Full Width [alt+shift+f] Shortcuts [alt+shift+k] TRY SIMPLE MODE
Sign Up [alt+shift+s] Log In [alt+shift+l]
56
For the first three years of OpenAI, I dreamed of becoming a machine learning expert but made little progress towards that goal. Over the past nine months, I’ve finally made the transition to being a machine learning practitioner. It was hard but not impossible, and I think most people who are good programmers and know (or are willing to learn) the math can do it too. There are many online courses to self-study the technical side, and what turned out to be my biggest blocker was a mental barrier — getting ok with being a beginner again. Studying machine learning during the 2018 holiday season. Early days # A founding principle of OpenAI is that we value research and engineering equally — our goal is to build working systems that solve previously impossible tasks, so we need both. (In fact, our team is comprised of 25% people primarily using software skills, 25% primarily using machine learning skills, and 50% doing a hybrid of the two.) So from day one of OpenAI, my software skills...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Greg Brockman

It's time to become an ML engineer

AI has recently crossed a utility threshold, where cutting-edge models such as GPT-3, Codex, and DALL-E 2 are actually useful and can perform tasks computers cannot do any other way. The act of producing these models is an exploration of a new frontier, with the discovery of unknown capabilities, scientific progress, and incredible product applications as the rewards. And perhaps most exciting for me personally, because the field is fundamentally about creating and studying software systems, great engineers are able to contribute at the same level as great researchers to future progress. “A self-learning AI system.” by DALL-E 2. I first got into software engineering because I wanted to build large-scale systems that could have a direct impact on people’s lives. I attended a math research summer program shortly after I started programming, and my favorite result of the summer was a scheduling app I built for people to book time with the professor. Specifying every detail of how a program should work is hard, and I’d always dreamed of one day putting my effort into hypothetical AI systems that could figure out the details for me. But after taking one look at the state of the art in AI in 2008, I knew it wasn’t going to work any time soon and instead started building infrastructure and product for web startups. DALL-E 2’s rendition of “The two great pillars of the house of artificial intelligence” (which according to my co-founder Ilya Sutskever are great engineering, and great science using this engineering) It’s now almost 15 years later, and the vision of systems which can learn their own solutions to problems is becoming incrementally more real. And perhaps most exciting is the underlying mechanism by which it’s advancing — at OpenAI, and the field generally, precision execution on large-scale models is a force multiplier on AI progress, and we need more people with strong software skills who can deliver these systems. This is because we are building AI models out of unprecedented amounts of compute; these models in turn have unprecedented capabilities, we can discover new phenomena and explore the limits of what these models can and cannot do, and then we use all these learnings to build the next model. “Harnessing the most compute in the known universe” by DALL-E 2 Harnessing this compute requires deep software skills and the right kind of machine learning knowledge. We need to coordinate lots of computers, build software frameworks that allow for hyperoptimization in some cases and flexibility in others, serve these models to customers really fast (which is what I worked on in 2020), and make it possible for a small team to manage a massive system (which is what I work on now). Engineers with no ML background can contribute from the day they join, and the more ML they pick up the more impact they have. The OpenAI environment makes it relatively easy to absorb the ML skills, and indeed, many of OpenAI’s best engineers transferred from other fields. All that being said, AI is not for every software engineer. I’ve seen about a 50-50 success rate of engineers entering this field. The most important determiner is a specific flavor of technical humility. Many dearly-held intuitions from other domains will not apply to ML. The engineers who make the leap successfully are happy to be wrong (since it means they learned something), aren’t afraid not to know something, and don’t push solutions that others resist until they’ve gathered enough intuition to know for sure that it matches the domain. “A beaver who has humbly recently become a machine learning engineer” by DALL-E 2 I believe that AI research is today by far the most impactful place for engineers who want to build useful systems to be working, and I expect this statement to become only more true as progress continues. If you’d like to work on creating the next generation of AI models, email me (gdb@openai.com) with any evidence of exceptional accomplishment in software engineering.

over a year ago 54 votes
OpenAI Five Finals Intro

The text of my speech introducing OpenAI Five at Saturday’s OpenAI Five Finals event, where our AI beat the world champions at Dota 2: “Welcome everyone. This is an exciting day. First, this is an historic moment: this will be the first time that an AI has even attempted to play the world champions in an esports game. OG is simply on another level relative to other teams we’ve played. So we don’t know what’s going to happen, but win or lose, these will be games to remember. And you know, OpenAI Five and DeepMind’s very impressive StarCraft bot This event is really about something bigger than who wins or loses: letting people connect with the strange, exotic, yet tangible intelligences produced by today’s rapidly progressing AI technology. We’re all used to computer programs which have been meticulously coded by a human programmer. Do one thing that the human didn’t anticipate, and the program will break. We think of our computers as unthinking machines which can’t innovate, can’t be creative, can’t truly understand. But to play Dota, you need to do all these things. So we needed to do something different. OpenAI Five is powered by deep reinforcement learning — meaning that we didn’t code in how to play Dota. We instead coded in the how to learn. Five tries out random actions, and learns from a reward or punishment. In its 10 months of training, its experienced 45,000 years of Dota gameplay against itself. The playstyle it has devised are its own — they are truly creative and dreamed up by our computer — and so from Five’s perspective, today’s games are going to its first encounter with an alien intelligence (no offense to OG!). The beauty of this technology is that our learning code doesn’t know it’s meant for Dota. That makes it general purpose with amazing potential to benefit our lives. Last year we used it to control a robotic hand that no one could program. And we expect to see similar technology in new interactive systems, from elderly care robots to creative assistants to other systems we can’t dream of yet. This is the final public event for OpenAI Five, but we expect to do other Dota projects in the future. I want to thank the incredible team at OpenAI, everyone who worked directly on this project or cheered us on. I want to thank those who have supported the project: Valve, dozens of test teams, today’s casters, and yes, even all the commenters on Reddit. And I want to give massive thanks today to our fantastic guests OG who have taken time out of their tournament schedule to be here today. I hope you enjoy the show — and just to keep things in perspective, no matter how surprising the AIs are to us, know that we’re even more surprising to them!”

over a year ago 51 votes
The OpenAI Mission

This post is co-written by Greg Brockman (left) and Ilya Sutskever (right). We’ve been working on OpenAI for the past three years. Our mission is to ensure that artificial general intelligence (AGI) — which we define as automated systems that outperform humans at most economically valuable work — benefits all of humanity. Today we announced a new legal structure for OpenAI, called OpenAI LP, to better pursue this mission — in particular to raise more capital as we attempt to build safe AGI and distribute its benefits. In this post, we’d like to help others understand how we think about this mission. Why now? # The founding vision of the field of AI was “… to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it”, and to eventually build a machine that thinks — that is, an AGI. But over the past 60 years, progress stalled multiple times and people started thinking of AI as a field that wouldn’t deliver. Since 2012, deep learning has generated sustained progress in many domains using a small simple set of tools, which have the following properties: Generality: deep learning tools are simple, yet they apply to many domains, such as vision, speech recognition, speech synthesis, text synthesis, image synthesis, translation, robotics, and game playing. Competence: today, the only way to get competitive results on most “AI-type problems” is through the use of deep learning techniques. Scalability: good old fashioned AI was able to produce exciting demos, but its techniques had difficulty scaling to harder problems. But in deep learning, more computational power and more data leads to better results. It has also proven easy (if costly) to rapidly increase the amount of compute productively used by deep learning experiments. The rapid progress of useful deep learning systems with these properties makes us feel that it’s reasonable to start taking AGI seriously — though it’s hard to know how far away it is. The impact of AGI # Just like a computer today, an AGI will be applicable to a wide variety of tasks — and just like computers in 1900 or the Internet in 1950, it’s hard to describe (or even predict) the kind of impact AGI will have. But to get a sense, imagine a computer system which can do the following activities with minimal human input: Make a scientific breakthrough at the level of the best scientists Productize that breakthrough and build a company, with a skill comparable to the best entrepreneurs Rapidly grow that company and manage it at large scale The upside of such a computer system is enormous — for an illustrative example, an AGI following the pattern above could produce amazing healthcare applications deployed at scale. Imagine a network of AGI-powered computerized doctors that accumulates a superhuman amount of clinical experience, allowing it to produce excellent diagnoses, deeply understand the nuanced effect of various treatments in lots of conditions, and greatly reduce the human error factor of healthcare — all for very low cost and accessible to everyone. Risks # We already live in a world with entities that surpass individual human abilities, which we call companies. If working on the right goals in the right way, companies can produce huge amounts of value and improve lives. But if not properly checked, they can also cause damage, like logging companies that cut down rain forests, cigarette companies that get children smoking, or scams like Ponzi schemes. We think of AGI as being like a hyper-effective company, with commensurate benefits and risks. We are concerned about AGI pursuing goals misspecified by its operator, malicious humans subverting a deployed AGI, or an out-of-control economy that grows without resulting in improvements to human lives. And because it’s hard to change powerful systems — just think about how hard it’s been to add security to the Internet — once they’ve been deployed, we think it’s important to address AGI’s safety and policy risks before it is created. OpenAI’s mission is to figure out how to get the benefits of AGI and mitigate the risks — and make sure those benefits accrue to all of humanity. The future is uncertain, and there are many ways in which our predictions could be incorrect. But if they turn out to be right, this mission will be critical. If you’d like to work on this mission, we’re hiring! About us # Ilya: I’ve been working on deep learning for 16 years. It was fun to witness deep learning transform from being a marginalized subfield of AI into one the most important family of scientific advances in recent history. As deep learning was getting more powerful, I realized that AGI might become a reality on a timescale relevant to my lifetime. And given AGI’s massive upside and significant risks, I want to maximize the positive parts of this impact and minimize the negative. Greg: Technology causes change, both positive and negative. AGI is the most extreme kind of technology that humans will ever create, with extreme upside and downside. I work on OpenAI because making AGI go well is the most important problem I can imagine contributing towards. Today I try to spend most of my time on technical work, and also work to spark better public discourse about AGI and related topics.

over a year ago 50 votes
OpenAI Five intro

The text of my speech introducing OpenAI Five at yesterday’s Benchmark event: “We’re here to watch humans and AI play Dota, but today’s match will have implications for the world. OpenAI’s mission is to ensure that when we can build machines as smart as humans, they will benefit all of humanity. That means both pushing the limits of what’s possible and ensuring future systems are safe and aligned with human values. We work on Dota because it is a great training ground for AI: it is one of the most complicated games, involving teamwork, real time strategy, imperfect information, and an astronomical combinations of heroes and items. We can’t program a solution, so Five learns by playing 180 years of games against itself every day — sadly that means we can’t learn from the players up here unless they played for a few decades. It’s powered by 5 artificial neural networks which act like an artificial intuition. Five’s neural networks are about the size of the brain of an ant — still far from what we all have in our heads. One year ago, we beat the world’s top professionals at 1v1 Dota. People thought 5v5 would be totally out of reach. 1v1 requires mechanics and positioning; people did not expect the same system to learn strategy. But our AI system can learn problems it was not even designed to solve — we just used the same technology to learn to control a robotic hand — something no one could program. The computational power for OpenAI Five would have been impractical two years ago. But the availability of computation for AI has been increasing exponentially, doubling every 3.5 months since 2012, and one day technologies like this will become commonplace. Feel free to root for either team. Either way, humanity wins.” I’m very excited to see where the upcoming months of OpenAI Five development and testing take us.

over a year ago 52 votes

More in programming

The future of large files in Git is Git

.title {text-wrap:balance;} #content > p:first-child {text-wrap:balance;} If Git had a nemesis, it’d be large files. Large files bloat Git’s storage, slow down git clone, and wreak havoc on Git forges. In 2015, GitHub released Git LFS—a Git extension that hacked around problems with large files. But Git LFS added new complications and storage costs. Meanwhile, the Git project has been quietly working on large files. And while LFS ain’t dead yet, the latest Git release shows the path towards a future where LFS is, finally, obsolete. What you can do today: replace Git LFS with Git partial clone Git LFS works by storing large files outside your repo. When you clone a project via LFS, you get the repo’s history and small files, but skip large files. Instead, Git LFS downloads only the large files you need for your working copy. In 2017, the Git project introduced partial clones that provide the same benefits as Git LFS: Partial clone allows us to avoid downloading [large binary assets] in advance during clone and fetch operations and thereby reduce download times and disk usage. – Partial Clone Design Notes, git-scm.com Git’s partial clone and LFS both make for: Small checkouts – On clone, you get the latest copy of big files instead of every copy. Fast clones – Because you avoid downloading large files, each clone is fast. Quick setup – Unlike shallow clones, you get the entire history of the project—you can get to work right away. What is a partial clone? A Git partial clone is a clone with a --filter. For example, to avoid downloading files bigger than 100KB, you’d use: git clone --filter='blobs:size=100k' <repo> Later, Git will lazily download any files over 100KB you need for your checkout. By default, if I git clone a repo with many revisions of a noisome 25 MB PNG file, then cloning is slow and the checkout is obnoxiously large: $ time git clone https://github.com/thcipriani/noise-over-git Cloning into '/tmp/noise-over-git'... ... Receiving objects: 100% (153/153), 1.19 GiB real 3m49.052s Almost four minutes to check out a single 25MB file! $ du --max-depth=0 --human-readable noise-over-git/. 1.3G noise-over-git/. $ ^ 🤬 And 50 revisions of that single 25MB file eat 1.3GB of space. But a partial clone side-steps these problems: $ git config --global alias.pclone 'clone --filter=blob:limit=100k' $ time git pclone https://github.com/thcipriani/noise-over-git Cloning into '/tmp/noise-over-git'... ... Receiving objects: 100% (1/1), 24.03 MiB real 0m6.132s $ du --max-depth=0 --human-readable noise-over-git/. 49M noise-over-git/ $ ^ 😻 (the same size as a git lfs checkout) My filter made cloning 97% faster (3m 49s → 6s), and it reduced my checkout size by 96% (1.3GB → 49M)! But there are still some caveats here. If you run a command that needs data you filtered out, Git will need to make a trip to the server to get it. So, commands like git diff, git blame, and git checkout will require a trip to your Git host to run. But, for large files, this is the same behavior as Git LFS. Plus, I can’t remember the last time I ran git blame on a PNG 🙃. Why go to the trouble? What’s wrong with Git LFS? Git LFS foists Git’s problems with large files onto users. And the problems are significant: 🖕 High vendor lock-in – When GitHub wrote Git LFS, the other large file systems—Git Fat, Git Annex, and Git Media—were agnostic about the server-side. But GitHub locked users to their proprietary server implementation and charged folks to use it.1 💸 Costly – GitHub won because it let users host repositories for free. But Git LFS started as a paid product. Nowadays, there’s a free tier, but you’re dependent on the whims of GitHub to set pricing. Today, a 50GB repo on GitHub will cost $40/year for storage. In contrast, storing 50GB on Amazon’s S3 standard storage is $13/year. 😰 Hard to undo – Once you’ve moved to Git LFS, it’s impossible to undo the move without rewriting history. 🌀 Ongoing set-up costs – All your collaborators need to install Git LFS. Without Git LFS installed, your collaborators will get confusing, metadata-filled text files instead of the large files they expect. The future: Git large object promisors Large files create problems for Git forges, too. GitHub and GitLab put limits on file size2 because big files cost more money to host. Git LFS keeps server-side costs low by offloading large files to CDNs. But the Git project has a new solution. Earlier this year, Git merged a new feature: large object promisers. Large object promisors aim to provide the same server-side benefits as LFS, minus the hassle to users. This effort aims to especially improve things on the server side, and especially for large blobs that are already compressed in a binary format. This effort aims to provide an alternative to Git LFS – Large Object Promisors, git-scm.com What is a large object promisor? Large object promisors are special Git remotes that only house large files. In the bright, shiny future, large object promisors will work like this: You push a large file to your Git host. In the background, your Git host offloads that large file to a large object promisor. When you clone, the Git host tells your Git client about the promisor. Your client will clone from the Git host, and automagically nab large files from the promisor remote. But we’re still a ways off from that bright, shiny future. Git large object promisors are still a work in progress. Pieces of large object promisors merged to Git in March of 2025. But there’s more to do and open questions yet to answer. And so, for today, you’re stuck with Git LFS for giant files. But once large object promisors see broad adoption, maybe GitHub will let you push files bigger than 100MB. The future of large files in Git is Git. The Git project is thinking hard about large files, so you don’t have to. Today, we’re stuck with Git LFS. But soon, the only obstacle for large files in Git will be your half-remembered, ominous hunch that it’s a bad idea to stow your MP3 library in Git. Edited by Refactoring English Later, other Git forges made their own LFS servers. Today, you can push to multiple Git forges or use an LFS transfer agent, but all this makes set up harder for contributors. You’re pretty much locked-in unless you put in extra effort to get unlocked.↩︎ File size limits: 100MB for GitHub, 100MB for GitLab.com↩︎

23 hours ago 7 votes
Just a Little More Context Bro, I Promise, and It’ll Fix Everything

Conrad Irwin has an article on the Zed blog “Why LLMs Can't Really Build Software”. He says it boils down to: the distinguishing factor of effective engineers is their ability to build and maintain clear mental models We do this by: Building a mental model of what you want to do Building a mental model of what the code does Reducing the difference between the two It’s kind of an interesting observation about how we (as humans) problem solve vs. how we use LLMs to problem solve: With LLMs, you stuff more and more information into context until it (hopefully) has enough to generate a solution. With your brain, you tweak, revise, or simplify your mental model more and more until the solution presents itself. One adds information — complexity you might even say — to solve a problem. The other eliminates it. You know what that sort of makes me think of? NPM driven development. Solving problems with LLMs is like solving front-end problems with NPM: the “solution” comes through installing more and more things — adding more and more context, i.e. more and more packages. LLM: Problem? Add more context. NPM: Problem? There’s a package for that. Contrast that with a solution that comes through simplification. You don’t add more context. You simplify your mental model so you need less to solve a problem — if you solve it at all, perhaps you eliminate the problem entirely! Rather than install another package to fix what ails you, you simplify your mental model which often eliminates the problem you had in the first place; thus eliminating the need to solve any problem at all, or to add any additional context or complexity (or dependency). As I’m typing this, I’m thinking of that image of the evolution of the Raptor engine, where it evolved in simplicity: This stands in contrast to my working with LLMs, which often wants more and more context from me to get to a generative solution: I know, I know. There’s probably a false equivalence here. This entire post started as a note and I just kept going. This post itself needs further thought and simplification. But that’ll have to come in a subsequent post, otherwise this never gets published lol. Email · Mastodon · Bluesky

yesterday 3 votes
How to Leverage the CPU’s Micro-Op Cache for Faster Loops

Measuring, analyzing, and optimizing loops using Linux perf, Top-Down Microarchitectural Analysis, and the CPU’s micro-op cache

yesterday 5 votes
Omarchy micro-forks Chromium

You can just change things! That's the power of open source. But for a lot of people, it might seem like a theoretical power. Can you really change, say, Chrome? Well, yes! We've made a micro fork of Chromium for Omarchy (our new 37signals Linux distribution). Just to add one feature needed for live theming. And now it's released as a package anyone can install on any flavor of Arch using the AUR (Arch User Repository). We got it all done in just four days. From idea, to solicitation, to successful patch, to release, to incorporation. And now it'll be part of the next release of Omarchy. There are no speed limits in open source. Nobody to ask for permission. You have the code, so you can make the change. All you need is skill and will (and maybe, if you need someone else to do it for you, a $5,000 incentive 😄).

2 days ago 4 votes
Choosing Tools To Make Websites

Jan Miksovsky lays out his idea for website creation as content transformation. He starts by talking about tools that hide what’s happening “under the hood”: A framework’s marketing usually pretends it is unnecessary for you to understand how its core transformation works — but without that knowledge, you can’t achieve the beautiful range of results you see in the framework’s sample site gallery. This is a great callout. Tools will say, “You don’t have to worry about the details.” But the reality is, you end up worrying about the details — at least to some degree. Why? Because what you want to build is full of personalization. That’s how you differentiate yourself, which means you’re going to need a tool that’s expressive enough to help you. So the question becomes: how hard is it to understand the details that are being intentionally hidden away? A lot of the time those details are not exposed directly. Instead they’re exposed through configuration. But configuration doesn’t really help you learn how something works. I mean, how many of you have learned how typescript works under the hood by using tsconfig.json? As Jan says: Configuration can lead to as many problems as it solves Nailed it. He continues: Configuring software is itself a form of programming, in fact a rather difficult and often baroque form. It can take more data files or code to configure a framework’s transformation than to write a program that directly implements that transformation itself. I’m not a Devops person, but that sounds like Devops in a nutshell right there. (It also perfectly encapsulates my feelings on trying to setup configuration in GitHub Actions.) Jan moves beyond site creation to also discuss site hosting. He gives good reasons for keeping your website’s architecture simple and decoupled from your hosting provider (something I’ve been a long time proponent of): These site hosting platforms typically charge an ongoing subscription fee. (Some offer a free tier that may meet your needs.) The monthly fee may not be large, but it’s forever. Ten years from now you’ll probably still want your content to be publicly available, but will you still be happy paying that monthly fee? If you stop paying, your site disappears. In subscription pricing, any price (however small) is recurring. Stated differently: pricing is forever. Anyhow, it’s a good read from Jan and lays out his vision for why he’s building Web Origami: a tool for that encourages you to understand (and customize) how you transform content to a website. He just launched version 0.4.0 which has some exciting stuff I’m excited to try out further (I’ll have to write about all that later). Email · Mastodon · Bluesky

3 days ago 5 votes