Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
28
Ramping up fast in any senior product role requires understanding as much context as possible across 3 axes (Market, Product and People). I’ll talk…
over a year ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from PostHog's RSS Feed

7 best free open source LLM observability tools right now

To build LLM-powered apps, developers need to know how users are using their app. LLM observability tools help them do this by capturing LLM provider…

5 months ago 88 votes
What I learned attending my first ever hackathon

We sponsored the recent hackathon hosted by ElevenLabs – and I got to be in the room in San Francisco as it unfolded, and behind-the-scenes during…

6 months ago 63 votes
Did you know AI is answering our community questions?

AI. You may have heard of it. Sure, ChatGPT is pretty cool, but when it comes to AI chatbots that try to replace a human in a product support context…

11 months ago 93 votes
We built an internal tool to generate changelog images for social media

PostHog's marketing team recently created a plan to improve our social media presence. One of the ideas was to share our changelog updates in a…

a year ago 114 votes
How to brand your startup so it isn't boring

The world would be more fun if most startups hadn't undergone a personality vasectomy. Be it the human instinct for conformity, or the inevitable…

a year ago 90 votes

More in programming

If Apple cared about privacy

Defaults matter

2 hours ago 3 votes
ARM is great, ARM is terrible (and so is RISC-V)

I’ve long been interested in new and different platforms. I ran Debian on an Alpha back in the late 1990s and was part of the Alpha port team; then I helped bootstrap Debian on amd64. I’ve got somewhere around 8 Raspberry Pi devices in active use right now, and the free NNCPNET Internet email service … Continue reading ARM is great, ARM is terrible (and so is RISC-V) →

an hour ago 1 votes
Many Hard Leetcode Problems are Easy Constraint Problems

In my first interview out of college I was asked the change counter problem: Given a set of coin denominations, find the minimum number of coins required to make change for a given number. IE for USA coinage and 37 cents, the minimum number is four (quarter, dime, 2 pennies). I implemented the simple greedy algorithm and immediately fell into the trap of the question: the greedy algorithm only works for "well-behaved" denominations. If the coin values were [10, 9, 1], then making 37 cents would take 10 coins in the greedy algorithm but only 4 coins optimally (10+9+9+9). The "smart" answer is to use a dynamic programming algorithm, which I didn't know how to do. So I failed the interview. But you only need dynamic programming if you're writing your own algorithm. It's really easy if you throw it into a constraint solver like MiniZinc and call it a day. int: total; array[int] of int: values = [10, 9, 1]; array[index_set(values)] of var 0..: coins; constraint sum (c in index_set(coins)) (coins[c] * values[c]) == total; solve minimize sum(coins); You can try this online here. It'll give you a prompt to put in total and then give you successively-better solutions: coins = [0, 0, 37]; ---------- coins = [0, 1, 28]; ---------- coins = [0, 2, 19]; ---------- coins = [0, 3, 10]; ---------- coins = [0, 4, 1]; ---------- coins = [1, 3, 0]; ---------- Lots of similar interview questions are this kind of mathematical optimization problem, where we have to find the maximum or minimum of a function corresponding to constraints. They're hard in programming languages because programming languages are too low-level. They are also exactly the problems that constraint solvers were designed to solve. Hard leetcode problems are easy constraint problems.1 Here I'm using MiniZinc, but you could just as easily use Z3 or OR-Tools or whatever your favorite generalized solver is. More examples This was a question in a different interview (which I thankfully passed): Given a list of stock prices through the day, find maximum profit you can get by buying one stock and selling one stock later. It's easy to do in O(n^2) time, or if you are clever, you can do it in O(n). Or you could be not clever at all and just write it as a constraint problem: array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; var int: buy; var int: sell; var int: profit = prices[sell] - prices[buy]; constraint sell > buy; constraint profit > 0; solve maximize profit; Reminder, link to trying it online here. While working at that job, one interview question we tested out was: Given a list, determine if three numbers in that list can be added or subtracted to give 0? This is a satisfaction problem, not a constraint problem: we don't need the "best answer", any answer will do. We eventually decided against it for being too tricky for the engineers we were targeting. But it's not tricky in a solver; include "globals.mzn"; array[int] of int: numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array[index_set(numbers)] of var {0, -1, 1}: choices; constraint sum(n in index_set(numbers)) (numbers[n] * choices[n]) = 0; constraint count(choices, -1) + count(choices, 1) = 3; solve satisfy; Okay, one last one, a problem I saw last year at Chipy AlgoSIG. Basically they pick some leetcode problems and we all do them. I failed to solve this one: Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram. The "proper" solution is a tricky thing involving tracking lots of bookkeeping states, which you can completely bypass by expressing it as constraints: array[int] of int: numbers = [2,1,5,6,2,3]; var 1..length(numbers): x; var 1..length(numbers): dx; var 1..: y; constraint x + dx <= length(numbers); constraint forall (i in x..(x+dx)) (y <= numbers[i]); var int: area = (dx+1)*y; solve maximize area; output ["(\(x)->\(x+dx))*\(y) = \(area)"] There's even a way to automatically visualize the solution (using vis_geost_2d), but I didn't feel like figuring it out in time for the newsletter. Is this better? Now if I actually brought these questions to an interview the interviewee could ruin my day by asking "what's the runtime complexity?" Constraint solvers runtimes are unpredictable and almost always than an ideal bespoke algorithm because they are more expressive, in what I refer to as the capability/tractability tradeoff. But even so, they'll do way better than a bad bespoke algorithm, and I'm not experienced enough in handwriting algorithms to consistently beat a solver. The real advantage of solvers, though, is how well they handle new constraints. Take the stock picking problem above. I can write an O(n²) algorithm in a few minutes and the O(n) algorithm if you give me some time to think. Now change the problem to Maximize the profit by buying and selling up to max_sales stocks, but you can only buy or sell one stock at a given time and you can only hold up to max_hold stocks at a time? That's a way harder problem to write even an inefficient algorithm for! While the constraint problem is only a tiny bit more complicated: include "globals.mzn"; int: max_sales = 3; int: max_hold = 2; array[int] of int: prices = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8]; array [1..max_sales] of var int: buy; array [1..max_sales] of var int: sell; array [index_set(prices)] of var 0..max_hold: stocks_held; var int: profit = sum(s in 1..max_sales) (prices[sell[s]] - prices[buy[s]]); constraint forall (s in 1..max_sales) (sell[s] > buy[s]); constraint profit > 0; constraint forall(i in index_set(prices)) (stocks_held[i] = (count(s in 1..max_sales) (buy[s] <= i) - count(s in 1..max_sales) (sell[s] <= i))); constraint alldifferent(buy ++ sell); solve maximize profit; output ["buy at \(buy)\n", "sell at \(sell)\n", "for \(profit)"]; Most constraint solving examples online are puzzles, like Sudoku or "SEND + MORE = MONEY". Solving leetcode problems would be a more interesting demonstration. And you get more interesting opportunities to teach optimizations, like symmetry breaking. Because my dad will email me if I don't explain this: "leetcode" is slang for "tricky algorithmic interview questions that have little-to-no relevance in the actual job you're interviewing for." It's from leetcode.com. ↩

an hour ago 1 votes
btrfs on a Raspberry Pi

I’m something of a filesystem geek, I guess. I first wrote about ZFS on Linux 14 years ago, and even before I used ZFS, I had used ext2/3/4, jfs, reiserfs, xfs, and no doubt some others. I’ve also used btrfs. I last posted about it in 2014, when I noted it has some advantages over … Continue reading btrfs on a Raspberry Pi →

yesterday 3 votes
Stumbling upon

Something like a channel changer, for the web. That's what the idea was at first. But it led to a whole new path of discovery that even the site's creators couldn't have predicted. The post Stumbling upon appeared first on The History of the Web.

yesterday 7 votes