Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
35
I originally got hooked on programming because I loved the act of creating something from nothing. I soon discovered the deep satisfaction of having others actually use my creations. It didn’t take me long to realize I wanted to build a startup. Startups # Throughout college, I tried working on a bunch of startup ideas, none of which went anywhere. From each I learned another thing not to do (“don’t blindly follow someone just because they have an MBA”). I knew I needed to learn more, to find the right collaborators, before I could hope to be successful on my own. When I met Patrick, John, and Darragh, who were working on a stealth-mode startup called /dev/payments, I knew my search was over. I left school to join their founding team. Over time, my role evolved as I did whatever was needed to help make the company more successful. About six months ago, I found myself in a strangely luxurious place: I’d successfully removed myself as a critical lynchpin for the company and could craft...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Greg Brockman

It's time to become an ML engineer

AI has recently crossed a utility threshold, where cutting-edge models such as GPT-3, Codex, and DALL-E 2 are actually useful and can perform tasks computers cannot do any other way. The act of producing these models is an exploration of a new frontier, with the discovery of unknown capabilities, scientific progress, and incredible product applications as the rewards. And perhaps most exciting for me personally, because the field is fundamentally about creating and studying software systems, great engineers are able to contribute at the same level as great researchers to future progress. “A self-learning AI system.” by DALL-E 2. I first got into software engineering because I wanted to build large-scale systems that could have a direct impact on people’s lives. I attended a math research summer program shortly after I started programming, and my favorite result of the summer was a scheduling app I built for people to book time with the professor. Specifying every detail of how a program should work is hard, and I’d always dreamed of one day putting my effort into hypothetical AI systems that could figure out the details for me. But after taking one look at the state of the art in AI in 2008, I knew it wasn’t going to work any time soon and instead started building infrastructure and product for web startups. DALL-E 2’s rendition of “The two great pillars of the house of artificial intelligence” (which according to my co-founder Ilya Sutskever are great engineering, and great science using this engineering) It’s now almost 15 years later, and the vision of systems which can learn their own solutions to problems is becoming incrementally more real. And perhaps most exciting is the underlying mechanism by which it’s advancing — at OpenAI, and the field generally, precision execution on large-scale models is a force multiplier on AI progress, and we need more people with strong software skills who can deliver these systems. This is because we are building AI models out of unprecedented amounts of compute; these models in turn have unprecedented capabilities, we can discover new phenomena and explore the limits of what these models can and cannot do, and then we use all these learnings to build the next model. “Harnessing the most compute in the known universe” by DALL-E 2 Harnessing this compute requires deep software skills and the right kind of machine learning knowledge. We need to coordinate lots of computers, build software frameworks that allow for hyperoptimization in some cases and flexibility in others, serve these models to customers really fast (which is what I worked on in 2020), and make it possible for a small team to manage a massive system (which is what I work on now). Engineers with no ML background can contribute from the day they join, and the more ML they pick up the more impact they have. The OpenAI environment makes it relatively easy to absorb the ML skills, and indeed, many of OpenAI’s best engineers transferred from other fields. All that being said, AI is not for every software engineer. I’ve seen about a 50-50 success rate of engineers entering this field. The most important determiner is a specific flavor of technical humility. Many dearly-held intuitions from other domains will not apply to ML. The engineers who make the leap successfully are happy to be wrong (since it means they learned something), aren’t afraid not to know something, and don’t push solutions that others resist until they’ve gathered enough intuition to know for sure that it matches the domain. “A beaver who has humbly recently become a machine learning engineer” by DALL-E 2 I believe that AI research is today by far the most impactful place for engineers who want to build useful systems to be working, and I expect this statement to become only more true as progress continues. If you’d like to work on creating the next generation of AI models, email me (gdb@openai.com) with any evidence of exceptional accomplishment in software engineering.

over a year ago 46 votes
How I became a machine learning practitioner

For the first three years of OpenAI, I dreamed of becoming a machine learning expert but made little progress towards that goal. Over the past nine months, I’ve finally made the transition to being a machine learning practitioner. It was hard but not impossible, and I think most people who are good programmers and know (or are willing to learn) the math can do it too. There are many online courses to self-study the technical side, and what turned out to be my biggest blocker was a mental barrier — getting ok with being a beginner again. Studying machine learning during the 2018 holiday season. Early days # A founding principle of OpenAI is that we value research and engineering equally — our goal is to build working systems that solve previously impossible tasks, so we need both. (In fact, our team is comprised of 25% people primarily using software skills, 25% primarily using machine learning skills, and 50% doing a hybrid of the two.) So from day one of OpenAI, my software skills were always in demand, and I kept procrastinating on picking up the machine learning skills I wanted. After helping build OpenAI Gym, I was called to work on Universe. And as Universe was winding down, we decided to start working on Dota — and we needed someone to turn the game into a reinforcement learning environment before any machine learning could begin. Dota # Turning such a complex game into a research environment without source code access was awesome work, and the team’s excitement every time I overcame a new obstacle was deeply validating. I figured out how to break out of the game’s Lua sandbox, LD_PRELOAD in a Go GRPC server to programmatically control the game, incrementally dump the whole game state into a Protobuf, and build a Python library and abstractions with future compatibility for the many different multiagent configurations we might want to use. But I felt half blind. At Stripe, though I gravitated towards infrastructure solutions, I could make changes anywhere in the stack since I knew the product code intimately. In Dota, I was constrained to looking at all problems through a software lens, which sometimes meant I tried to solve hard problems that could be avoided by just doing the machine learning slightly differently. I wanted to be like my teammates Jakub Pachocki and Szymon Sidor, who had made the core breakthrough that powered our Dota bot. They had questioned the common wisdom within OpenAI that reinforcement algorithms didn’t scale. They wrote a distributed reinforcement learning framework called Rapid and scaled it exponentially every two weeks or so, and we never hit a wall with it. I wanted to be able to make critical contributions like that which combined software and machine learning skills. Szymon on the left; Jakub on the right. In July 2017, it looked like I might have my chance. The software infrastructure was stable, and I began work on a machine learning project. My goal was to use behavioral cloning to teach a neural network from human training data. But I wasn’t quite prepared for just how much I would feel like a beginner. I kept being frustrated by small workflow details which made me uncertain if I was making progress, such as not being certain which code a given experiment had used or realizing I needed to compare against a result from last week that I hadn’t properly archived. To make things worse, I kept discovering small bugs that had been corrupting my results the whole time. I didn’t feel confident in my work, but to make it worse, other people did. People would mention how how hard behavioral cloning from human data is. I always made sure to correct them by pointing out that I was a newbie, and this probably said more about my abilities than the problem. It all briefly felt worth it when my code made it into the bot, as Jie Tang used it as the starting point for creep blocking which he then fine-tuned with reinforcement learning. But soon Jie figured out how to get better results without using my code, and I had nothing to show for my efforts. I never tried machine learning on the Dota project again. Time out # After we lost two games in The International in 2018, most observers thought we’d topped out what our approach could do. But we knew from our metrics that we were right on the edge of success and mostly needed more training. This meant the demands on my time had relented, and in November 2018, I felt I had an opening to take a gamble with three months of my time. Team members in high spirits after losing our first game at The International. I learn best when I have something specific in mind to build. I decided to try building a chatbot. I started self-studying the curriculum we developed for our Fellows program, selecting only the NLP-relevant modules. For example, I wrote and trained an LSTM language model and then a Transformer-based one. I also read up on topics like information theory and read many papers, poring over each line until I fully absorbed it. It was slow going, but this time I expected it. I didn’t experience flow state. I was reminded of how I’d felt when I just started programming, and I kept thinking of how many years it had taken to achieve a feeling of mastery. I honestly wasn’t confident that I would ever become good at machine learning. But I kept pushing because… well, honestly because I didn’t want to be constrained to only understanding one part of my projects. I wanted to see the whole picture clearly. My personal life was also an important factor in keeping me going. I’d begun a relationship with someone who made me feel it was ok if I failed. I spent our first holiday season together beating my head against the machine learning wall, but she was there with me no matter how many planned activities it meant skipping. One important conceptual step was overcoming a barrier I’d been too timid to do with Dota: make substantive changes to someone else’s machine learning code. I fine-tuned GPT-1 on chat datasets I’d found, and made a small change to add my own naive sampling code. But it became so painfully slow as I tried to generate longer messages that my frustration overwhelmed my fear, and I implemented GPU caching — a change which touched the entire model. I had to try a few times, throwing out my changes as they exceeded the complexity I could hold in my head. By the time I got it working a few days later, I realized I’d learned something that I would have previously thought impossible: I now understood how the whole model was put together, down to small stylistic details like how the codebase elegantly handles TensorFlow variable scopes. Retooled # After three months of self-study, I felt ready to work on an actual project. This was also the first point where I felt I could benefit from the many experts we have at OpenAI, and I was delighted when Jakub and my co-founder Ilya Sutskever agreed to advise me. Ilya singing karaoke at our company offsite. We started to get very exciting results, and Jakub and Szymon joined the project full-time. I feel proud every time I see a commit from them in the machine learning codebase I’d started. I’m starting to feel competent, though I haven’t yet achieved mastery. I’m seeing this reflected in the number of hours I can motivate myself to spend focused on doing machine learning work — I’m now around 75% of the number of coding hours from where I’ve been historically. But for the first time, I feel that I’m on trajectory. At first, I was overwhelmed by the seemingly endless stream of new machine learning concepts. Within the first six months, I realized that I could make progress without constantly learning entirely new primitives. I still need to get more experience with many skills, such as initializing a network or setting a learning rate schedule, but now the work feels incremental rather than potentially impossible. From our Fellows and Scholars programs, I’d known that software engineers with solid fundamentals in linear algebra and probability can become machine learning engineers with just a few months of self study. But somehow I’d convinced myself that I was the exception and couldn’t learn. But I was wrong — even embedded in the middle of OpenAI, I couldn’t make the transition because I was unwilling to become a beginner again. You’re probably not an exception either. If you’d like to become a deep learning practitioner, you can. You need to give yourself the space and time to fail. If you learn from enough failures, you’ll succeed — and it’ll probably take much less time than you expect. At some point, it does become important to surround yourself by existing experts. And that is one place where I’m incredibly lucky. If you’re a great software engineer who reaches that point, keep in mind there’s a way you can be surrounded by the same people as I am — apply to OpenAI!

over a year ago 46 votes
OpenAI Five Finals Intro

The text of my speech introducing OpenAI Five at Saturday’s OpenAI Five Finals event, where our AI beat the world champions at Dota 2: “Welcome everyone. This is an exciting day. First, this is an historic moment: this will be the first time that an AI has even attempted to play the world champions in an esports game. OG is simply on another level relative to other teams we’ve played. So we don’t know what’s going to happen, but win or lose, these will be games to remember. And you know, OpenAI Five and DeepMind’s very impressive StarCraft bot This event is really about something bigger than who wins or loses: letting people connect with the strange, exotic, yet tangible intelligences produced by today’s rapidly progressing AI technology. We’re all used to computer programs which have been meticulously coded by a human programmer. Do one thing that the human didn’t anticipate, and the program will break. We think of our computers as unthinking machines which can’t innovate, can’t be creative, can’t truly understand. But to play Dota, you need to do all these things. So we needed to do something different. OpenAI Five is powered by deep reinforcement learning — meaning that we didn’t code in how to play Dota. We instead coded in the how to learn. Five tries out random actions, and learns from a reward or punishment. In its 10 months of training, its experienced 45,000 years of Dota gameplay against itself. The playstyle it has devised are its own — they are truly creative and dreamed up by our computer — and so from Five’s perspective, today’s games are going to its first encounter with an alien intelligence (no offense to OG!). The beauty of this technology is that our learning code doesn’t know it’s meant for Dota. That makes it general purpose with amazing potential to benefit our lives. Last year we used it to control a robotic hand that no one could program. And we expect to see similar technology in new interactive systems, from elderly care robots to creative assistants to other systems we can’t dream of yet. This is the final public event for OpenAI Five, but we expect to do other Dota projects in the future. I want to thank the incredible team at OpenAI, everyone who worked directly on this project or cheered us on. I want to thank those who have supported the project: Valve, dozens of test teams, today’s casters, and yes, even all the commenters on Reddit. And I want to give massive thanks today to our fantastic guests OG who have taken time out of their tournament schedule to be here today. I hope you enjoy the show — and just to keep things in perspective, no matter how surprising the AIs are to us, know that we’re even more surprising to them!”

over a year ago 43 votes
The OpenAI Mission

This post is co-written by Greg Brockman (left) and Ilya Sutskever (right). We’ve been working on OpenAI for the past three years. Our mission is to ensure that artificial general intelligence (AGI) — which we define as automated systems that outperform humans at most economically valuable work — benefits all of humanity. Today we announced a new legal structure for OpenAI, called OpenAI LP, to better pursue this mission — in particular to raise more capital as we attempt to build safe AGI and distribute its benefits. In this post, we’d like to help others understand how we think about this mission. Why now? # The founding vision of the field of AI was “… to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it”, and to eventually build a machine that thinks — that is, an AGI. But over the past 60 years, progress stalled multiple times and people started thinking of AI as a field that wouldn’t deliver. Since 2012, deep learning has generated sustained progress in many domains using a small simple set of tools, which have the following properties: Generality: deep learning tools are simple, yet they apply to many domains, such as vision, speech recognition, speech synthesis, text synthesis, image synthesis, translation, robotics, and game playing. Competence: today, the only way to get competitive results on most “AI-type problems” is through the use of deep learning techniques. Scalability: good old fashioned AI was able to produce exciting demos, but its techniques had difficulty scaling to harder problems. But in deep learning, more computational power and more data leads to better results. It has also proven easy (if costly) to rapidly increase the amount of compute productively used by deep learning experiments. The rapid progress of useful deep learning systems with these properties makes us feel that it’s reasonable to start taking AGI seriously — though it’s hard to know how far away it is. The impact of AGI # Just like a computer today, an AGI will be applicable to a wide variety of tasks — and just like computers in 1900 or the Internet in 1950, it’s hard to describe (or even predict) the kind of impact AGI will have. But to get a sense, imagine a computer system which can do the following activities with minimal human input: Make a scientific breakthrough at the level of the best scientists Productize that breakthrough and build a company, with a skill comparable to the best entrepreneurs Rapidly grow that company and manage it at large scale The upside of such a computer system is enormous — for an illustrative example, an AGI following the pattern above could produce amazing healthcare applications deployed at scale. Imagine a network of AGI-powered computerized doctors that accumulates a superhuman amount of clinical experience, allowing it to produce excellent diagnoses, deeply understand the nuanced effect of various treatments in lots of conditions, and greatly reduce the human error factor of healthcare — all for very low cost and accessible to everyone. Risks # We already live in a world with entities that surpass individual human abilities, which we call companies. If working on the right goals in the right way, companies can produce huge amounts of value and improve lives. But if not properly checked, they can also cause damage, like logging companies that cut down rain forests, cigarette companies that get children smoking, or scams like Ponzi schemes. We think of AGI as being like a hyper-effective company, with commensurate benefits and risks. We are concerned about AGI pursuing goals misspecified by its operator, malicious humans subverting a deployed AGI, or an out-of-control economy that grows without resulting in improvements to human lives. And because it’s hard to change powerful systems — just think about how hard it’s been to add security to the Internet — once they’ve been deployed, we think it’s important to address AGI’s safety and policy risks before it is created. OpenAI’s mission is to figure out how to get the benefits of AGI and mitigate the risks — and make sure those benefits accrue to all of humanity. The future is uncertain, and there are many ways in which our predictions could be incorrect. But if they turn out to be right, this mission will be critical. If you’d like to work on this mission, we’re hiring! About us # Ilya: I’ve been working on deep learning for 16 years. It was fun to witness deep learning transform from being a marginalized subfield of AI into one the most important family of scientific advances in recent history. As deep learning was getting more powerful, I realized that AGI might become a reality on a timescale relevant to my lifetime. And given AGI’s massive upside and significant risks, I want to maximize the positive parts of this impact and minimize the negative. Greg: Technology causes change, both positive and negative. AGI is the most extreme kind of technology that humans will ever create, with extreme upside and downside. I work on OpenAI because making AGI go well is the most important problem I can imagine contributing towards. Today I try to spend most of my time on technical work, and also work to spark better public discourse about AGI and related topics.

over a year ago 42 votes
OpenAI Five intro

The text of my speech introducing OpenAI Five at yesterday’s Benchmark event: “We’re here to watch humans and AI play Dota, but today’s match will have implications for the world. OpenAI’s mission is to ensure that when we can build machines as smart as humans, they will benefit all of humanity. That means both pushing the limits of what’s possible and ensuring future systems are safe and aligned with human values. We work on Dota because it is a great training ground for AI: it is one of the most complicated games, involving teamwork, real time strategy, imperfect information, and an astronomical combinations of heroes and items. We can’t program a solution, so Five learns by playing 180 years of games against itself every day — sadly that means we can’t learn from the players up here unless they played for a few decades. It’s powered by 5 artificial neural networks which act like an artificial intuition. Five’s neural networks are about the size of the brain of an ant — still far from what we all have in our heads. One year ago, we beat the world’s top professionals at 1v1 Dota. People thought 5v5 would be totally out of reach. 1v1 requires mechanics and positioning; people did not expect the same system to learn strategy. But our AI system can learn problems it was not even designed to solve — we just used the same technology to learn to control a robotic hand — something no one could program. The computational power for OpenAI Five would have been impractical two years ago. But the availability of computation for AI has been increasing exponentially, doubling every 3.5 months since 2012, and one day technologies like this will become commonplace. Feel free to root for either team. Either way, humanity wins.” I’m very excited to see where the upcoming months of OpenAI Five development and testing take us.

over a year ago 43 votes

More in programming

AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

22 hours ago 2 votes
An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

12 hours ago 2 votes
That boolean should probably be something else

One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩

yesterday 3 votes
Implementation of optimized vector of strings in C++ in SumatraPDF

SumatraPDF is a fast, small, open-source PDF reader for Windows, written in C++. This article describes how I implemented StrVec class for efficiently storing multiple strings. Much ado about the strings Strings are among the most used types in most programs. Arrays of strings are also used often. I count ~80 uses of StrVec in SumatraPDF code. This article describes how I implemented an optimized array of strings in SumatraPDF C++ code . No STL for you Why not use std::vector<std::string>? In SumatraPDF I don’t use STL. I don’t use std::string, I don’t use std::vector. For me it’s a symbol of my individuality, and my belief in personal freedom. As described here, minimum size of std::string on 64-bit machines is 32 bytes for msvc / gcc and 24 bytes for short strings (15 chars for msvc / gcc, 22 chars for clang). For longer strings we have more overhead: 32⁄24 bytes for the header memory allocator overhead allocator metadata padding due to rounding allocations to at least 16 bytes There’s also std::vector overhead: for fast appends (push()) std::vectorimplementations over-allocated space Longer strings are allocated at random addresses so they can be spread out in memory. That is bad for cache locality and that often cause more slowness than executing lots of instructions. Design and implementation of StrVec StrVec (vector of strings) solves all of the above: per-string overhead of only 8 bytes strings are laid out next to each other in memory StrVec High level design of StrVec: backing memory is allocated in singly-linked pages similar to std::vector, we start with small page and increase the size of the page. This strikes a balance between speed of accessing a string at random index and wasted space unlike std::vector we don’t reallocate memory (most of the time). That saves memory copy when re-allocating backing space Here’s all there is to StrVec: struct StrVec { StrVecPage* first = nullptr; int nextPageSize = 256; int size = 0; } size is a cached number of strings. It could be calculated by summing the size in all StrVecPages. nextPageSize is the size of the next StrVecPage. Most array implementation increase the size of next allocation by 1.4x - 2x. I went with the following progression: 256 bytes, 1k, 4k, 16k, 32k and I cap it at 64k. I don’t have data behind those numbers, they feel right. Bigger page wastes more space. Smaller page makes random access slower because to find N-th string we need to traverse linked list of StrVecPage. nextPageSize is exposed to allow the caller to optimize use. E.g. if it expects lots of strings, it could set nextPageSize to a large number. StrVecPage Most of the implementation is in StrVecPage. The big idea here is: we allocate a block of memory strings are allocated from the end of memory block at the beginning of the memory block we build and index of strings. For each string we have: u32 size u32 offset of the string within memory block, counting from the beginning of the block The layout of memory block is: StrVecPage struct { size u32; offset u32 } [] … not yet used space strings This is StrVecPage: struct StrVecPage { struct StrVecPage* next; int pageSize; int nStrings; char* currEnd; } next is for linked list of pages. Since pages can have various sizes we need to record pageSize. nStrings is number of strings in the page and currEnd points to the end of free space within page. Implementing operations Appending a string Appending a string at the end is most common operation. To append a string: we calculate how much memory inside a page it’ll need: str::Len(string) + 1 + sizeof(u32) + sizeof(u32). +1 is for 0-termination for compatibility with C APIs that take char*, and 2xu32 for size and offset. If we have enough space in last page, we add size and offset at the end of index and append a string from the end i.e. `currEnd - (str::Len(string) + 1). If there is not enough space in last page, we allocate new page We can calculate how much space we have left with: int indexEntrySize = sizeof(u32) + sizeof(u32); // size + offset char* indexEnd = (char*)pageStart + sizeof(StrVecPage) + nStrings*indexEntrySize int nBytesFree = (int)(currEnd - indexEnd) Removing a string Removing a string is easy because it doesn’t require moving memory inside StrVecPage. We do nStrings-- and move index values of strings after the removed string. I don’t bother freeing the string memory within a page. It’s possible but complicated enough I decided to skip it. You can compact StrVec to remove all overhead. If you do not care about preserving order of strings after removal, I haveRemoveAtFast() which uses a trick: instead of copying memory of all index values after removed string, I copy a single index from the end into a slot of the string being removed. Replacing a string or inserting in the middle Replacing a string or inserting a string in the middle is more complicated because there might not be enough space in the page for the string. When there is enough space, it’s as simple as append. When there is not enough space, I re-use the compacting capability: I compact all existing pages into a single page with extra space for the string and some extra space as an optimization for multiple inserts. Iteration A random access requires traversing a linked list. I think it’s still fast because typically there aren’t many pages and we only need to look at a single nStrings value. After compaction to a single page, random access is as fast as it could ever be. C++ iterator is optimized for sequential access: struct iterator { const StrVec* v; int idx; // perf: cache page, idxInPage from prev iteration int idxInPage; StrVecPage* page; } We cache the current state of iteration as page and idxInPage. To advance to next string we advance idxInPage. If it exceeds nStrings, we advance to page->next. Optimized search Finding a string is as optimized as it could be without a hash table. Typically to compare char* strings you need to call str::Eq(s, s2) for every string you compare it to. That is a function call and it has to touch s2 memory. That is bad for performance because it blows the cache. In StrVec I calculate length of the string to find once and then traverse the size / offset index. Only when size is different I have to compare the strings. Most of the time we just look at offset / size in L1 cache, which is very fast. Compacting If you know that you’ll not be adding more strings to StrVec you can compact all pages into a single page with no overhead of empty space. It also speeds up random access because we don’t have multiple pages to traverse to find the item and a given index. Representing a nullptr char* Even though I have a string class, I mostly use char* in SumatraPDF code. In that world empty string and nullptr are 2 different things. To allow storing nullptr strings in StrVec (and not turning them into empty strings on the way out) I use a trick: a special u32 value kNullOffset represents nullptr. StrVec is a string pool allocator In C++ you have to track the lifetime of each object: you allocate with malloc() or new when you no longer need to object, you call free() or delete However, the lifetime of allocations is often tied together. For example in SumatraPDF an opened document is represented by a class. Many allocations done to construct that object last exactly as long as the object. The idea of a pool allocator is that instead of tracking the lifetime of each allocation, you have a single allocator. You allocate objects with the same lifetime from that allocator and you free them with a single call. StrVec is a string pool allocator: all strings stored in StrVec have the same lifetime. Testing In general I don’t advocate writing a lot of tests. However, low-level, tricky functionality like StrVec deserves decent test coverage to ensure basic functionality works and to exercise code for corner cases. I have 360 lines of tests for ~700 lines of of implementation. Potential tweaks and optimization When designing and implementing data structures, tradeoffs are aplenty. Interleaving index and strings I’m not sure if it would be faster but instead of storing size and offset at the beginning of the page and strings at the end, we could store size / string sequentially from the beginning. It would remove the need for u32 of offset but would make random access slower. Varint encoding of size and offset Most strings are short, under 127 chars. Most offsets are under 16k. If we stored size and offset as variable length integers, we would probably bring down average per-string overhead from 8 bytes to ~4 bytes. Implicit size When strings are stored sequentially size is implicit as difference between offset of the string and offset of next string. Not storing size would make insert and set operations more complicated and costly: we would have to compact and arrange strings in order every time. Storing index separately We could store index of size / offset in a separate vector and use pages to only allocate string data. This would simplify insert and set operations. With current design if we run out of space inside a page, we have to re-arrange memory. When offset is stored outside of the page, it can refer to any page so insert and set could be as simple as append. The evolution of StrVec The design described here is a second implementation of StrVec. The one before was simply a combination of str::Str (my std::string) for allocating all strings and Vec<u32> (my std::vector) for storing offset index. It had some flaws: appending a string could re-allocate memory within str::Str. The caller couldn’t store returned char* pointer because it could be invalidated. As a result the API was akward and potentially confusing: I was returning offset of the string so the string was str::Str.Data() + offset. The new StrVec doesn’t re-allocate on Append, only (potentially) on InsertAt and SetAt. The most common case is append-only which allows the caller to store the returned char* pointers. Before implementing StrVec I used Vec<char*>. Vec is my version of std::vector and Vec<char*> would just store pointer to individually allocated strings. Cost vs. benefit I’m a pragmatist: I want to achieve the most with the least amount of code, the least amount of time and effort. While it might seem that I’m re-implementing things willy-nilly, I’m actually very mindful of the cost of writing code. Writing software is a balance between effort and resulting quality. One of the biggest reasons SumatraPDF so popular is that it’s fast and small. That’s an important aspect of software quality. When you double click on a PDF file in an explorer, SumatraPDF starts instantly. You can’t say that about many similar programs and about other software in general. Keeping SumatraPDF small and fast is an ongoing focus and it does take effort. StrVec.cpp is only 705 lines of code. It took me several days to complete. Maybe 2 days to write the code and then some time here and there to fix the bugs. That being said, I didn’t start with this StrVec. For many years I used obvious Vec<char*>. Then I implemented somewhat optimized StrVec. And a few years after that I implemented this ultra-optimized version. References SumatraPDF is a small, fast, multi-format (PDF/eBook/Comic Book and more), open-source reader for Windows. The implementation described here: StrVec.cpp, StrVec.h, StrVec_ut.cpp By the time you read this, the implementation could have been improved.

yesterday 1 votes
The parental dead end of consent morality

Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot.  This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!

2 days ago 2 votes