some people like an accurate record of the history, but others prefer the repository to contain clean logical changes that will make sense in years to come, keeping the clutter in the code review system. rebase A rebase-oriented workflow deals with the problems of the merge workflow but introduces new problems. Primarily, rebasing is intended to produce a tidy logical commit history. And when a feature branch is rebased onto the trunk before it is merged, a simple fast-forward check makes it trivial to verify that the merge will be clean (whether it uses separate merge commit or directly fast-forwards the trunk). However, it’s hard to compare the state of the feature branch before and after the rebase. The current and previous tips of the branch (amongst other clutter) are recorded in the reflog of the person who did the rebase, but they can’t share their reflog. A force-push erases the previous branch from the server. Git forges sometimes make it possible to compare a branch before and after a rebase, but it’s usually very inconvenient, which makes it hard to see if review comments have been addressed. And a reviewer can’t fetch past versions of the branch from the server to review them locally. You can mitigate these problems by adding commits in --autosquash format, and delay rebasing until just before merge. However that reintroduces the problem of merge conflicts: if the autosquash doesn’t apply cleanly the branch should have another round of review to make sure the conflicts were resolved OK. squash When the trunk consists of a sequence of merge commits, the --first-parent log is very uninformative. A common way to make the history of the trunk more informative, and deal with the problems of cluttered feature branches and poor rebase support, is to squash the feature branch into a single commit on the trunk instead of mergeing. This encourages merge requests to be roughly the size of one commit, which is arguably a good thing. However, it can be uncomfortably confining for larger features, or cause extra busy-work co-ordinating changes across multiple merge requests. And squashed feature branches have the same merge conflict problem as rebase --autosquash. fork Feature branches can’t always be short-lived. In the past I have maintained local hacks that were used in production but were not (not yet?) suitable to submit upstream. I have tried keeping a stack of these local patches on a git branch that gets rebased onto each upstream release. With this setup the problem of reviewing successive versions of a merge request becomes the bigger problem of keeping track of how the stack of patches evolved over longer periods of time. cover letters Cover letters are common in the email patch workflow that predates git, and they are supported by git format-patch. Github and other forges have a webby version of the cover letter: the message that starts off a pull request or merge request. In git, cover letters are second-class citizens: they aren’t stored in the repository. But many of the problems I outlined above have neat solutions if cover letters become first-class citizens, with a Jujutsu twist. A first-class cover letter starts off as a prototype for a merge request, and becomes the eventual merge commit. Instead of unhelpful auto-generated merge commits, you get helpful and informative messages. No extra work is needed since we’re already writing cover letters. Good merge commit messages make good --first-parent logs. The cover letter subject line works as a branch name. No more need to invent filename-compatible branch names! Jujutsu doesn’t make you name branches, giving them random names instead. It shows the subject line of the topmost commit as a reminder of what the branch is for. If there’s an explicit cover letter the subject line will be a better summary of the branch as a whole. I often find the last commit on a branch is some post-feature cleanup, and that kind of commit has a subject line that is never a good summary of its feature branch. As a prototype for the merge commit, the cover letter can contain the resolution of all the merge conflicts in a way that can be shared and reviewed. In Jujutsu, where conflicts are first class, the cover letter commit can contain unresolved conflicts: you don’t have to clean them up when creating the merge, you can leave that job until later. If you can share a prototype of your merge commit, then it becomes possible for your collaborators to review any merge conflicts and how you resolved them. To distinguish a cover letter from a merge commit object, a cover letter object has a “target” header which is a special kind of parent header. A cover letter also has a normal parent commit header that refers to earlier commits in the feature branch. The target is what will become the first parent of the eventual merge commit. previous branch The other ingredient is to add a “previous branch” header, another special kind of parent commit header. The previous branch header refers to an older version of the cover letter and, transitively, an older version of the whole feature branch. Typically the previous branch header will match the last shared version of the branch, i.e. the commit hash of the server’s copy of the feature branch. The previous branch header isn’t changed during normal work on the feature branch. As the branch is revised and rebased, the commit hash of the cover letter will change fairly frequently. These changes are recorded in git’s reflog or jj’s oplog, but not in the “previous branch” chain. You can use the previous branch chain to examine diffs between versions of the feature branch as a whole. If commits have Gerrit-style or jj-style change-IDs then it’s fairly easy to find and compare previous versions of an individual commit. The previous branch header supports interdiff code review, or allows you to retain past iterations of a patch series. workflow Here are some sketchy notes on how these features might work in practice. One way to use cover letters is jj-style, where it’s convenient to edit commits that aren’t at the tip of a branch, and easy to reshuffle commits so that a branch has a deliberate narrative. When you create a new feature branch, it starts off as an empty cover letter with both target and parent pointing at the same commit. Alternatively, you might start a branch ad hoc, and later cap it with a cover letter. If this is a small change and rebase + fast-forward is allowed, you can edit the “cover letter” to contain the whole change. Otherwise, you can hack on the branch any which way. Shuffle the commits that should be part of the merge request so that they occur before the cover letter, and edit the cover letter to summarize the preceding commits. When you first push the branch, there’s (still) no need to give it a name: the server can see that this is (probably) going to be a new merge request because the top commit has a target branch and its change-ID doesn’t match an existing merge request. Also when you push, your client automatically creates a new instance of your cover letter, adding a “previous branch” header to indicate that the old version was shared. The commits on the branch that were pushed are now immutable; rebases and edits affect the new version of the branch. During review there will typically be multiple iterations of the branch to address feedback. The chain of previous branch headers allows reviewers to see how commits were changed to address feedback, interdiff style. The branch can be merged when the target header matches the current trunk and there are no conflicts left to resolve. When the time comes to merge the branch, there are several options: For a merge workflow, the cover letter is used to make a new commit on the trunk, changing the target header into the first parent commit, and dropping the previous branch header. Or, if you like to preserve more history, the previous branch chain can be retained. Or you can drop the cover letter and fast foward the branch on to the trunk. Or you can squash the branch on to the trunk, using the cover letter as the commit message. questions This is a fairly rough idea: I’m sure that some of the details won’t work in practice without a lot of careful work on compatibility and deployability. Do the new commit headers (“target” and “previous branch”) need to be headers? What are the compatibility issues with adding new headers that refer to other commits? How would a server handle a push of an unnamed branch? How could someone else pull a copy of it? How feasible is it to use cover letter subject lines instead of branch names? The previous branch header is doing a similar job to a remote tracking branch. Is there an opportunity to simplify how we keep a local cache of the server state? Despite all that, I think something along these lines could make branches / reviews / reworks / merges less awkward. How you merge should me a matter of your project’s preferred style, without interference from technical limitations that force you to trade off one annoyance against another. There remains a non-technical limitation: I have assumed that contributors are comfortable enough with version control to use a history-editing workflow effectively. I’ve lost all perspective on how hard this is for a newbie to learn; I expect (or hope?) jj makes it much easier than git rebase.
In my first interview out of college I was asked the change counter problem: Given a set of coin denominations, find the minimum number of coins required to make change for a given number. IE for USA coinage and 37 cents, the minimum number is four (quarter, dime, 2 pennies). I implemented the simple greedy algorithm and immediately fell into the trap of the question: the greedy algorithm only works for "well-behaved" denominations. If the coin values were [10, 9, 1], then making 37 cents would take 10 coins in the greedy algorithm but only 4 coins optimally (10+9+9+9). The "smart" answer is to use a dynamic programming algorithm, which I didn't know how to do. So I failed the interview. But you only need dynamic programming if you're writing your own algorithm. It's really easy if you throw it into a constraint solver like MiniZinc and call it a day. int: total; array[int] of int: values = [10, 9, 1]; array[index_set(values)] of var 0..: coins; constraint sum (c in index_set(coins)) (coins[c] * values[c]) == total; solve minimize sum(coins); You can try this online here. It'll give you a prompt to put in total and then give you successively-better solutions: coins = [0, 0, 37]; ---------- coins = [0, 1, 28]; ---------- coins = [0, 2, 19]; ---------- coins = [0, 3, 10]; ---------- coins = [0, 4, 1]; ---------- coins = [1, 3, 0]; ---------- Lots of similar interview questions are this kind of mathematical optimization problem, where we have to find the maximum or minimum of a function corresponding to constraints. They're hard in programming languages because programming languages are too low-level. They are also exactly the problems that constraint solvers were designed to solve. Hard leetcode problems are easy constraint problems.1 Here I'm using MiniZinc, but you could just as easily use Z3 or OR-Tools or whatever your favorite generalized solver is. More examples This was a question in a different interview (which I thankfully passed): Given a list of stock prices through the day, find maximum profit you can get by buying one stock and selling one stock later. It's easy to do in O(n^2) time, or if you are clever, you can do it in O(n). Or you could be not clever at all and just write it as a constraint problem: array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; var int: buy; var int: sell; var int: profit = prices[sell] - prices[buy]; constraint sell > buy; constraint profit > 0; solve maximize profit; Reminder, link to trying it online here. While working at that job, one interview question we tested out was: Given a list, determine if three numbers in that list can be added or subtracted to give 0? This is a satisfaction problem, not a constraint problem: we don't need the "best answer", any answer will do. We eventually decided against it for being too tricky for the engineers we were targeting. But it's not tricky in a solver; include "globals.mzn"; array[int] of int: numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array[index_set(numbers)] of var {0, -1, 1}: choices; constraint sum(n in index_set(numbers)) (numbers[n] * choices[n]) = 0; constraint count(choices, -1) + count(choices, 1) = 3; solve satisfy; Okay, one last one, a problem I saw last year at Chipy AlgoSIG. Basically they pick some leetcode problems and we all do them. I failed to solve this one: Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram. The "proper" solution is a tricky thing involving tracking lots of bookkeeping states, which you can completely bypass by expressing it as constraints: array[int] of int: numbers = [2,1,5,6,2,3]; var 1..length(numbers): x; var 1..length(numbers): dx; var 1..: y; constraint x + dx <= length(numbers); constraint forall (i in x..(x+dx)) (y <= numbers[i]); var int: area = (dx+1)*y; solve maximize area; output ["(\(x)->\(x+dx))*\(y) = \(area)"] There's even a way to automatically visualize the solution (using vis_geost_2d), but I didn't feel like figuring it out in time for the newsletter. Is this better? Now if I actually brought these questions to an interview the interviewee could ruin my day by asking "what's the runtime complexity?" Constraint solvers runtimes are unpredictable and almost always than an ideal bespoke algorithm because they are more expressive, in what I refer to as the capability/tractability tradeoff. But even so, they'll do way better than a bad bespoke algorithm, and I'm not experienced enough in handwriting algorithms to consistently beat a solver. The real advantage of solvers, though, is how well they handle new constraints. Take the stock picking problem above. I can write an O(n²) algorithm in a few minutes and the O(n) algorithm if you give me some time to think. Now change the problem to Maximize the profit by buying and selling up to max_sales stocks, but you can only buy or sell one stock at a given time and you can only hold up to max_hold stocks at a time? That's a way harder problem to write even an inefficient algorithm for! While the constraint problem is only a tiny bit more complicated: include "globals.mzn"; int: max_sales = 3; int: max_hold = 2; array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array [1..max_sales] of var int: buy; array [1..max_sales] of var int: sell; array [index_set(prices)] of var 0..max_hold: stocks_held; var int: profit = sum(s in 1..max_sales) (prices[sell[s]] - prices[buy[s]]); constraint forall (s in 1..max_sales) (sell[s] > buy[s]); constraint profit > 0; constraint forall(i in index_set(prices)) (stocks_held[i] = (count(s in 1..max_sales) (buy[s] <= i) - count(s in 1..max_sales) (sell[s] <= i))); constraint alldifferent(buy ++ sell); solve maximize profit; output ["buy at \(buy)\n", "sell at \(sell)\n", "for \(profit)"]; Most constraint solving examples online are puzzles, like Sudoku or "SEND + MORE = MONEY". Solving leetcode problems would be a more interesting demonstration. And you get more interesting opportunities to teach optimizations, like symmetry breaking. Because my dad will email me if I don't explain this: "leetcode" is slang for "tricky algorithmic interview questions that have little-to-no relevance in the actual job you're interviewing for." It's from leetcode.com. ↩
I’ve long been interested in new and different platforms. I ran Debian on an Alpha back in the late 1990s and was part of the Alpha port team; then I helped bootstrap Debian on amd64. I’ve got somewhere around 8 Raspberry Pi devices in active use right now, and the free NNCPNET Internet email service … Continue reading ARM is great, ARM is terrible (and so is RISC-V) →
Something like a channel changer, for the web. That's what the idea was at first. But it led to a whole new path of discovery that even the site's creators couldn't have predicted. The post Stumbling upon appeared first on The History of the Web.