Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
30
I’ve been advising Stellar since Stripe helped it launch about a year ago. Today I’m joining their board. Digital currencies are still nascent, and my hopes for them remain unchanged. Particularly, we need digital currency protocols like Stellar that work with the existing financial system and focus on a seamless user experience. I’ve always been impressed with Joyce, Jed, and their team’s approach to the space. Stellar is a non-profit entity producing open-source software, with a strong emphasis on financial inclusion. From launch day, they’ve been hyperfocused on the core technology and community. In the past year, they’ve made strong progress, including a provably-correct consensus algorithm (complete with explanatory graphic novel), a redesign and from-scratch implementation of the technology, and the groundwork for a pilot in South Africa. Building anything valuable takes time, and Stellar is no exception. It’s still too early to say where it might end up. But I’m excited to help...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Greg Brockman

It's time to become an ML engineer

AI has recently crossed a utility threshold, where cutting-edge models such as GPT-3, Codex, and DALL-E 2 are actually useful and can perform tasks computers cannot do any other way. The act of producing these models is an exploration of a new frontier, with the discovery of unknown capabilities, scientific progress, and incredible product applications as the rewards. And perhaps most exciting for me personally, because the field is fundamentally about creating and studying software systems, great engineers are able to contribute at the same level as great researchers to future progress. “A self-learning AI system.” by DALL-E 2. I first got into software engineering because I wanted to build large-scale systems that could have a direct impact on people’s lives. I attended a math research summer program shortly after I started programming, and my favorite result of the summer was a scheduling app I built for people to book time with the professor. Specifying every detail of how a program should work is hard, and I’d always dreamed of one day putting my effort into hypothetical AI systems that could figure out the details for me. But after taking one look at the state of the art in AI in 2008, I knew it wasn’t going to work any time soon and instead started building infrastructure and product for web startups. DALL-E 2’s rendition of “The two great pillars of the house of artificial intelligence” (which according to my co-founder Ilya Sutskever are great engineering, and great science using this engineering) It’s now almost 15 years later, and the vision of systems which can learn their own solutions to problems is becoming incrementally more real. And perhaps most exciting is the underlying mechanism by which it’s advancing — at OpenAI, and the field generally, precision execution on large-scale models is a force multiplier on AI progress, and we need more people with strong software skills who can deliver these systems. This is because we are building AI models out of unprecedented amounts of compute; these models in turn have unprecedented capabilities, we can discover new phenomena and explore the limits of what these models can and cannot do, and then we use all these learnings to build the next model. “Harnessing the most compute in the known universe” by DALL-E 2 Harnessing this compute requires deep software skills and the right kind of machine learning knowledge. We need to coordinate lots of computers, build software frameworks that allow for hyperoptimization in some cases and flexibility in others, serve these models to customers really fast (which is what I worked on in 2020), and make it possible for a small team to manage a massive system (which is what I work on now). Engineers with no ML background can contribute from the day they join, and the more ML they pick up the more impact they have. The OpenAI environment makes it relatively easy to absorb the ML skills, and indeed, many of OpenAI’s best engineers transferred from other fields. All that being said, AI is not for every software engineer. I’ve seen about a 50-50 success rate of engineers entering this field. The most important determiner is a specific flavor of technical humility. Many dearly-held intuitions from other domains will not apply to ML. The engineers who make the leap successfully are happy to be wrong (since it means they learned something), aren’t afraid not to know something, and don’t push solutions that others resist until they’ve gathered enough intuition to know for sure that it matches the domain. “A beaver who has humbly recently become a machine learning engineer” by DALL-E 2 I believe that AI research is today by far the most impactful place for engineers who want to build useful systems to be working, and I expect this statement to become only more true as progress continues. If you’d like to work on creating the next generation of AI models, email me (gdb@openai.com) with any evidence of exceptional accomplishment in software engineering.

over a year ago 39 votes
How I became a machine learning practitioner

For the first three years of OpenAI, I dreamed of becoming a machine learning expert but made little progress towards that goal. Over the past nine months, I’ve finally made the transition to being a machine learning practitioner. It was hard but not impossible, and I think most people who are good programmers and know (or are willing to learn) the math can do it too. There are many online courses to self-study the technical side, and what turned out to be my biggest blocker was a mental barrier — getting ok with being a beginner again. Studying machine learning during the 2018 holiday season. Early days # A founding principle of OpenAI is that we value research and engineering equally — our goal is to build working systems that solve previously impossible tasks, so we need both. (In fact, our team is comprised of 25% people primarily using software skills, 25% primarily using machine learning skills, and 50% doing a hybrid of the two.) So from day one of OpenAI, my software skills were always in demand, and I kept procrastinating on picking up the machine learning skills I wanted. After helping build OpenAI Gym, I was called to work on Universe. And as Universe was winding down, we decided to start working on Dota — and we needed someone to turn the game into a reinforcement learning environment before any machine learning could begin. Dota # Turning such a complex game into a research environment without source code access was awesome work, and the team’s excitement every time I overcame a new obstacle was deeply validating. I figured out how to break out of the game’s Lua sandbox, LD_PRELOAD in a Go GRPC server to programmatically control the game, incrementally dump the whole game state into a Protobuf, and build a Python library and abstractions with future compatibility for the many different multiagent configurations we might want to use. But I felt half blind. At Stripe, though I gravitated towards infrastructure solutions, I could make changes anywhere in the stack since I knew the product code intimately. In Dota, I was constrained to looking at all problems through a software lens, which sometimes meant I tried to solve hard problems that could be avoided by just doing the machine learning slightly differently. I wanted to be like my teammates Jakub Pachocki and Szymon Sidor, who had made the core breakthrough that powered our Dota bot. They had questioned the common wisdom within OpenAI that reinforcement algorithms didn’t scale. They wrote a distributed reinforcement learning framework called Rapid and scaled it exponentially every two weeks or so, and we never hit a wall with it. I wanted to be able to make critical contributions like that which combined software and machine learning skills. Szymon on the left; Jakub on the right. In July 2017, it looked like I might have my chance. The software infrastructure was stable, and I began work on a machine learning project. My goal was to use behavioral cloning to teach a neural network from human training data. But I wasn’t quite prepared for just how much I would feel like a beginner. I kept being frustrated by small workflow details which made me uncertain if I was making progress, such as not being certain which code a given experiment had used or realizing I needed to compare against a result from last week that I hadn’t properly archived. To make things worse, I kept discovering small bugs that had been corrupting my results the whole time. I didn’t feel confident in my work, but to make it worse, other people did. People would mention how how hard behavioral cloning from human data is. I always made sure to correct them by pointing out that I was a newbie, and this probably said more about my abilities than the problem. It all briefly felt worth it when my code made it into the bot, as Jie Tang used it as the starting point for creep blocking which he then fine-tuned with reinforcement learning. But soon Jie figured out how to get better results without using my code, and I had nothing to show for my efforts. I never tried machine learning on the Dota project again. Time out # After we lost two games in The International in 2018, most observers thought we’d topped out what our approach could do. But we knew from our metrics that we were right on the edge of success and mostly needed more training. This meant the demands on my time had relented, and in November 2018, I felt I had an opening to take a gamble with three months of my time. Team members in high spirits after losing our first game at The International. I learn best when I have something specific in mind to build. I decided to try building a chatbot. I started self-studying the curriculum we developed for our Fellows program, selecting only the NLP-relevant modules. For example, I wrote and trained an LSTM language model and then a Transformer-based one. I also read up on topics like information theory and read many papers, poring over each line until I fully absorbed it. It was slow going, but this time I expected it. I didn’t experience flow state. I was reminded of how I’d felt when I just started programming, and I kept thinking of how many years it had taken to achieve a feeling of mastery. I honestly wasn’t confident that I would ever become good at machine learning. But I kept pushing because… well, honestly because I didn’t want to be constrained to only understanding one part of my projects. I wanted to see the whole picture clearly. My personal life was also an important factor in keeping me going. I’d begun a relationship with someone who made me feel it was ok if I failed. I spent our first holiday season together beating my head against the machine learning wall, but she was there with me no matter how many planned activities it meant skipping. One important conceptual step was overcoming a barrier I’d been too timid to do with Dota: make substantive changes to someone else’s machine learning code. I fine-tuned GPT-1 on chat datasets I’d found, and made a small change to add my own naive sampling code. But it became so painfully slow as I tried to generate longer messages that my frustration overwhelmed my fear, and I implemented GPU caching — a change which touched the entire model. I had to try a few times, throwing out my changes as they exceeded the complexity I could hold in my head. By the time I got it working a few days later, I realized I’d learned something that I would have previously thought impossible: I now understood how the whole model was put together, down to small stylistic details like how the codebase elegantly handles TensorFlow variable scopes. Retooled # After three months of self-study, I felt ready to work on an actual project. This was also the first point where I felt I could benefit from the many experts we have at OpenAI, and I was delighted when Jakub and my co-founder Ilya Sutskever agreed to advise me. Ilya singing karaoke at our company offsite. We started to get very exciting results, and Jakub and Szymon joined the project full-time. I feel proud every time I see a commit from them in the machine learning codebase I’d started. I’m starting to feel competent, though I haven’t yet achieved mastery. I’m seeing this reflected in the number of hours I can motivate myself to spend focused on doing machine learning work — I’m now around 75% of the number of coding hours from where I’ve been historically. But for the first time, I feel that I’m on trajectory. At first, I was overwhelmed by the seemingly endless stream of new machine learning concepts. Within the first six months, I realized that I could make progress without constantly learning entirely new primitives. I still need to get more experience with many skills, such as initializing a network or setting a learning rate schedule, but now the work feels incremental rather than potentially impossible. From our Fellows and Scholars programs, I’d known that software engineers with solid fundamentals in linear algebra and probability can become machine learning engineers with just a few months of self study. But somehow I’d convinced myself that I was the exception and couldn’t learn. But I was wrong — even embedded in the middle of OpenAI, I couldn’t make the transition because I was unwilling to become a beginner again. You’re probably not an exception either. If you’d like to become a deep learning practitioner, you can. You need to give yourself the space and time to fail. If you learn from enough failures, you’ll succeed — and it’ll probably take much less time than you expect. At some point, it does become important to surround yourself by existing experts. And that is one place where I’m incredibly lucky. If you’re a great software engineer who reaches that point, keep in mind there’s a way you can be surrounded by the same people as I am — apply to OpenAI!

over a year ago 39 votes
OpenAI Five Finals Intro

The text of my speech introducing OpenAI Five at Saturday’s OpenAI Five Finals event, where our AI beat the world champions at Dota 2: “Welcome everyone. This is an exciting day. First, this is an historic moment: this will be the first time that an AI has even attempted to play the world champions in an esports game. OG is simply on another level relative to other teams we’ve played. So we don’t know what’s going to happen, but win or lose, these will be games to remember. And you know, OpenAI Five and DeepMind’s very impressive StarCraft bot This event is really about something bigger than who wins or loses: letting people connect with the strange, exotic, yet tangible intelligences produced by today’s rapidly progressing AI technology. We’re all used to computer programs which have been meticulously coded by a human programmer. Do one thing that the human didn’t anticipate, and the program will break. We think of our computers as unthinking machines which can’t innovate, can’t be creative, can’t truly understand. But to play Dota, you need to do all these things. So we needed to do something different. OpenAI Five is powered by deep reinforcement learning — meaning that we didn’t code in how to play Dota. We instead coded in the how to learn. Five tries out random actions, and learns from a reward or punishment. In its 10 months of training, its experienced 45,000 years of Dota gameplay against itself. The playstyle it has devised are its own — they are truly creative and dreamed up by our computer — and so from Five’s perspective, today’s games are going to its first encounter with an alien intelligence (no offense to OG!). The beauty of this technology is that our learning code doesn’t know it’s meant for Dota. That makes it general purpose with amazing potential to benefit our lives. Last year we used it to control a robotic hand that no one could program. And we expect to see similar technology in new interactive systems, from elderly care robots to creative assistants to other systems we can’t dream of yet. This is the final public event for OpenAI Five, but we expect to do other Dota projects in the future. I want to thank the incredible team at OpenAI, everyone who worked directly on this project or cheered us on. I want to thank those who have supported the project: Valve, dozens of test teams, today’s casters, and yes, even all the commenters on Reddit. And I want to give massive thanks today to our fantastic guests OG who have taken time out of their tournament schedule to be here today. I hope you enjoy the show — and just to keep things in perspective, no matter how surprising the AIs are to us, know that we’re even more surprising to them!”

over a year ago 37 votes
The OpenAI Mission

This post is co-written by Greg Brockman (left) and Ilya Sutskever (right). We’ve been working on OpenAI for the past three years. Our mission is to ensure that artificial general intelligence (AGI) — which we define as automated systems that outperform humans at most economically valuable work — benefits all of humanity. Today we announced a new legal structure for OpenAI, called OpenAI LP, to better pursue this mission — in particular to raise more capital as we attempt to build safe AGI and distribute its benefits. In this post, we’d like to help others understand how we think about this mission. Why now? # The founding vision of the field of AI was “… to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it”, and to eventually build a machine that thinks — that is, an AGI. But over the past 60 years, progress stalled multiple times and people started thinking of AI as a field that wouldn’t deliver. Since 2012, deep learning has generated sustained progress in many domains using a small simple set of tools, which have the following properties: Generality: deep learning tools are simple, yet they apply to many domains, such as vision, speech recognition, speech synthesis, text synthesis, image synthesis, translation, robotics, and game playing. Competence: today, the only way to get competitive results on most “AI-type problems” is through the use of deep learning techniques. Scalability: good old fashioned AI was able to produce exciting demos, but its techniques had difficulty scaling to harder problems. But in deep learning, more computational power and more data leads to better results. It has also proven easy (if costly) to rapidly increase the amount of compute productively used by deep learning experiments. The rapid progress of useful deep learning systems with these properties makes us feel that it’s reasonable to start taking AGI seriously — though it’s hard to know how far away it is. The impact of AGI # Just like a computer today, an AGI will be applicable to a wide variety of tasks — and just like computers in 1900 or the Internet in 1950, it’s hard to describe (or even predict) the kind of impact AGI will have. But to get a sense, imagine a computer system which can do the following activities with minimal human input: Make a scientific breakthrough at the level of the best scientists Productize that breakthrough and build a company, with a skill comparable to the best entrepreneurs Rapidly grow that company and manage it at large scale The upside of such a computer system is enormous — for an illustrative example, an AGI following the pattern above could produce amazing healthcare applications deployed at scale. Imagine a network of AGI-powered computerized doctors that accumulates a superhuman amount of clinical experience, allowing it to produce excellent diagnoses, deeply understand the nuanced effect of various treatments in lots of conditions, and greatly reduce the human error factor of healthcare — all for very low cost and accessible to everyone. Risks # We already live in a world with entities that surpass individual human abilities, which we call companies. If working on the right goals in the right way, companies can produce huge amounts of value and improve lives. But if not properly checked, they can also cause damage, like logging companies that cut down rain forests, cigarette companies that get children smoking, or scams like Ponzi schemes. We think of AGI as being like a hyper-effective company, with commensurate benefits and risks. We are concerned about AGI pursuing goals misspecified by its operator, malicious humans subverting a deployed AGI, or an out-of-control economy that grows without resulting in improvements to human lives. And because it’s hard to change powerful systems — just think about how hard it’s been to add security to the Internet — once they’ve been deployed, we think it’s important to address AGI’s safety and policy risks before it is created. OpenAI’s mission is to figure out how to get the benefits of AGI and mitigate the risks — and make sure those benefits accrue to all of humanity. The future is uncertain, and there are many ways in which our predictions could be incorrect. But if they turn out to be right, this mission will be critical. If you’d like to work on this mission, we’re hiring! About us # Ilya: I’ve been working on deep learning for 16 years. It was fun to witness deep learning transform from being a marginalized subfield of AI into one the most important family of scientific advances in recent history. As deep learning was getting more powerful, I realized that AGI might become a reality on a timescale relevant to my lifetime. And given AGI’s massive upside and significant risks, I want to maximize the positive parts of this impact and minimize the negative. Greg: Technology causes change, both positive and negative. AGI is the most extreme kind of technology that humans will ever create, with extreme upside and downside. I work on OpenAI because making AGI go well is the most important problem I can imagine contributing towards. Today I try to spend most of my time on technical work, and also work to spark better public discourse about AGI and related topics.

over a year ago 37 votes
OpenAI Five intro

The text of my speech introducing OpenAI Five at yesterday’s Benchmark event: “We’re here to watch humans and AI play Dota, but today’s match will have implications for the world. OpenAI’s mission is to ensure that when we can build machines as smart as humans, they will benefit all of humanity. That means both pushing the limits of what’s possible and ensuring future systems are safe and aligned with human values. We work on Dota because it is a great training ground for AI: it is one of the most complicated games, involving teamwork, real time strategy, imperfect information, and an astronomical combinations of heroes and items. We can’t program a solution, so Five learns by playing 180 years of games against itself every day — sadly that means we can’t learn from the players up here unless they played for a few decades. It’s powered by 5 artificial neural networks which act like an artificial intuition. Five’s neural networks are about the size of the brain of an ant — still far from what we all have in our heads. One year ago, we beat the world’s top professionals at 1v1 Dota. People thought 5v5 would be totally out of reach. 1v1 requires mechanics and positioning; people did not expect the same system to learn strategy. But our AI system can learn problems it was not even designed to solve — we just used the same technology to learn to control a robotic hand — something no one could program. The computational power for OpenAI Five would have been impractical two years ago. But the availability of computation for AI has been increasing exponentially, doubling every 3.5 months since 2012, and one day technologies like this will become commonplace. Feel free to root for either team. Either way, humanity wins.” I’m very excited to see where the upcoming months of OpenAI Five development and testing take us.

over a year ago 36 votes

More in programming

Notes from Alexander Petros’ “Building the Hundred-Year Web Service”

I loved this talk from Alexander Petros titled “Building the Hundred-Year Web Service”. What follows is summation of my note-taking from watching the talk on YouTube. Is what you’re building for future generations: Useful for them? Maintainable by them? Adaptable by them? Actually, forget about future generations. Is what you’re building for future you 6 months or 6 years from now aligning with those goals? While we’re building codebases which may not be useful, maintainable, or adaptable by someone two years from now, the Romans built a bridge thousands of years ago that is still being used today. It should be impossible to imagine building something in Roman times that’s still useful today. But if you look at [Trajan’s Bridge in Portugal, which is still used today] you can see there’s a little car on its and a couple pedestrians. They couldn’t have anticipated the automobile, but nevertheless it is being used for that today. That’s a conundrum. How do you build for something you can’t anticipate? You have to think resiliently. Ask yourself: What’s true today, that was true for a software engineer in 1991? One simple answer is: Sharing and accessing information with a uniform resource identifier. That was true 30+ years ago, I would venture to bet it will be true in another 30 years — and more! There [isn’t] a lot of source code that can run unmodified in software that is 30 years apart. And yet, the first web site ever made can do precisely that. The source code of the very first web page — which was written for a line mode browser — still runs today on a touchscreen smartphone, which is not a device that Tim Berners-less could have anticipated. Alexander goes on to point out how interaction with web pages has changed over time: In the original line mode browser, links couldn’t be represented as blue underlined text. They were represented more like footnotes on screen where you’d see something like this[1] and then this[2]. If you wanted to follow that link, there was no GUI to point and click. Instead, you would hit that number on your keyboard. In desktop browsers and GUI interfaces, we got blue underlines to represent something you could point and click on to follow a link On touchscreen devices, we got “tap” with your finger to follow a link. While these methods for interaction have changed over the years, the underlying medium remains unchanged: information via uniform resource identifiers. The core representation of a hypertext document is adaptable to things that were not at all anticipated in 1991. The durability guarantees of the web are absolutely astounding if you take a moment to think about it. In you’re sprinting you might beat the browser, but it’s running a marathon and you’ll never beat it in the long run. If your page is fast enough, [refreshes] won’t even repaint the page. The experience of refreshing a page, or clicking on a “hard link” is identical to the experience of partially updating the page. That is something that quietly happened in the last ten years with no fanfare. All the people who wrote basic HTML got a huge performance upgrade in their browser. And everybody who tried to beat the browser now has to reckon with all the JavaScript they wrote to emulate these basic features. Email · Mastodon · Bluesky

13 hours ago 2 votes
Modeling Awkward Social Situations with TLA+

You're walking down the street and need to pass someone going the opposite way. You take a step left, but they're thinking the same thing and take a step to their right, aka your left. You're still blocking each other. Then you take a step to the right, and they take a step to their left, and you're back to where you started. I've heard this called "walkwarding" Let's model this in TLA+. TLA+ is a formal methods tool for finding bugs in complex software designs, most often involving concurrency. Two people trying to get past each other just also happens to be a concurrent system. A gentler introduction to TLA+'s capabilities is here, an in-depth guide teaching the language is here. The spec ---- MODULE walkward ---- EXTENDS Integers VARIABLES pos vars == <<pos>> Double equals defines a new operator, single equals is an equality check. <<pos>> is a sequence, aka array. you == "you" me == "me" People == {you, me} MaxPlace == 4 left == 0 right == 1 I've gotten into the habit of assigning string "symbols" to operators so that the compiler complains if I misspelled something. left and right are numbers so we can shift position with right - pos. direction == [you |-> 1, me |-> -1] goal == [you |-> MaxPlace, me |-> 1] Init == \* left-right, forward-backward pos = [you |-> [lr |-> left, fb |-> 1], me |-> [lr |-> left, fb |-> MaxPlace]] direction, goal, and pos are "records", or hash tables with string keys. I can get my left-right position with pos.me.lr or pos["me"]["lr"] (or pos[me].lr, as me == "me"). Juke(person) == pos' = [pos EXCEPT ![person].lr = right - @] TLA+ breaks the world into a sequence of steps. In each step, pos is the value of pos in the current step and pos' is the value in the next step. The main outcome of this semantics is that we "assign" a new value to pos by declaring pos' equal to something. But the semantics also open up lots of cool tricks, like swapping two values with x' = y /\ y' = x. TLA+ is a little weird about updating functions. To set f[x] = 3, you gotta write f' = [f EXCEPT ![x] = 3]. To make things a little easier, the rhs of a function update can contain @ for the old value. ![me].lr = right - @ is the same as right - pos[me].lr, so it swaps left and right. ("Juke" comes from here) Move(person) == LET new_pos == [pos[person] EXCEPT !.fb = @ + direction[person]] IN /\ pos[person].fb # goal[person] /\ \A p \in People: pos[p] # new_pos /\ pos' = [pos EXCEPT ![person] = new_pos] The EXCEPT syntax can be used in regular definitions, too. This lets someone move one step in their goal direction unless they are at the goal or someone is already in that space. /\ means "and". Next == \E p \in People: \/ Move(p) \/ Juke(p) I really like how TLA+ represents concurrency: "In each step, there is a person who either moves or jukes." It can take a few uses to really wrap your head around but it can express extraordinarily complicated distributed systems. Spec == Init /\ [][Next]_vars Liveness == <>(pos[me].fb = goal[me]) ==== Spec is our specification: we start at Init and take a Next step every step. Liveness is the generic term for "something good is guaranteed to happen", see here for more. <> means "eventually", so Liveness means "eventually my forward-backward position will be my goal". I could extend it to "both of us eventually reach out goal" but I think this is good enough for a demo. Checking the spec Four years ago, everybody in TLA+ used the toolbox. Now the community has collectively shifted over to using the VSCode extension.1 VSCode requires we write a configuration file, which I will call walkward.cfg. SPECIFICATION Spec PROPERTY Liveness I then check the model with the VSCode command TLA+: Check model with TLC. Unsurprisingly, it finds an error: The reason it fails is "stuttering": I can get one step away from my goal and then just stop moving forever. We say the spec is unfair: it does not guarantee that if progress is always possible, progress will be made. If I want the spec to always make progress, I have to make some of the steps weakly fair. + Fairness == WF_vars(Next) - Spec == Init /\ [][Next]_vars + Spec == Init /\ [][Next]_vars /\ Fairness Now the spec is weakly fair, so someone will always do something. New error: \* First six steps cut 7: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 1, fb |-> 2]] 8: <Juke("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 0, fb |-> 2]] 9: <Juke("me")> (back to state 7) In this failure, I've successfully gotten past you, and then spend the rest of my life endlessly juking back and forth. The Next step keeps happening, so weak fairness is satisfied. What I actually want is for both my Move and my Juke to both be weakly fair independently of each other. - Fairness == WF_vars(Next) + Fairness == WF_vars(Move(me)) /\ WF_vars(Juke(me)) If my liveness property also specified that you reached your goal, I could instead write \A p \in People: WF_vars(Move(p)) etc. I could also swap the \A with a \E to mean at least one of us is guaranteed to have fair actions, but not necessarily both of us. New error: 3: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 4: <Juke("you")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 5: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 1, fb |-> 3]] 6: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 7: <Juke("you")> (back to state 3) Now we're getting somewhere! This is the original walkwarding situation we wanted to capture. We're in each others way, then you juke, but before either of us can move you juke, then we both juke back. We can repeat this forever, trapped in a social hell. Wait, but doesn't WF(Move(me)) guarantee I will eventually move? Yes, but only if a move is permanently available. In this case, it's not permanently available, because every couple of steps it's made temporarily unavailable. How do I fix this? I can't add a rule saying that we only juke if we're blocked, because the whole point of walkwarding is that we're not coordinated. In the real world, walkwarding can go on for agonizing seconds. What I can do instead is say that Liveness holds as long as Move is strongly fair. Unlike weak fairness, strong fairness guarantees something happens if it keeps becoming possible, even with interruptions. Liveness == + SF_vars(Move(me)) => <>(pos[me].fb = goal[me]) This makes the spec pass. Even if we weave back and forth for five minutes, as long as we eventually pass each other, I will reach my goal. Note we could also by making Move in Fairness strongly fair, which is preferable if we have a lot of different liveness properties to check. A small exercise for the reader There is a presumed invariant that is violated. Identify what it is, write it as a property in TLA+, and show the spec violates it. Then fix it. Answer (in rot13): Gur vainevnag vf "ab gjb crbcyr ner va gur rknpg fnzr ybpngvba". Zbir thnenagrrf guvf ohg Whxr qbrf abg. More TLA+ Exercises I've started work on an exercises repo. There's only a handful of specific problems now but I'm planning on adding more over the summer. learntla is still on the toolbox, but I'm hoping to get it all moved over this summer. ↩

16 hours ago 2 votes
the penultimate conditional syntax

About half a year ago I encountered a paper bombastically titled “the ultimate conditional syntax”. It has the attractive goal of unifying pattern match with boolean if tests, and its solution is in some ways very nice. But it seems over-complicated to me, especially for something that’s a basic work-horse of programming. I couldn’t immediately see how to cut it down to manageable proportions, but recently I had an idea. I’ll outline it under the “penultimate conditionals” heading below, after reviewing the UCS and explaining my motivation. what the UCS? whence UCS out of scope penultimate conditionals dangling syntax examples antepenultimate breath what the UCS? The ultimate conditional syntax does several things which are somewhat intertwined and support each other. An “expression is pattern” operator allows you to do pattern matching inside boolean expressions. Like “match” but unlike most other expressions, “is” binds variables whose scope is the rest of the boolean expression that might be evaluated when the “is” is true, and the consequent “then” clause. You can “split” tests to avoid repeating parts that are the same in successive branches. For example, if num < 0 then -1 else if num > 0 then +1 else 0 can be written if num < 0 then -1 > 0 then +1 else 0 The example shows a split before an operator, where the left hand operand is the same and the rest of the expression varies. You can split after the operator when the operator is the same, which is common for “is” pattern match clauses. Indentation-based syntax (an offside rule) reduces the amount of punctuation that splits would otherwise need. An explicit version of the example above is if { x { { < { 0 then −1 } }; { > { 0 then +1 } }; else 0 } } (This example is written in the paper on one line. I’ve split it for narrow screens, which exposes what I think is a mistake in the nesting.) You can also intersperse let bindings between splits. I doubt the value of this feature, since “is” can also bind values, but interspersed let does have its uses. The paper has an example using let to avoid rightward drift: if let tp1_n = normalize(tp1) tp1_n is Bot then Bot let tp2_n = normalize(tp2) tp2_n is Bot then Bot let m = merge(tp1_n, tp2_n) m is Some(tp) then tp m is None then glb(tp1_n, tp2_n) It’s probably better to use early return to avoid rightward drift. The desugaring uses let bindings when lowering the UCS to simpler constructions. whence UCS Pattern matching in the tradition of functional programming languages supports nested patterns that are compiled in a way that eliminates redundant tests. For example, this example checks that e1 is Some(_) once, not twice as written. if e1 is Some(Left(lv)) then e2 Some(Right(rv)) then e3 None then e4 Being cheeky, I’d say UCS introduces more causes of redundant checks, then goes to great effort to to eliminate redundant checks again. Splits reduce redundant code at the source level; the bulk of the paper is about eliminating redundant checks in the lowering from source to core language. I think the primary cause of this extra complexity is treating the is operator as a two-way test rather than a multi-way match. Splits are introduced as a more general (more complicated) way to build multi-way conditions out of two-way tests. There’s a secondary cause: the tradition of expression-oriented functional languages doesn’t like early returns. A nice pattern in imperative code is to write a function as a series of preliminary calculations and guards with early returns that set things up for the main work of the function. Rust’s ? operator and let-else statement support this pattern directly. UCS addresses the same pattern by wedging calculate-check sequences into if statements, as in the normalize example above. out of scope I suspect UCS’s indentation-based syntax will make programmers more likely to make mistakes, and make compilers have more trouble producing nice error messages. (YAML has put me off syntax that doesn’t have enough redundancy to support good error recovery.) So I wondered if there’s a way to have something like an “is pattern” operator in a Rust-like language, without an offside rule, and without the excess of punctuation in the UCS desugaring. But I couldn’t work out how to make the scope of variable bindings in patterns cover all the code that might need to use them. The scope needs to extend into the consequent then clause, but also into any follow-up tests – and those tests can branch so the scope might need to reach into multiple then clauses. The problem was the way I was still thinking of the then and else clauses as part of the outer if. That implied the expression has to be closed off before the then, which troublesomely closes off the scope of any is-bound variables. The solution – part of it, at least – is actually in the paper, where then and else are nested inside the conditional expression. penultimate conditionals There are two ingredients: The then and else clauses become operators that cause early return from a conditional expression. They can be lowered to a vaguely Rust syntax with the following desugaring rules. The 'if label denotes the closest-enclosing if; you can’t use then or else inside the expr of a then or else unless there’s another intervening if. then expr ⟼ && break 'if expr else expr ⟼ || break 'if expr else expr ⟼ || _ && break 'if expr There are two desugarings for else depending on whether it appears in an expression or a pattern. If you prefer a less wordy syntax, you might spell then as => (like match in Rust) and else as || =>. (For symmetry we might allow && => for then as well.) An is operator for multi-way pattern-matching that binds variables whose scope covers the consequent part of the expression. The basic form is like the UCS, scrutinee is pattern which matches the scrutinee against the pattern returning a boolean result. For example, foo is None Guarded patterns are like, scrutinee is pattern && consequent where the scope of the variables bound by the pattern covers the consequent. The consequent might be a simple boolean guard, for example, foo is Some(n) && n < 0 or inside an if expression it might end with a then clause, if foo is Some(n) && n < 0 => -1 // ... Simple multi-way patterns are like, scrutinee is { pattern || pattern || … } If there is a consequent then the patterns must all bind the same set of variables (if any) with the same types. More typically, a multi-way match will have consequent clauses, like scrutinee is { pattern && consequent || pattern && consequent || => otherwise } When a consequent is false, we go on to try other alternatives of the match, like we would when the first operand of boolean || is false. To help with layout, you can include a redundant || before the first alternative. For example, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || Some(n) => 0 || None => 0 } Alternatively, if foo is { Some(n) && ( n < 0 => -1 || n > 0 => +1 || => 0 ) || None => 0 } (They should compile the same way.) The evaluation model is like familiar shortcutting && and || and the syntax is supposed to reinforce that intuition. The UCS paper spends a lot of time discussing backtracking and how to eliminate it, but penultimate conditionals evaluate straightforwardly from left to right. The paper briefly mentions as patterns, like Some(Pair(x, y) as p) which in Rust would be written Some(p @ Pair(x, y)) The is operator doesn’t need a separate syntax for this feature: Some(p is Pair(x, y)) For large examples, the penultimate conditional syntax is about as noisy as Rust’s match, but it scales down nicely to smaller matches. However, there are differences in how consequences and alternatives are punctuated which need a bit more discussion. dangling syntax The precedence and associativity of the is operator is tricky: it has two kinds of dangling-else problem. The first kind occurs with a surrounding boolean expression. For example, when b = false, what is the value of this? b is true || false It could bracket to the left, yielding false: (b is true) || false Or to the right, yielding true: b is { true || false } This could be disambiguated by using different spellings for boolean or and pattern alternatives. But that doesn’t help for the second kind which occurs with an inner match. foo is Some(_) && bar is Some(_) || None Does that check foo is Some(_) with an always-true look at bar ( foo is Some(_) ) && bar is { Some(_) || None } Or does it check bar is Some(_) and waste time with foo? foo is { Some(_) && ( bar is Some(_) ) || None } I have chosen to resolve the ambiguity by requiring curly braces {} around groups of alternative patterns. This allows me to use the same spelling || for all kinds of alternation. (Compare Rust, which uses || for boolean expressions, | in a pattern, and , between the arms of a match.) Curlies around multi-way matches can be nested, so the example in the previous section can also be written, if foo is { || Some(n) && n < 0 => -1 || Some(n) && n > 0 => +1 || { Some(0) || None } => 0 } The is operator binds tigher than && on its left, but looser than && on its right (so that a chain of && is gathered into a consequent) and tigher than || on its right so that outer || alternatives don’t need extra brackets. examples I’m going to finish these notes by going through the ultimate conditional syntax paper to translate most of its examples into the penultimate syntax, to give it some exercise. Here we use is to name a value n, as a replacement for the |> abs pipe operator, and we use range patterns instead of split relational operators: if foo(args) is { || 0 => "null" || n && abs(n) is { || 101.. => "large" || ..10 => "small" || => "medium" ) } In both the previous example and the next one, we have some extra brackets where UCS relies purely on an offside rule. if x is { || Right(None) => defaultValue || Right(Some(cached)) => f(cached) || Left(input) && compute(input) is { || None => defaultValue || Some(result) => f(result) } } This one is almost identical to UCS apart from the spellings of and, then, else. if name.startsWith("_") && name.tailOption is Some(namePostfix) && namePostfix.toIntOption is Some(index) && 0 <= index && index < arity && => Right([index, name]) || => Left("invalid identifier: " + name) Here are some nested multi-way matches with overlapping patterns and bound values: if e is { // ... || Lit(value) && Map.find_opt(value) is Some(result) => Some(result) // ... || { Lit(value) || Add(Lit(0), value) || Add(value, Lit(0)) } => { print_int(value); Some(value) } // ... } The next few examples show UCS splits without the is operator. In my syntax I need to press a few more buttons but I think that’s OK. if x == 0 => "zero" || x == 1 => "unit" || => "?" if x == 0 => "null" || x > 0 => "positive" || => "negative" if predicate(0, 1) => "A" || predicate(2, 3) => "B" || => "C" The first two can be written with is instead, but it’s not briefer: if x is { || 0 => "zero" || 1 => "unit" || => "?" } if x is { || 0 => "null" || 1.. => "positive" || => "negative" } There’s little need for a split-anything feature when we have multi-way matches. if foo(u, v, w) is { || Some(x) && x is { || Left(_) => "left-defined" || Right(_) => "right-defined" } || None => "undefined" } A more complete function: fn zip_with(f, xs, ys) { if [xs, ys] is { || [x :: xs, y :: ys] && zip_with(f, xs, ys) is Some(tail) => Some(f(x, y) :: tail) || [Nil, Nil] => Some(Nil) || => None } } Another fragment of the expression evaluator: if e is { // ... || Var(name) && Map.find_opt(env, name) is { || Some(Right(value)) => Some(value) || Some(Left(thunk)) => Some(thunk()) } || App(lhs, rhs) => // ... // ... } This expression is used in the paper to show how a UCS split is desugared: if Pair(x, y) is { || Pair(Some(xv), Some(yv)) => xv + yv || Pair(Some(xv), None) => xv || Pair(None, Some(yv)) => yv || Pair(None, None) => 0 } The desugaring in the paper introduces a lot of redundant tests. I would desugar straightforwardly, then rely on later optimizations to eliminate other redundancies such as the construction and immediate destruction of the pair: if Pair(x, y) is Pair(xx, yy) && xx is { || Some(xv) && yy is { || Some(yv) => xv + yv || None => xv } || None && yy is { || Some(yv) => yv || None => 0 } } Skipping ahead to the “non-trivial example” in the paper’s fig. 11: if e is { || Var(x) && context.get(x) is { || Some(IntVal(v)) => Left(v) || Some(BoolVal(v)) => Right(v) } || Lit(IntVal(v)) => Left(v) || Lit(BoolVal(v)) => Right(v) // ... } The next example in the paper compares C# relational patterns. Rust’s range patterns do a similar job, with the caveat that Rust’s ranges don’t have a syntax for exclusive lower bounds. fn classify(value) { if value is { || .. -4.0 => "too low" || 10.0 .. => "too high" || NaN => "unknown" || => "acceptable" } } I tend to think relational patterns are the better syntax than ranges. With relational patterns I can rewrite an earlier example like, if foo is { || Some(< 0) => -1 || Some(> 0) => +1 || { Some(0) || None } => 0 } I think with the UCS I would have to name the Some(_) value to be able to compare it, which suggests that relational patterns can be better than UCS split relational operators. Prefix-unary relational operators are also a nice way to write single-ended ranges in expressions. We could simply write both ends to get a complete range, like >= lo < hi or like if value is > -4.0 < 10.0 => "acceptable" || => "far out" Near the start I quoted a normalize example that illustrates left-aligned UCS expression. The penultimate version drifts right like the Scala version: if normalize(tp1) is { || Bot => Bot || tp1_n && normalize(tp2) is { || Bot => Bot || tp2_n && merge(tp1_n, tp2_n) is { || Some(tp) => tp || None => glb(tp1_n, tp2_n) } } } But a more Rusty style shows the benefits of early returns (especially the terse ? operator) and monadic combinators. let tp1 = normalize(tp1)?; let tp2 = normalize(tp2)?; merge(tp1, tp2) .unwrap_or_else(|| glb(tp1, tp2)) antepenultimate breath When I started writing these notes, my penultimate conditional syntax was little more than a sketch of an idea. Having gone through the previous section’s exercise, I think it has turned out better than I thought it might. The extra nesting from multi-way match braces doesn’t seem to be unbearably heavyweight. However, none of the examples have bulky then or else blocks which are where the extra nesting is more likely to be annoying. But then, as I said before it’s comparable to a Rust match: match scrutinee { pattern => { consequent } } if scrutinee is { || pattern => { consequent } } The || lines down the left margin are noisy, but hard to get rid of in the context of a curly-brace language. I can’t reduce them to | like OCaml because what would I use for bitwise OR? I don’t want presence or absence of flow control to depend on types or context. I kind of like Prolog / Erlang , for && and ; for ||, but that’s well outside what’s legible to mainstream programmers. So, dunno. Anyway, I think I’ve successfully found a syntax that does most of what UCS does, but much in a much simpler fashion.

2 days ago 4 votes
Coding should be a vibe!

The appeal of "vibe coding" — where programmers lean back and prompt their way through an entire project with AI — appears partly to be based on the fact that so many development environments are deeply unpleasant to work with. So it's no wonder that all these programmers stuck working with cumbersome languages and frameworks can't wait to give up on the coding part of software development. If I found writing code a chore, I'd be looking for retirement too. But I don't. I mean, I used to! When I started programming, it was purely because I wanted programs. Learning to code was a necessary but inconvenient step toward bringing systems to life. That all changed when I learned Ruby and built Rails. Ruby's entire premise is "programmer happiness": that writing code should be a joy. And historically, the language was willing to trade run-time performance, memory usage, and other machine sympathies against the pursuit of said programmer happiness. These days, it seems like you can eat your cake and have it too, though. Ruby, after thirty years of constant improvement, is now incredibly fast and efficient, yet remains a delight to work with. That ethos couldn't shine brighter now. Disgruntled programmers have finally realized that an escape from nasty syntax, boilerplate galore, and ecosystem hyper-churn is possible. That's the appeal of AI: having it hide away all that unpleasantness. Only it's like cleaning your room by stuffing the mess under the bed — it doesn't make it go away! But the instinct is correct: Programming should be a vibe! It should be fun! It should resemble English closely enough that line noise doesn't obscure the underlying ideas and decisions. It should allow a richness of expression that serves the human reader instead of favoring the strictness preferred by the computer. Ruby does. And given that, I have no interest in giving up writing code. That's not the unpleasant part that I want AI to take off my hands. Just so I can — what? — become a project manager for a murder of AI crows? I've had the option to retreat up the manager ladder for most of my career, but I've steadily refused, because I really like writing Ruby! It's the most enjoyable part of the job! That doesn't mean AI doesn't have a role to play when writing Ruby. I'm conversing and collaborating with LLMs all day long — looking up APIs, clarifying concepts, and asking stupid questions. AI is a superb pair programmer, but I'd retire before permanently handing it the keyboard to drive the code. Maybe one day, wanting to write code will be a quaint concept. Like tending to horses for transportation in the modern world — done as a hobby but devoid of any economic value. I don't think anyone knows just how far we can push the intelligence and creativity of these insatiable token munchers. And I wouldn't bet against their advance, but it's clear to me that a big part of their appeal to programmers is the wisdom that Ruby was founded on: Programming should favor and flatter the human.

2 days ago 8 votes
Tempest Rising is a great game

I really like RTS games. I pretty much grew up on them, starting with Command&Conquer 3: Kane’s Wrath, moving on to StarCraft 2 trilogy and witnessing the downfall of Command&Conquer 4. I never had the disks for any other RTS games during my teenage years. Yes, the disks, the ones you go to the store to buy! I didn’t know Steam existed back then, so this was my only source of games. There is something magical in owning a physical copy of the game. I always liked the art on the front (a mandatory huge face for all RTS!), game description and screenshots on the back, even the smell of the plastic disk case.

2 days ago 3 votes