Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
29
I managed the engineering team at Digg as we ran out of money, and were eventually acquired. It was an eye opening experience, and I learned a great deal about the reality and the optics of selling a company, particularly one with no money and a shrinking user base. Humbling was just the beginning. Since then, I’ve had the opportunity to evaluate a number of companies from the other side of the Mergers and Acquisitions (M&A) table. Most of those discussions didn’t move forward, but a handful have, and every discussion was an education in engineering’s role in these messy processes. Acquisitions are filled with risk, with early discussions creating a great deal of anxiety for finance, legal, and people teams. Engineering has an interesting risk profile as well, needing to evaluate the potential product value and integration cost of a potential acquisition. However, and unlike many other functions, engineering will be intimately involved after the acquisition closes, typically leading...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Irrational Exuberance

Setting policy for strategy.

This book’s introduction started by defining strategy as “making decisions.” Then we dug into exploration, diagnosis, and refinement: three chapters where you could argue that we didn’t decide anything at all. Clarifying the problem to be solved is the prerequisite of effective decision making, but eventually decisions do have to be made. Here in this chapter on policy, and the following chapter on operations, we finally start to actually make some decisions. In this chapter, we’ll dig into: How we define policy, and how setting policy differs from operating policy as discussed in the next chapter The structured steps for setting policy How many policies should you set? Is it preferable to have one policy, many policies, or does it not matter much either way? Recurring kinds of policies that appear frequently in strategies Why it’s valuable to be intentional about your strategy’s altitude, and how engineers and executives generally maintain different altitudes in their strategies Criteria to use for evaluating whether your policies are likely to be impactful How to develop novel policies, and why it’s rare Why having multiple bundles of alternative policies is generally a phase in strategy development that indicates a gap in your diagnosis How policies that ignore constraints sound inspirational, but accomplish little Dealing with ambiguity and uncertainty created by missing strategies from cross-functional stakeholders By the end, you’ll be ready to evaluate why an existing strategy’s policies are struggling to make an impact, and to start iterating on policies for strategy of your own. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. What is policy? Policy is interpreting your diagnosis into a concrete plan. That plan will be a collection of decisions, tradeoffs, and approaches. They’ll range from coding practices, to hiring mandates, to architectural decisions, to guidance about how choices are made within your organization. An effective policy solves the entirety of the strategy’s diagnosis, although the diagnosis itself is encouraged to specify which aspects can be ignored. For example, the strategy for working with private equity ownership acknowledges in its diagnosis that they don’t have clear guidance on what kind of reduction to expect: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. Faced with that uncertainty, the policy simply acknowledges the ambiguity and commits to reconsider when more information becomes available: We believe our new ownership will provide a specific target for Research and Development (R&D) operating expenses during the upcoming financial year planning. We will revise these policies again once we have explicit targets, and will delay planning around reductions until we have those numbers to avoid running two overlapping processes. There are two frequent points of confusion when creating policies that are worth addressing directly: Policy is a subset of strategy, rather than the entirety of strategy, because policy is only meaningful in the context of the strategy’s diagnosis. For example, the “N-1 backfill policy” makes sense in the context of new, private equity ownership. The policy wouldn’t work well in a rapidly expanding organization. Any strategy without a policy is useless, but you’ll also find policies without context aren’t worth much either. This is particularly unfortunate, because so often strategies are communicated without those critical sections. Policy describes how tradeoffs should be made, but it doesn’t verify how the tradeoffs are actually being made in practice. The next chapter on operations covers how to inspect an organization’s behavior to ensure policies are followed. When reworking a strategy to be more readable, it often makes sense to merge policy and operation sections together. However, when drafting strategy it’s valuable to keep them separate. Yes, you might use a weekly meeting to review whether the policy is being followed, but whether it’s an effective policy is independent of having such a meeting, and what operational mechanisms you use will vary depending on the number of policies you intend to implement. With this definition in mind, now we can move onto the more interesting discussion of how to set policy. How to set policy Every part of writing a strategy feels hard when you’re doing it, but I personally find that writing policy either feels uncomfortably easy or painfully challenging. It’s never a happy medium. Fortunately, the exploration and diagnosis usually come together to make writing your policy simple: although sometimes that simple conclusion may be a difficult one to swallow. The steps I follow to write a strategy’s policy are: Review diagnosis to ensure it captures the most important themes. It doesn’t need to be perfect, but it shouldn’t have omissions so obvious that you can immediately identify them. Select policies that address the diagnosis. Explicitly match each policy to one or more diagnoses that it addresses. Continue adding policies until every diagnosis is covered. This is a broad instruction, but it’s simpler than it sounds because you’ll typically select from policies identified during your exploration phase. However, there certainly is space to tweak those policies, and to reapply familiar policies to new circumstances. If you do find yourself developing a novel policy, there’s a later section in this chapter, Developing novel policies, that addresses that topic in more detail. Consolidate policies in cases where they overlap or adjoin. For example, two policies about specific teams might be generalized into a policy about all teams in the engineering organization. Backtest policy against recent decisions you’ve made. This is particularly effective if you maintain a decision log in your organization. Mine for conflict once again, much as you did in developing your diagnosis. Emphasize feedback from teams and individuals with a different perspective than your own, but don’t wholly eliminate those that you agree with. Just as it’s easy to crowd out opposing views in diagnosis if you don’t solicit their input, it’s possible to accidentally crowd out your own perspective if you anchor too much on others’ perspectives. Consider refinement if you finish writing, and you just aren’t sure your approach works – that’s fine! Return to the refinement phase by deploying one of the refinement techniques to increase your conviction. Remember that we talk about strategy like it’s done in one pass, but almost all real strategy takes many refinement passes. The steps of writing policy are relatively pedestrian, largely because you’ve done so much of the work already in the exploration, diagnosis, and refinement steps. If you skip those phases, you’d likely follow the above steps for writing policy, but the expected quality of the policy itself would be far lower. How many policies? Addressing the entirety of the diagnosis is often complex, which is why most strategies feature a set of policies rather than just one. The strategy for decomposing a monolithic application is not one policy deciding not to decompose, but a series of four policies: Business units should always operate in their own code repository and monolith. New integrations across business unit monoliths should be done using gRPC. Except for new business unit monoliths, we don’t allow new services. Merge existing services into business-unit monoliths where you can. Four isn’t universally the right number either. It’s simply the number that was required to solve that strategy’s diagnosis. With an excellent diagnosis, your policies will often feel inevitable, and perhaps even boring. That’s great: what makes a policy good is that it’s effective, not that it’s novel or inspiring. Kinds of policies While there are so many policies you can write, I’ve found they generally fall into one of four major categories: approvals, allocations, direction, and guidance. This section introduces those categories. Approvals define the process for making a recurring decision. This might require invoking an architecture advice process, or it might require involving an authority figure like an executive. In the Index post-acquisition integration strategy, there were a number of complex decisions to be made, and the approval mechanism was: Escalations come to paired leads: given our limited shared context across teams, all escalations must come to both Stripe’s Head of Traffic Engineering and Index’s Head of Engineering. This allowed the acquired and acquiring teams to start building trust between each other by ensuring both were consulted before any decision was finalized. On the other hand, the user data access strategy’s approval strategy was more focused on managing corporate risk: Exceptions must be granted in writing by CISO. While our overarching Engineering Strategy states that we follow an advisory architecture process as described in Facilitating Software Architecture, the customer data access policy is an exception and must be explicitly approved, with documentation, by the CISO. Start that process in the #ciso channel. These two different approval processes had different goals, so they made tradeoffs differently. There are so many ways to tweak approval, allowing for many different tradeoffs between safety, productivity, and trust. Allocations describe how resources are split across multiple potential investments. Allocations are the most concrete statement of organizational priority, and also articulate the organization’s belief about how productivity happens in teams. Some companies believe you go fast by swarming more people onto critical problems. Other companies believe you go fast by forcing teams to solve problems without additional headcount. Both can work, and teach you something important about the company’s beliefs. The strategy on Uber’s service migration has two concrete examples of allocation policies. The first describes the Infrastructure engineering team’s allocation between manual provision tasks and investing into creating a self-service provisioning platform: Constrain manual provisioning allocation to maximize investment in self-service provisioning. The service provisioning team will maintain a fixed allocation of one full time engineer on manual service provisioning tasks. We will move the remaining engineers to work on automation to speed up future service provisioning. This will degrade manual provisioning in the short term, but the alternative is permanently degrading provisioning by the influx of new service requests from newly hired product engineers. The second allocation policy is implicitly noted in this strategy’s diagnosis, where it describes the allocation policy in the Engineering organization’s higher altitude strategy: Within infrastructure engineering, there is a team of four engineers responsible for service provisioning today. While our organization is growing at a similar rate as product engineering, none of that additional headcount is being allocated directly to the team working on service provisioning. We do not anticipate this changing. Allocation policies often create a surprising amount of clarity for the team, and I include them in almost every policy I write either explicitly, or implicitly in a higher altitude strategy. Direction provides explicit instruction on how a decision must be made. This is the right tool when you know where you want to go, and exactly the way that you want to get there. Direction is appropriate for problems you understand clearly, and you value consistency more than empowering individual judgment. Direction works well when you need an unambiguous policy that doesn’t leave room for interpretation. For example, Calm’s policy for working in the monolith: We write all code in the monolith. It has been ambiguous if new code (especially new application code) should be written in our JavaScript monolith, or if all new code must be written in a new service outside of the monolith. This is no longer ambiguous: all new code must be written in the monolith. In the rare case that there is a functional requirement that makes writing in the monolith implausible, then you should seek an exception as described below. In that case, the team couldn’t agree on what should go into the monolith. Individuals would often make incompatible decisions, so creating consistency required removing personal judgment from the equation. Sometimes judgment is the issue, and sometimes consistency is difficult due to misaligned incentives. A good example of this comes in strategy on working with new Private Equity ownership: We will move to an “N-1” backfill policy, where departures are backfilled with a less senior level. We will also institute a strict maximum of one Principal Engineer per business unit. It’s likely that hiring managers would simply ignore this backfill policy if it was stated more softly, although sometimes less forceful policies are useful. Guidance provides a recommendation about how a decision should be made. Guidance is useful when there’s enough nuance, ambiguity, or complexity that you can explain the desired destination, but you can’t mandate the path to reaching it. One example of guidance comes from the Index acquisition integration strategy: Minimize changes to tokenization environment: because point-of-sale devices directly work with customer payment details, the API that directly supports the point-of-sale device must live within our secured environment where payment details are stored. However, any other functionality must not be added to our tokenization environment. This might read like direction, but it’s clarifying the desired outcome of avoiding unnecessary complexity in the tokenization environment. However, it’s not able to articulate what complexity is necessary, so ultimately it’s guidance because it requires significant judgment to interpret. A second example of guidance comes in the strategy on decomposing a monolithic codebase: Merge existing services into business-unit monoliths where you can. We believe that each choice to move existing services back into a monolith should be made “in the details” rather than from a top-down strategy perspective. Consequently, we generally encourage teams to wind down their existing services outside of their business unit’s monolith, but defer to teams to make the right decision for their local context. This is another case of knowing the desired outcome, but encountering too much uncertainty to direct the team on how to get there. If you ask five engineers about whether it’s possible to merge a given service back into a monolithic codebase, they’ll probably disagree. That’s fine, and highlights the value of guidance: it makes it possible to make incremental progress in areas where more concrete direction would cause confusion. When you’re working on a strategy’s policy section, it’s important to consider all of these categories. Which feel most natural to use will vary depending on your team and role, but they’re all usable: If you’re a developer productivity team, you might have to lean heavily on guidance in your policies and increased support for that guidance within the details of your platform. If you’re an executive, you might lean heavily on direction. Indeed, you might lean too heavily on direction, where guidance often works better for areas where you understand the direction but not the path. If you’re a product engineering organization, you might have to narrow the scope of your direction to the engineers within that organization to deal with the realities of complex cross-organization dynamics. Finally, if you have a clear approach you want to take that doesn’t fit cleanly into any of these categories, then don’t let this framework dissuade you. Give it a try, and adapt if it doesn’t initially work out. Maintaining strategy altitude The chapter on when to write engineering strategy introduced the concept of strategy altitude, which is being deliberate about where certain kinds of policies are created within your organization. Without repeating that section in its entirety, it’s particularly relevant when you set policy to consider how your new policies eliminate flexibility within your organization. Consider these two somewhat opposing strategies: Stripe’s Sorbet strategy only worked in an organization that enforced the use of a single programming language across (essentially) all teams Uber’s service migration strategy worked well in an organization that was unwilling to enforce consistent programming language adoption across teams Stripe’s organization-altitude policy took away the freedom of individual teams to select their preferred technology stack. In return, they unlocked the ability to centralize investment in a powerful way. Uber went the opposite way, unlocking the ability of teams to pick their preferred technology stack, while significantly reducing their centralized teams’ leverage. Both altitudes make sense. Both have consequences. Criteria for effective policies In The Engineering Executive’s Primer’s chapter on engineering strategy, I introduced three criteria for evaluating policies. They ought to be applicable, enforced, and create leverage. Defining those a bit: Applicable: it can be used to navigate complex, real scenarios, particularly when making tradeoffs. Enforced: teams will be held accountable for following the guiding policy. Create Leverage: create compounding or multiplicative impact. The last of these three, create leverage, made sense in the context of a book about engineering executives, but probably doesn’t make as much sense here. Some policies certainly should create leverage (e.g. empower developer experience team by restricting new services), but others might not (e.g. moving to an N-1 backfill policy). Outside the executive context, what’s important isn’t necessarily creating leverage, but that a policy solves for part of the diagnosis. That leaves the other two–being applicable and enforced–both of which are necessary for a policy to actually address the diagnosis. Any policy which you can’t determine how to apply, or aren’t willing to enforce, simply won’t be useful. Let’s apply these criteria to a handful of potential policies. First let’s think about policies we might write to improve the talent density of our engineering team: “We only hire world-class engineers.” This isn’t applicable, because it’s unclear what a world-class engineer means. Because there’s no mutually agreeable definition in this policy, it’s also not consistently enforceable. “We only hire engineers that get at least one ‘strong yes’ in scorecards.” This is applicable, because there’s a clear definition. This is enforceable, depending on the willingness of the organization to reject seemingly good candidates who don’t happen to get a strong yes. Next, let’s think about a policy regarding code reuse within a codebase: “We follow a strict Don’t Repeat Yourself policy in our codebase.” There’s room for debate within a team about whether two pieces of code are truly duplicative, but this is generally applicable. Because there’s room for debate, it’s a very context specific determination to decide how to enforce a decision. “Code authors are responsible for determining if their contributions violate Don’t Repeat Yourself, and rewriting them if they do.” This is much more applicable, because now there’s only a single person’s judgment to assess the potential repetition. In some ways, this policy is also more enforceable, because there’s no longer any ambiguity around who is deciding whether a piece of code is a repetition. The challenge is that enforceability now depends on one individual, and making this policy effective will require holding individuals accountable for the quality of their judgement. An organization that’s unwilling to distinguish between good and bad judgment won’t get any value out of the policy. This is a good example of how a good policy in one organization might become a poor policy in another. If you ever find yourself wanting to include a policy that for some reason either can’t be applied or can’t be enforced, stop to ask yourself what you’re trying to accomplish and ponder if there’s a different policy that might be better suited to that goal. Developing novel policies My experience is that there are vanishingly few truly novel policies to write. There’s almost always someone else has already done something similar to your intended approach. Calm’s engineering strategy is such a case: the details are particular to the company, but the general approach is common across the industry. The most likely place to find truly novel policies is during the adoption phase of a new widespread technology, such as the rise of ubiquitous mobile phones, cloud computing, or large language models. Even then, as explored in the strategy for adopting large-language models, the new technology can be engaged with as a generic technology: Develop an LLM-backed process for reactivating departed and suspended drivers in mature markets. Through modeling our driver lifecycle, we determined that improving onboarding time will have little impact on the total number of active drivers. Instead, we are focusing on mechanisms to reactivate departed and suspended drivers, which is the only opportunity to meaningfully impact active drivers. You could simply replace “LLM” with “data-driven” and it would be equally readable. In this way, policy can generally sidestep areas of uncertainty by being a bit abstract. This avoids being overly specific about topics you simply don’t know much about. However, even if your policy isn’t novel to the industry, it might still be novel to you or your organization. The steps that I’ve found useful to debug novel policies are the same steps as running a condensed version of the strategy process, with a focus on exploration and refinement: Collect a number of similar policies, with a focus on how those policies differ from the policy you are creating Create a systems model to articulate how this policy will work, and also how it will differ from the similar policies you’re considering Run a strategy testing cycle for your proto-policy to discover any unknown-unknowns about how it works in practice Whether you run into this scenario is largely a function of the extent of your, and your organization’s, experience. Early in my career, I found myself doing novel (for me) strategy work very frequently, and these days I rarely find myself doing novel work, instead focusing on adaptation of well-known policies to new circumstances. Are competing policy proposals an anti-pattern? When creating policy, you’ll often have to engage with the question of whether you should develop one preferred policy or a series of potential strategies to pick from. Developing these is a useful stage of setting policy, but rather than helping you refine your policy, I’d encourage you to think of this as exposing gaps in your diagnosis. For example, when Stripe developed the Sorbet ruby-typing tooling, there was debate between two policies: Should we build a ruby-typing tool to allow a centralized team to gradually migrate the company to a typed codebase? Should we migrate the codebase to a preexisting strongly typed language like Golang or Java? These were, initially, equally valid hypotheses. It was only by clarifying our diagnosis around resourcing that it became clear that incurring the bulk of costs in a centralized team was clearly preferable to spreading the costs across many teams. Specifically, recognizing that we wanted to prioritize short-term product engineering velocity, even if it led to a longer migration overall. If you do develop multiple policy options, I encourage you to move the alternatives into an appendix rather than including them in the core of your strategy document. This will make it easier for readers of your final version to understand how to follow your policies, and they are the most important long-term user of your written strategy. Recognizing constraints A similar problem to competing solutions is developing a policy that you cannot possibly fund. It’s easy to get enamored with policies that you can’t meaningfully enforce, but that’s bad policy, even if it would work in an alternate universe where it was possible to enforce or resource it. To consider a few examples: The strategy for controlling access to user data might have proposed requiring manual approval by a second party of every access to customer data. However, that would have gone nowhere. Our approach to Uber’s service migration might have required more staffing for the infrastructure engineering team, but we knew that wasn’t going to happen, so it was a meaningless policy proposal to make. The strategy for navigating private equity ownership might have argued that new ownership should not hold engineering accountable to a new standard on spending. But they would have just invalidated that strategy in the next financial planning period. If you find a policy that contemplates an impractical approach, it doesn’t only indicate that the policy is a poor one, it also suggests your policy is missing an important pillar. Rather than debating the policy options, the fastest path to resolution is to align on the diagnosis that would invalidate potential paths forward. In cases where aligning on the diagnosis isn’t possible, for example because you simply don’t understand the possibilities of a new technology as encountered in the strategy for adopting LLMs, then you’ve typically found a valuable opportunity to use strategy refinement to build alignment. Dealing with missing strategies At a recent company offsite, we were debating which policies we might adopt to deal with annual plans that kept getting derailed after less than a month. Someone remarked that this would be much easier if we could get the executive team to commit to a clearer, written strategy about which business units we were prioritizing. They were, of course, right. It would be much easier. Unfortunately, it goes back to the problem we discussed in the diagnosis chapter about reframing blockers into diagnosis. If a strategy from the company or a peer function is missing, the empowering thing to do is to include the absence in your diagnosis and move forward. Sometimes, even when you do this, it’s easy to fall back into the belief that you cannot set a policy because a peer function might set a conflicting policy in the future. Whether you’re an executive or an engineer, you’ll never have the details you want to make the ideal policy. Meaningful leadership requires taking meaningful risks, which is never something that gets comfortable. Summary After working through this chapter, you know how to develop policy, how to assemble policies to solve your diagnosis, and how to avoid a number of the frequent challenges that policy writers encounter. At this point, there’s only one phase of strategy left to dig into, operating the policies you’ve created.

22 hours ago 3 votes
Who gets to do strategy?

If you talk to enough aspiring leaders, you’ll become familiar with the prevalent idea that they need to be promoted before they can work on strategy. It’s a truism, but I’ve also found this idea perfectly wrong: you can work on strategy from anywhere in an organization, it just requires different tactics to do so. Both Staff Engineer and The Engineering Executive’s Primer have chapters on strategy. While the chapters’ contents are quite different, both present a practical path to advancing your organization’s thinking about complex topics. This chapter explains my belief that anyone within an organization can make meaningful progress on strategy, particularly if you are honest about the tools accessible to you, and thoughtful about how to use them. The themes we’ll dig into are: How to do strategy as an engineer, particularly an engineer who hasn’t been given explicit authority to do strategy Doing strategy as an engineering executive who is responsible for your organization’s decision-making How you can do engineering strategy even when you depend on an absent strategy, cannot acknowledge parts of the diagnosis because addressing certain problems is politically sensitive, or struggle with pockets of misaligned incentives If this book’s argument is that everyone should do strategy, is there anyone who, nonetheless, really should not do strategy? By the end, you’ll hopefully agree that engineering strategy is accessible to everyone, even though you’re always operating within constraints. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Doing strategy as an engineer It’s easy to get so distracted by executive’s top-down approach to strategy that you convince yourself that there aren’t other approachable mechanisms to doing strategy. There are! Staff Engineer introduces an approach I call Take five, then synthesize, which does strategy by: Documenting how five current and historical related decisions have been made in your organization. This is an extended exploration phase Synthesizing those five documents into a diagnosis and policy. You are naming the implicit strategy, so it’s impossible for someone to reasonably argue you’re not empowered to do strategy: you’re just describing what’s already happening At that point, either the organization feels comfortable with what you’ve written–which is their current strategy–or it doesn’t in which case you’ve forced a conversation about how to revise the approach. Creating awareness is often enough to drive strategic change, and doesn’t require any explicit authorization from an executive to do. When awareness is insufficient, the other pattern I’ve found highly effective in low-authority scenarios is an approach I wrote about in An Elegant Puzzle, and call model, document, and share: Model the approach you want others to adopt. Make it easy for them to observe how you’ve changed the way you’re doing things. Document the approach, the thinking behind it, and how to adopt it. Share the document around. If people see you succeeding with the approach, then they’re likely to copy it from you. You might be skeptical because this is an influence-based approach. However, as we’ll discuss in the next section, even executive-driven strategy is highly dependent on influence. Strategy archaeology Vernor Vinge’s A Deepness in the Sky, published in 1999, introduced the term software archaeologists, folks who created functionality by cobbling together millennia of scraps of existing software. Although it’s a somewhat different usage, I sometimes think of the “take five, then synthesize” approach as performing strategy archaeology. Simply by recording what has happened in the past, we make it easier to understand the present, and influence the future. Doing strategy as an executive The biggest misconception about executive roles, frequently held by non-executives and new executives who are about to make a series of regrettable mistakes, is that executives operate without constraints. That is false: executives have an extremely high number of constraints that they operate under. Executives have budgets, CEO visions, peers to satisfy, and a team to motivate. They can disappoint any of these temporarily, but long-term have to satisfy all of them. Nonetheless, it is true that executives have more latitude to mandate and cajole participation in the strategies that they sponsor. The Engineering Executive’s Primer’s chapter on strategy is a brief summary of this entire book, but it doesn’t say much about how executive strategy differs from non-executive strategy. How the executive’s approach to strategy differs from the engineer’s can be boiled down to: Executives can mandate following of their strategy, which empowers their policy options. An engineer can’t prevent the promotion of someone who refused to follow their policy, but an executive can. Mandates only matter if there are consequences. If an executive is unwilling to enforce consequences for non-compliance with a mandate, the ability to issue a mandate isn’t meaningful. This is also true if they can’t enforce a mandate because of lack of support from their peer executives. Even if an executive is unwilling to use mandates, they have significant visibility and access to their organization to advocate for their preferred strategy. Neither access nor mandates improve an executive’s ability to diagnose problems. However, both often create the appearance of progress. This is why executive strategies can fail so spectacularly and endure so long despite failure. As a result, my experience is that executives have an easier time doing strategy, but a much harder time learning how to do strategy well, and fewer protections to avoid serious mistakes. Further, the consequences of an executive’s poor strategy tend to be much further reaching than an engineer’s. Waiting to do strategy until you are an executive is a recipe for disaster, even if it looks easier from a distance. Doing strategy in other roles Even if you’re neither an engineer nor an engineering executive, you can still do engineering strategy. It’ll just require an even more influence-driven approach. The engineering organization is generally right to believe that they know the most about engineering, but that’s not always true. Sometimes a product manager used to be an engineer and has significant relevant experience. Other times, such as the early adoption of large language models, engineers don’t know much either, and benefit from outside perspectives. Doing strategy in challenging environments Good strategies succeed by accurately diagnosing circumstances and picking policies that address those circumstances. You are likely to spend time in organizations where both of those are challenging due to internal limitations, so it’s worth acknowledging that and discussing how to navigate those challenges. Low-trust environment Sometimes the struggle to diagnose problems is a skill issue. Being bad at strategy is in some ways the easy problem to solve: just do more strategy work to build expertise. In other cases, you may see what the problems are fairly clearly, but not know how to acknowledge the problems because your organization’s culture would frown on it. The latter is a diagnosis problem rooted in low-trust, and does make things more difficult. The chapter on Diagnosis recognizes this problem, and admits that sometimes you have to whisper the controversial parts of a strategy: When you’re writing a strategy, you’ll often find yourself trying to choose between two awkward options: say something awkward or uncomfortable about your company or someone working within it, or omit a critical piece of your diagnosis that’s necessary to understand the wider thinking. Whenever you encounter this sort of debate, my advice is to find a way to include the diagnosis, but to reframe it into a palatable statement that avoids casting blame too narrowly. In short, the solution to low-trust is to translate difficult messages into softer, less direct versions that are acceptable to state. If your goal is to hold people accountable, this can feel dishonest or like a ethical compromise, but the goal of strategy is to make better decisions, which is an entirely different concern than holding folks accountable for the past. Karpman Drama Triangle Sometimes when the diagnosis seems particularly obvious, and people don’t agree with you, it’s because you are wrong. When I’ve been obviously wrong about things I understand well, it’s usually because I’ve fallen into viewing a situation through the Karpman Drama Triangle, where all parties are mapped as the persecutor, the rescuer, or the victim. Poor-judgment environment Even when you do an excellent job diagnosing challenges, it can be difficult to drive agreement within the organization about how to address them. Sometimes this is due to genuinely complex tradeoffs, for example in Stripe’s acquisition of Index, there was debate about how to deal with Index’s Java-based technology stack, which culminated in a compromise that didn’t make anyone particularly happy: Defer making a decision regarding the introduction of Java to a later date: the introduction of Java is incompatible with our existing engineering strategy, but at this point we’ve also been unable to align stakeholders on how to address this decision. Further, we see attempting to address this issue as a distraction from our timely goal of launching a joint product within six months. We will take up this discussion after launching the initial release. That compromise is a good example of a difficult tradeoff: although parties disagreed with the approach, everyone understood the conflicting priorities that had to be addressed. In other cases, though, there are policy choices that simply don’t make much sense, generally driven by poor judgment in your organization. Sometimes it’s not poor technical judgment, but poor judgment in choosing to prioritize one’s personal interests at the expense of the company’s needs. Calm’s strategy to focus on being a product-engineering organization dealt with some aspects of that, acknowledged in its diagnosis: We’re arguing a particularly large amount about adopting new technologies and rewrites. Most of our disagreements stem around adopting new technologies or rewriting existing components into new technology stacks. For example, can we extend this feature or do we have to migrate it to a service before extending it? Can we add this to our database or should we move it into a new Redis cache instead? Is JavaScript a sufficient programming language, or do we need to rewrite this functionality in Go? In that situation, your strategy is an attempt to educate your colleagues about the tradeoffs they are making, but ultimately sometimes folks will disagree with your strategy. In that case, remember that most interesting problems require iterative solutions. Writing your strategy and sharing it will start to change the organization’s mind. Don’t get discouraged even if that change is initially slow. Dealing with missing strategies The strategy for dealing with new private equity ownership introduces a common problem: lack of clarity about what other parts of your own company want. In that case, it seems likely there will be a layoff, but it’s unclear how large that layoff will be: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. Many leaders encounter that sort of ambiguity and decide that they cannot move forward with a strategy of their own until that decision is made. While it’s true that it’s inconvenient not to know the details, getting blocked by ambiguity is always the wrong decision. Instead you should do what the private equity strategy does: accept that ambiguity as a fact to be worked around. Rather than giving up, it adopts a series of new policies to start reducing cost growth by changing their organization’s seniority mix, and recognizes that once there is clarity on reduction targets that there will be additional actions to be taken. Whenever you’re doing something challenging, there are an infinite number of reasonable rationales for why you shouldn’t or can’t make progress. Leadership is finding a way to move forward despite those issues. A missing strategy is always part of your diagnosis, but never a reason that you can’t do strategy. Who shouldn’t do strategy In my experience, there’s almost never a reason why you cannot do strategy, but there are two particular scenarios where doing strategy probably doesn’t make sense. The first is not a who, but a when problem: sometimes there is so much strategy already happening, that doing more is a distraction. If another part of your organization is already working on the same problem, do your best to work with them directly rather than generating competing work. The other time to avoid strategy is when you’re trying to satisfy an emotional need to make a direct, immediate impact. Sharing a thoughtful strategy always makes progress, but it’s often the slow, incremental progress of changing your organization’s beliefs. Even definitive, top-down strategies from executives are often ignored in pockets of an organization, and bottoms-up strategy spread slowly as they are modeled, documented and shared. Embarking on strategy work requires a tolerance for winning in the long-run, even when there’s little progress this week or this quarter. Summary As you finish reading this chapter, my hope is that you also believe that you can work on strategy in your organization, whether you’re an engineer or an executive. I also hope that you appreciate that the tools you use vary greatly depending on who you are within your organization and the culture in which you work. Whether you need to model or can mandate, there’s a mechanism that will work for you.

a week ago 8 votes
How to integrate Stripe's acquisition of Index? (2018)

While discussions around acquisitions often focus on technical diligence and deciding whether to make the acquisition, the integration that follows afterwards can be even more complex. There are few irreversible trapdoor decisions in engineering, but decisions made early in an integration tend to be surprisingly durable. This engineering strategy explores Stripe’s approach to integrating their 2018 acquisition of Index. While a business book would focus on the rationale for the acquisition itself, here that rationale is merely part of the diagnosis that defines the integration tradeoffs. The integration itself is the area of focus. Like most acquisitions, the team responsible for the integration has only learned about the project after the deal closed, which means early efforts are a scramble to apply strategy testing to distinguish between optimistic dates and technical realities. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Reading this document To apply this strategy, start at the top with Policy & Operation. To understand the thinking behind this strategy, read sections in reserve order, starting with Explore. More detail on this structure in Making a readable Engineering Strategy document. Policy & Operation We’re starting with little shared context between the acquired and acquiring engineering teams, and have a six month timeline to launch a joint product. So our starting policy is a mix of a commitment to joint refinment and several provisional architectural policies: Meet at least weekly until the initial release is complete: the involved leadership from Stripe and Index will hold a weekly sync meeting to refine our approach until we fulfill our intial release timeline. This meeting is jointly owned by Stripe’s Head of Traffic Engineering and Index’s Head of Engineering. Minimize changes to tokenization environment: because point-of-sale devices directly work with with customer payment details, the API that directly supports the point-of-sale device must live within our secured environment where payment details are stored. However, any other functionality must not be added to our tokenization environment. All other functionality must exist in standard environments: except for the minimum necessary functionality moving into the tokenization environment, everything else must be operated in our standard, non-tokenization environments. In particular, any software that requires frequent changes, or introduces complex external dependencies, should exist in the standard environments. Defer making a decision regarding the introduction of Java to a later date: the introduction of Java is incompatible with our existing engineering strategy, but at this point we’ve also been unable to align stakeholders on how to address this decision. Further, we see attempting to address this issue as a distraction from our timely goal of launching a joint product within six months. We will take up this discussion after launching the initial release. Escalations come to paired leads: given our limited shaed context across teams, all escalations must come to both Stripe’s Head of Traffic Engineering and Index’s Head of Engineering. Security review of changes impacting tokenization environment: we need to move quickly to launch the combined point-of-sale and payments product, but we must not cut corners on security to launch faster. Security must be included and explicitly sign off on any integration decisions that involve our tokenization environment Diagnose There are generally four categories of acquisitions: talent acquisitions to bring on a talented team, business acquisitions to buy a company’s revenue and product, technology acquisitions to add a differentiated capability that would be challenging to develop internally, and time-to-market acquisitions where you could develop the capability internally but can develop it meaningfully faster by acquiring a company. While most acquisitions have a flavor of several of these dimensions, this acquisition is primarily a time-to-market acquisition aimed to address these constraints: Several of our largest customers are pushing for us to provide a point-of-sale device integrated with our API-driven payments ecosystem. At least one has implied that we either provide this functionality on a committed timeline or they may churn to a competitor. We currently have no homegrown expertise in developing or integrating with hardware such as point-of-sale devices. Based on other zero-to-one efforts internally, we believe it would take about a year to hire the team, develop and launch a minimum-viable product for a point-of-sale device integrated into our platform. Where we’ve taken a horizontal approach to supporting web payments via an API, at least one of our competitors, Square, has taken a vertically integrated approach. While their API ecosystem is less developed than ours, they are a plausible destination for customers threatening to churn. We believe that at least one of our enterprise customers will churn if our best commitment is launching a point-of-sale solution 12 months from now. We’ve decided to acquire a small point-of-sale startup, which we will use to commit to a six month timeframe for supporting an integrated point-of-sale device with our API ecosystem. We will need to rapidly integrate the acquired startup to meet this timeline. We only know a small number of details about what this will entail. We do know that point-of-sale devices directly operate on payment details (e.g. the point-of-sale device knows the credit card details of the card it reads). Our compliance obligations restrict such activity to our “tokenization environment”, a highly secured and isolated environment with direct access to payment details. This environment converts payment details into a unique token that other environments can utilize to operate against payment details without the compliance overhead of having direct access to the underlying payment details. Going into this technical integration, we have few details about the acquired company’s technology stack. We do know that they are primarily a Java shop running on AWS, where we are primarily a Ruby (with some Go) shop running on AWS. Explore Prior to this acquisition, we have done several small acquisitions. None of those acquisitions had a meaningful product to integrate with ours, so we don’t have much of an internal playbook to anchor our approach in. We do have limited experience in integrating technical acquisitions from prior companies we’ve worked in, along with talking to peers at other companies to mine their experience. Synthesizing those experiences, the recurring patterns are: Usually deal teams have made certain commitments, or the acquired team has understood certain commitments, that will be challenging to facilitate. This is doubly true when you are unaware of what those commitments might be. If folks seem to be behaving oddly, it might be one such misunderstanding, and it’s worth engaging directly to debug the confusion. There should be an executive sponsor for the acquisition, and the sponsor is typically the best person ask about the company’s intentions. If you can’t find the executive sponsor, or they are not engaged, try to recruit a new executive sponsor rather than trying to make things work without one. Close the culture gap quickly where there’s little friction, and cautiously where there’s little trust. We do need to bring the acquired company into our culture, but we have years to do that. The most successful stories of doing this leaned on a mix of moving folks into and out of the acquired team rather than applying force. The long-term cost of supporting a new technology stack is high, and in conflict with our technology strategy of consolidating on as few programming languages as possible. This is not the place to be flexible, as each additional feature in the new stack will take you further from your desired outcome. Finally, find a way to derisk key departures. Things can go wrong quickly. One of the easiest starting points is consolidating infrastructure immediately, even if the product or software takes longer. Altogether, this was not the most reassuring exploration: it was a bit abstract, and much of our research returned strongly-held, conflicting perspectives. Perhaps acquisitions, like starting a new company, is one of those places where there’s simply no right way to do it well.

2 weeks ago 10 votes
Diagnosis in engineering strategy.

Once you’ve written your strategy’s exploration, the next step is working on its diagnosis. Diagnosis is understanding the constraints and challenges your strategy needs to address. In particular, it’s about doing that understanding while slowing yourself down from deciding how to solve the problem at hand before you know the problem’s nuances and constraints. If you ever find yourself wanting to skip the diagnosis phase–let’s get to the solution already!–then maybe it’s worth acknowledging that every strategy that I’ve seen fail, did so due to a lazy or inaccurate diagnosis. It’s very challenging to fail with a proper diagnosis, and almost impossible to succeed without one. The topics this chapter will cover are: Why diagnosis is the foundation of effective strategy, on which effective policy depends. Conversely, how skipping the diagnosis phase consistently ruins strategies A step-by-step approach to diagnosing your strategy’s circumstances How to incorporate data into your diagnosis effectively, and where to focus on adding data Dealing with controversial elements of your diagnosis, such as pointing out that your own executive is one of the challenges to solve Why it’s more effective to view difficulties as part of the problem to be solved, rather than a blocking issue that prevents making forward progress The near impossibility of an effective diagnosis if you don’t bring humility and self-awareness to the process Into the details we go! This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. Diagnosis is strategy’s foundation One of the challenges in evaluating strategy is that, after the fact, many effective strategies are so obvious that they’re pretty boring. Similarly, most ineffective strategies are so clearly flawed that their authors look lazy. That’s because, as a strategy is operated, the reality around it becomes clear. When you’re writing your strategy, you don’t know if you can convince your colleagues to adopt a new approach to specifying APIs, but a year later you know very definitively whether it’s possible. Building your strategy’s diagnosis is your attempt to correctly recognize the context that the strategy needs to solve before deciding on the policies to address that context. Done well, the subsequent steps of writing strategy often feel like an afterthought, which is why I think of diagnosis as strategy’s foundation. Where exploration was an evaluation-free activity, diagnosis is all about evaluation. How do teams feel today? Why did that project fail? Why did the last strategy go poorly? What will be the distractions to overcome to make this new strategy successful? That said, not all evaluation is equal. If you state your judgment directly, it’s easy to dispute. An effective diagnosis is hard to argue against, because it’s a web of interconnected observations, facts, and data. Even for folks who dislike your conclusions, the weight of evidence should be hard to shift. Strategy testing, explored in the Refinement section, takes advantage of the reality that it’s easier to diagnose by doing than by speculating. It proposes a recursive diagnosis process until you have real-world evidence that the strategy is working. How to develop your diagnosis Your strategy is almost certain to fail unless you start from an effective diagnosis, but how to build a diagnosis is often left unspecified. That’s because, for most folks, building the diagnosis is indeed a dark art: unspecified, undiscussion, and uncontrollable. I’ve been guilty of this as well, with The Engineering Executive’s Primer’s chapter on strategy staying silent on the details of how to diagnose for your strategy. So, yes, there is some truth to the idea that forming your diagnosis is an emergent, organic process rather than a structured, mechanical one. However, over time I’ve come to adopt a fairly structured approach: Braindump, starting from a blank sheet of paper, write down your best understanding of the circumstances that inform your current strategy. Then set that piece of paper aside for the moment. Summarize exploration on a new piece of paper, review the contents of your exploration. Pull in every piece of diagnosis from similar situations that resonates with you. This is true for both internal and external works! For each diagnosis, tag whether it fits perfectly, or needs to be adjusted for your current circumstances. Then, once again, set the piece of paper aside. Mine for distinct perspectives on yet another blank page, talking to different stakeholders and colleagues who you know are likely to disagree with your early thinking. Your goal is not to agree with this feedback. Instead, it’s to understand their view. The Crux by Richard Rumelt anchors diagnosis in this approach, emphasizing the importance of “testing, adjusting, and changing the frame, or point of view.” Synthesize views into one internally consistent perspective. Sometimes the different perspectives you’ve gathered don’t mesh well. They might well explicitly differ in what they believe the underlying problem is, as is typical in tension between platform and product engineering teams. The goal is to competently represent each of these perspectives in the diagnosis, even the ones you disagree with, so that later on you can evaluate your proposed approach against each of them. When synthesizing feedback goes poorly, it tends to fail in one of two ways. First, the author’s opinion shines through so strongly that it renders the author suspect. Your goal is never to agree with every team’s perspective, just as your diagnosis should typically avoid crowning any perspective as correct: a reader should generally be appraised of the details and unaware of the author. The second common issue is when a group tries to jointly own the synthesis, but create a fractured perspective rather than a unified one. I generally find that having one author who is accountable for representing all views works best to address both of these issues. Test drafts across perspectives. Once you’ve written your initial diagnosis, you want to sit down with the people who you expect to disagree most fervently. Iterate with them until they agree that you’ve accurately captured their perspective. It might be that they disagree with some other view points, but they should be able to agree that others hold those views. They might argue that the data you’ve included doesn’t capture their full reality, in which case you can caveat the data by saying that their team disagrees that it’s a comprehensive lens. Don’t worry about getting the details perfectly right in your initial diagnosis. You’re trying to get the right crumbs to feed into the next phase, strategy refinement. Allowing yourself to be directionally correct, rather than perfectly correct, makes it possible to cover a broad territory quickly. Getting caught up in perfecting details is an easy way to anchor yourself into one perspective prematurely. At this point, I hope you’re starting to predict how I’ll conclude any recipe for strategy creation: if these steps feel overly mechanical to you, adjust them to something that feels more natural and authentic. There’s no perfect way to understand complex problems. That said, if you feel uncertain, or are skeptical of your own track record, I do encourage you to start with the above approach as a launching point. Incorporating data into your diagnosis The strategy for Navigating Private Equity ownership’s diagnosis includes a number of details to help readers understand the status quo. For example the section on headcount growth explains headcount growth, how it compares to the prior year, and providing a mental model for readers to translate engineering headcount into engineering headcount costs: Our Engineering headcount costs have grown by 15% YoY this year, and 18% YoY the prior year. Headcount grew 7% and 9% respectively, with the difference between headcount and headcount costs explained by salary band adjustments (4%), a focus on hiring senior roles (3%), and increased hiring in higher cost geographic regions (1%). If everyone evaluating a strategy shares the same foundational data, then evaluating the strategy becomes vastly simpler. Data is also your mechanism for supporting or critiquing the various views that you’ve gathered when drafting your diagnosis; to an impartial reader, data will speak louder than passion. If you’re confident that a perspective is true, then include a data narrative that supports it. If you believe another perspective is overstated, then include data that the reader will require to come to the same conclusion. Do your best to include data analysis with a link out to the full data, rather than requiring readers to interpret the data themselves while they are reading. As your strategy document travels further, there will be inevitable requests for different cuts of data to help readers understand your thinking, and this is somewhat preventable by linking to your original sources. If much of the data you want doesn’t exist today, that’s a fairly common scenario for strategy work: if the data to make the decision easy already existed, you probably would have already made a decision rather than needing to run a structured thinking process. The next chapter on refining strategy covers a number of tools that are useful for building confidence in low-data environments. Whisper the controversial parts At one time, the company I worked at rolled out a bar raiser program styled after Amazon’s, where there was an interviewer from outside the team that had to approve every hire. I spent some time arguing against adding this additional step as I didn’t understand what we were solving for, and I was surprised at how disinterested management was about knowing if the new process actually improved outcomes. What I didn’t realize until much later was that most of the senior leadership distrusted one of their peers, and had rolled out the bar raiser program solely to create a mechanism to control that manager’s hiring bar when the CTO was disinterested holding that leader accountable. (I also learned that these leaders didn’t care much about implementing this policy, resulting in bar raiser rejections being frequently ignored, but that’s a discussion for the Operations for strategy chapter.) This is a good example of a strategy that does make sense with the full diagnosis, but makes little sense without it, and where stating part of the diagnosis out loud is nearly impossible. Even senior leaders are not generally allowed to write a document that says, “The Director of Product Engineering is a bad hiring manager.” When you’re writing a strategy, you’ll often find yourself trying to choose between two awkward options: Say something awkward or uncomfortable about your company or someone working within it Omit a critical piece of your diagnosis that’s necessary to understand the wider thinking Whenever you encounter this sort of debate, my advice is to find a way to include the diagnosis, but to reframe it into a palatable statement that avoids casting blame too narrowly. I think it’s helpful to discuss a few concrete examples of this, starting with the strategy for navigating private equity, whose diagnosis includes: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. There are many things the authors of this strategy likely feel about their state of reality. First, they are probably upset about the fact that their new private equity ownership is likely to eliminate colleagues. Second, they are likely upset that there is no clear plan around what they need to do, so they are stuck preparing for a wide range of potential outcomes. However they feel, they don’t say any of that, they stick to precise, factual statements. For a second example, we can look to the Uber service migration strategy: Within infrastructure engineering, there is a team of four engineers responsible for service provisioning today. While our organization is growing at a similar rate as product engineering, none of that additional headcount is being allocated directly to the team working on service provisioning. We do not anticipate this changing. The team didn’t agree that their headcount should not be growing, but it was the reality they were operating in. They acknowledged their reality as a factual statement, without any additional commentary about that statement. In both of these examples, they found a professional, non-judgmental way to acknowledge the circumstances they were solving. The authors would have preferred that the leaders behind those decisions take explicit accountability for them, but it would have undermined the strategy work had they attempted to do it within their strategy writeup. Excluding critical parts of your diagnosis makes your strategies particularly hard to evaluate, copy or recreate. Find a way to say things politely to make the strategy effective. As always, strategies are much more about realities than ideals. Reframe blockers as part of diagnosis When I work on strategy with early-career leaders, an idea that comes up a lot is that an identified problem means that strategy is not possible. For example, they might argue that doing strategy work is impossible at their current company because the executive team changes their mind too often. That core insight is almost certainly true, but it’s much more powerful to reframe that as a diagnosis: if we don’t find a way to show concrete progress quickly, and use that to excite the executive team, our strategy is likely to fail. This transforms the thing preventing your strategy into a condition your strategy needs to address. Whenever you run into a reason why your strategy seems unlikely to work, or why strategy overall seems difficult, you’ve found an important piece of your diagnosis to include. There are never reasons why strategy simply cannot succeed, only diagnoses you’ve failed to recognize. For example, we knew in our work on Uber’s service provisioning strategy that we weren’t getting more headcount for the team, the product engineering team was going to continue growing rapidly, and that engineering leadership was unwilling to constrain how product engineering worked. Rather than preventing us from implementing a strategy, those components clarified what sort of approach could actually succeed. The role of self-awareness Every problem of today is partially rooted in the decisions of yesterday. If you’ve been with your organization for any duration at all, this means that you are directly or indirectly responsible for a portion of the problems that your diagnosis ought to recognize. This means that recognizing the impact of your prior actions in your diagnosis is a powerful demonstration of self-awareness. It also suggests that your next strategy’s success is rooted in your self-awareness about your prior choices. Don’t be afraid to recognize the failures in your past work. While changing your mind without new data is a sign of chaotic leadership, changing your mind with new data is a sign of thoughtful leadership. Summary Because diagnosis is the foundation of effective strategy, I’ve always found it the most intimidating phase of strategy work. While I think that’s a somewhat unavoidable reality, my hope is that this chapter has somewhat prepared you for that challenge. The four most important things to remember are simply: form your diagnosis before deciding how to solve it, try especially hard to capture perspectives you initially disagree with, supplement intuition with data where you can, and accept that sometimes you’re missing the data you need to fully understand. The last piece in particular, is why many good strategies never get shared, and the topic we’ll address in the next chapter on strategy refinement.

2 weeks ago 17 votes
Exploring for strategy.

A surprising number of strategies are doomed from inception because their authors get attached to one particular approach without considering alternatives that would work better for their current circumstances. This happens when engineers want to pick tools solely because they are trending, and when executives insist on adopting the tech stack from their prior organization where they felt comfortable. Exploration is the antidote to early anchoring, forcing you to consider the problem widely before evaluating any of the paths forward. Exploration is about updating your priors before assuming the industry hasn’t evolved since you last worked on a given problem. Exploration is continuing to believe that things can get better when you’re not watching. This chapter covers: The goals of the exploration phase of strategy creation When to explore (always first!) and when it makes sense to stop exploring How to explore a topic, including discussion of the most common mechanisms: mining for internal precedent, reading industry papers and books, and leveraging your external network Why avoiding judgment is an essential part of exploration By the end of this chapter, you’ll be able to conduct an exploration for the current or next strategy that you work on. What is exploration? One of the frequent senior leadership anti-patterns I’ve encountered in my career is The Grand Migration, where a new leader declares that a massive migration to a new technology stack–typically the stack used by their former employer–will solve every pressing problem. What’s distinguishing about the Grand Migration is not the initially bad selection, but the single-minded ferocity with which the senior leader pushes for their approach, even when it becomes abundantly clear to others that it doesn’t solve the problem at hand. These senior leaders are very intelligent, but have allowed themselves to be framed in by their initial thinking from prior experiences. Accepting those early thoughts as the foundation of their strategy, they build the entire strategy on top of those ideas, and eventually there is so much weight standing on those early assumptions that it becomes impossible to acknowledge the errors. Exploration is the deliberate practice of searching through a strategy’s problem and solution spaces before allowing yourself to commit to a given approach. It’s understanding how others have approached the same problem recently and in the past. It’s doing this both in trendy companies you admire, and in practical companies that actually resemble yours. Most exploration will be external to your team, but depending on your company, much of your exploration might be internal to the company. If you’re in a massive engineering organization of 100,000, there are likely existing internal solutions to your problem that you’ve never heard of. Conversely, if you’re in an organization of 50 engineers, it’s likely that much of your exploration will be external. When to explore Exploration is the first step of good strategy work. Even when you want to skip it, you will always regret skipping it, because you’ll inadvertently frame yourself into whatever approach you focus on first. Especially when it comes to problems that you’ve solved previously, exploration is the only thing preventing you from over-indexing on your prior experiences. Try to continue exploration until you know how three similar teams within your company and three similar companies have recently solved the same problem. Further, make sure you are able to explain the thinking behind those decisions. At that point,you should be ready to stop exploring and move on to the diagnosis step of strategy creation. Exploration should always come with a minimum and maximum timeframe: less than a few hours is very suspicious, and more than a week is generally questionably as well. How to explore While the details of each exploration will differ a bit, the overarching approach tends to be pretty similar across strategies. After I open up the draft strategy document I’m working on, my general approach to exploration is: Start throwing in every resource I can think of related to that problem. For example, in the Uber service provisioning strategy, I started by collecting recent papers on Mesos, Kubernetes, and Aurora to understand the state of the industry on orchestration. Do some web searching, foundational model prompting, and checking with a few current and prior colleagues about what topics and resources I might be missing. For example, for the Calm engineering strategy, I focused on talking with industry peers on tools they’d used to focus a team with diffuse goals. Summarize the list of resources I’ve gathered, organizing them by which I want to explore, and which I won’t spend time on but are worth mentioning. For example, the Large Language Model adoption strategy’s exploration section documents the variety of resources the team explored before completing it. Work through the list one by one, continuing to collect notes in the strategy document. When you’re done, synthesize those into a concise, readable summary of what you’ve learned. For example, the monolith decomposition strategy synthesizes the exploration of a broad topic into four paragraphs, with links out to references. Stop once I generally understand how a handful of similar internal and external teams have recently approached this problem. Of all the steps in strategy creation, exploration is inherently open-ended, and you may find a different approach works better for you. If you’re not sure what to do, try following the above steps closely. If you have a different approach that you’re confident in–as long as it’s not skipping exploration!–then go ahead and try that instead. While not discussed in this chapter, you can also use some techniques like Wardley mapping, covered in the Refinement chapter, to support your exploration phase. Wardley mapping is a strategy tool designed within a different strategy tradition, and consequently categorizing it as either solely an exploration tool or a refinement tool ignores some of its potential uses. There’s no perfect way to do strategy: take what works for you and use it. Mine internal precedent One of the most powerful forms of strategy is simply documenting how similar decisions have been made internally: often this is enough to steer how similar future decisions are made within your organization. This approach, documented in Staff Engineer’s Write five, then synthesize, is also the most valuable step of exploration for those working in established companies. If you are a tenured engineer within your organization, then it’s somewhat safe to assume that you are aware of the typical internal approaches. Even then, it’s worth poking around to see if there are any related skunkworks projects happening internally. This is doubly true if you’ve joined the organization recently, or are distant from the codebase itself. In that case, it’s almost always worth poking around to see what already exists. Sometimes the internal approach isn’t ideal, but it’s still superior because it’s already been implemented and there’s someone else maintaining it. In the long-run, your strategy can ride along as someone else addresses the issues that aren’t perfect fits. Using your network How should we control access to user data’s exploration section begins with: Our experience is that best practices around managing internal access to user data are widely available through our networks, and otherwise hard to find. The exact rationale for this is hard to determine, While there are many topics with significant public writing out there, my experience is that there are many topics where there’s very little you can learn without talking directly to practitioners. This is especially true for security, compliance, operating at truly large scale, and competitive processes like optimizing advertising spend. Further, it’s surprisingly common to find that how people publicly describe solving a problem and how they actually approach the problem are largely divorced. This is why having a broad personal network is exceptionally powerful, and makes it possible to quickly understand the breadth of possible solutions. It also provides access to the practical downsides to various approaches, which are often omitted when talking to public proponents. In a recent strategy session, a proposal came up that seemed off to me, and I was able to text–and get answers to those texts–industry peers before the meeting ended, which invalidated the room’s assumptions about what was and was not possible. A disagreement that might have taken weeks to resolve was instead resolved in a few minutes, and we were able to figure out next steps in that meeting rather than waiting a week for the next meeting when we’d realized our mistake. Of course, it’s also important to hold information from your network with skepticism. I’ve certainly had my network be wrong, and your network never knows how your current circumstances differ from theirs, so blindly accepting guidance from your network is never the right decision either. If you’re looking for a more detailed coverage on building your network, this topic has also come up in Staff Engineer’s chapter on Build a network of peers, and The Engineering Executive’s Primer’s chapter on Building your executive network. It feels silly to cover the same topic a third time, but it’s a foundational technique for effective decision making. Read widely; read narrowly Reading has always been an important part of my strategy work. There are two distinct motions to this approach: read widely on an ongoing basis to broaden your thinking, and read narrowly on the specific topic you’re working on. Starting with reading widely, I make an effort each year to read ten to twenty industry-relevant works. These are not necessarily new releases, but are new releases for me. Importantly, I try to read things that I don’t know much about or that I initially disagree with. Some of my recent reads were Chip War, Building Green Software, Tidy First?, and How Big Things Get Done. From each of these books, I learned something, and over time they’ve built a series of bookmarks in my head about ideas that might apply to new problems. On the other end of things is reading narrowly. When I recently started working on an AI agents strategy, the first thing I did was read through Chip Huyen’s AI Engineering, which was an exceptionally helpful survey. Similarly, when we started thinking about Uber’s service migration, we read a number of industry papers, including Large-scale cluster management at Google with Borg and Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. None of these readings had all the answers to the problems I was working on, but they did an excellent job at helping me understand the range of options, as well as identifying other references to consult in my exploration. I’ll mention two nuances that will help a lot here. First, I highly encourage getting comfortable with skimming books. Even tightly edited books will have a lot of content that isn’t particularly relevant to your current goals, and you should skip that content liberally. Second, what you read doesn’t have to be books. It can be blog posts, essays, interview transcripts, or certainly it can be books. In this context, “reading” doesn’t event have to actually be reading. There are conference talks that contain just as much as a blog post, and conferences that cover as much breadth as a book. There are also conference talks without a written equivalent, such as Dan Na’s excellent Pushing Through Friction. Each job is an education Experience is frequently disregarded in the technology industry, and there are ways to misuse experience by copying too liberally the solutions that worked in different circumstances, but the most effective, and the slowest, mechanism for exploring is continuing to work in the details of meaningful problems. You probably won’t choose every job to optimize for learning, but allowing you to instantly explore more complex problems over time–recognizing that a bit of your data will have become stale each time–is uniquely valuable. Save judgment for later As I’ve mentioned several times, the point of exploration is to go broad with the goal of understanding approaches you might not have considered, and invalidating things you initially think are true. Both of those things are only possible if you save judgment for later: if you’re passing judgment about whether approaches are “good” or “bad”, then your exploration is probably going astray. As a soft rule, I’d argue that if no one involved in a strategy has changed their mind about something they believed when you started the exploration step, then you’re not done exploring. This is especially true when it comes to strategy work by senior leaders. Their beliefs are often well-justified by years of experience, but it’s unclear which parts of their experience have become stale over time. Summary At this point, I hope you feel comfortable exploring as the first step of your strategy work, and understand the likely consequences of skipping this step. It’s not an overstatement to say that every one of the worst strategic failures I’ve encountered would have been prevented by its primary author taking a few days to explore the space before anchoring on a particular approach. A few days of feeling slow are always worth avoiding years of misguided efforts.

4 weeks ago 15 votes

More in programming

ChatGPT Would be a Decent Policy Advisor

Revealed: How the UK tech secretary uses ChatGPT for policy advice by Chris Stokel-Walker for the New Scientist

16 hours ago 3 votes
Setting policy for strategy.

This book’s introduction started by defining strategy as “making decisions.” Then we dug into exploration, diagnosis, and refinement: three chapters where you could argue that we didn’t decide anything at all. Clarifying the problem to be solved is the prerequisite of effective decision making, but eventually decisions do have to be made. Here in this chapter on policy, and the following chapter on operations, we finally start to actually make some decisions. In this chapter, we’ll dig into: How we define policy, and how setting policy differs from operating policy as discussed in the next chapter The structured steps for setting policy How many policies should you set? Is it preferable to have one policy, many policies, or does it not matter much either way? Recurring kinds of policies that appear frequently in strategies Why it’s valuable to be intentional about your strategy’s altitude, and how engineers and executives generally maintain different altitudes in their strategies Criteria to use for evaluating whether your policies are likely to be impactful How to develop novel policies, and why it’s rare Why having multiple bundles of alternative policies is generally a phase in strategy development that indicates a gap in your diagnosis How policies that ignore constraints sound inspirational, but accomplish little Dealing with ambiguity and uncertainty created by missing strategies from cross-functional stakeholders By the end, you’ll be ready to evaluate why an existing strategy’s policies are struggling to make an impact, and to start iterating on policies for strategy of your own. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. What is policy? Policy is interpreting your diagnosis into a concrete plan. That plan will be a collection of decisions, tradeoffs, and approaches. They’ll range from coding practices, to hiring mandates, to architectural decisions, to guidance about how choices are made within your organization. An effective policy solves the entirety of the strategy’s diagnosis, although the diagnosis itself is encouraged to specify which aspects can be ignored. For example, the strategy for working with private equity ownership acknowledges in its diagnosis that they don’t have clear guidance on what kind of reduction to expect: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. Faced with that uncertainty, the policy simply acknowledges the ambiguity and commits to reconsider when more information becomes available: We believe our new ownership will provide a specific target for Research and Development (R&D) operating expenses during the upcoming financial year planning. We will revise these policies again once we have explicit targets, and will delay planning around reductions until we have those numbers to avoid running two overlapping processes. There are two frequent points of confusion when creating policies that are worth addressing directly: Policy is a subset of strategy, rather than the entirety of strategy, because policy is only meaningful in the context of the strategy’s diagnosis. For example, the “N-1 backfill policy” makes sense in the context of new, private equity ownership. The policy wouldn’t work well in a rapidly expanding organization. Any strategy without a policy is useless, but you’ll also find policies without context aren’t worth much either. This is particularly unfortunate, because so often strategies are communicated without those critical sections. Policy describes how tradeoffs should be made, but it doesn’t verify how the tradeoffs are actually being made in practice. The next chapter on operations covers how to inspect an organization’s behavior to ensure policies are followed. When reworking a strategy to be more readable, it often makes sense to merge policy and operation sections together. However, when drafting strategy it’s valuable to keep them separate. Yes, you might use a weekly meeting to review whether the policy is being followed, but whether it’s an effective policy is independent of having such a meeting, and what operational mechanisms you use will vary depending on the number of policies you intend to implement. With this definition in mind, now we can move onto the more interesting discussion of how to set policy. How to set policy Every part of writing a strategy feels hard when you’re doing it, but I personally find that writing policy either feels uncomfortably easy or painfully challenging. It’s never a happy medium. Fortunately, the exploration and diagnosis usually come together to make writing your policy simple: although sometimes that simple conclusion may be a difficult one to swallow. The steps I follow to write a strategy’s policy are: Review diagnosis to ensure it captures the most important themes. It doesn’t need to be perfect, but it shouldn’t have omissions so obvious that you can immediately identify them. Select policies that address the diagnosis. Explicitly match each policy to one or more diagnoses that it addresses. Continue adding policies until every diagnosis is covered. This is a broad instruction, but it’s simpler than it sounds because you’ll typically select from policies identified during your exploration phase. However, there certainly is space to tweak those policies, and to reapply familiar policies to new circumstances. If you do find yourself developing a novel policy, there’s a later section in this chapter, Developing novel policies, that addresses that topic in more detail. Consolidate policies in cases where they overlap or adjoin. For example, two policies about specific teams might be generalized into a policy about all teams in the engineering organization. Backtest policy against recent decisions you’ve made. This is particularly effective if you maintain a decision log in your organization. Mine for conflict once again, much as you did in developing your diagnosis. Emphasize feedback from teams and individuals with a different perspective than your own, but don’t wholly eliminate those that you agree with. Just as it’s easy to crowd out opposing views in diagnosis if you don’t solicit their input, it’s possible to accidentally crowd out your own perspective if you anchor too much on others’ perspectives. Consider refinement if you finish writing, and you just aren’t sure your approach works – that’s fine! Return to the refinement phase by deploying one of the refinement techniques to increase your conviction. Remember that we talk about strategy like it’s done in one pass, but almost all real strategy takes many refinement passes. The steps of writing policy are relatively pedestrian, largely because you’ve done so much of the work already in the exploration, diagnosis, and refinement steps. If you skip those phases, you’d likely follow the above steps for writing policy, but the expected quality of the policy itself would be far lower. How many policies? Addressing the entirety of the diagnosis is often complex, which is why most strategies feature a set of policies rather than just one. The strategy for decomposing a monolithic application is not one policy deciding not to decompose, but a series of four policies: Business units should always operate in their own code repository and monolith. New integrations across business unit monoliths should be done using gRPC. Except for new business unit monoliths, we don’t allow new services. Merge existing services into business-unit monoliths where you can. Four isn’t universally the right number either. It’s simply the number that was required to solve that strategy’s diagnosis. With an excellent diagnosis, your policies will often feel inevitable, and perhaps even boring. That’s great: what makes a policy good is that it’s effective, not that it’s novel or inspiring. Kinds of policies While there are so many policies you can write, I’ve found they generally fall into one of four major categories: approvals, allocations, direction, and guidance. This section introduces those categories. Approvals define the process for making a recurring decision. This might require invoking an architecture advice process, or it might require involving an authority figure like an executive. In the Index post-acquisition integration strategy, there were a number of complex decisions to be made, and the approval mechanism was: Escalations come to paired leads: given our limited shared context across teams, all escalations must come to both Stripe’s Head of Traffic Engineering and Index’s Head of Engineering. This allowed the acquired and acquiring teams to start building trust between each other by ensuring both were consulted before any decision was finalized. On the other hand, the user data access strategy’s approval strategy was more focused on managing corporate risk: Exceptions must be granted in writing by CISO. While our overarching Engineering Strategy states that we follow an advisory architecture process as described in Facilitating Software Architecture, the customer data access policy is an exception and must be explicitly approved, with documentation, by the CISO. Start that process in the #ciso channel. These two different approval processes had different goals, so they made tradeoffs differently. There are so many ways to tweak approval, allowing for many different tradeoffs between safety, productivity, and trust. Allocations describe how resources are split across multiple potential investments. Allocations are the most concrete statement of organizational priority, and also articulate the organization’s belief about how productivity happens in teams. Some companies believe you go fast by swarming more people onto critical problems. Other companies believe you go fast by forcing teams to solve problems without additional headcount. Both can work, and teach you something important about the company’s beliefs. The strategy on Uber’s service migration has two concrete examples of allocation policies. The first describes the Infrastructure engineering team’s allocation between manual provision tasks and investing into creating a self-service provisioning platform: Constrain manual provisioning allocation to maximize investment in self-service provisioning. The service provisioning team will maintain a fixed allocation of one full time engineer on manual service provisioning tasks. We will move the remaining engineers to work on automation to speed up future service provisioning. This will degrade manual provisioning in the short term, but the alternative is permanently degrading provisioning by the influx of new service requests from newly hired product engineers. The second allocation policy is implicitly noted in this strategy’s diagnosis, where it describes the allocation policy in the Engineering organization’s higher altitude strategy: Within infrastructure engineering, there is a team of four engineers responsible for service provisioning today. While our organization is growing at a similar rate as product engineering, none of that additional headcount is being allocated directly to the team working on service provisioning. We do not anticipate this changing. Allocation policies often create a surprising amount of clarity for the team, and I include them in almost every policy I write either explicitly, or implicitly in a higher altitude strategy. Direction provides explicit instruction on how a decision must be made. This is the right tool when you know where you want to go, and exactly the way that you want to get there. Direction is appropriate for problems you understand clearly, and you value consistency more than empowering individual judgment. Direction works well when you need an unambiguous policy that doesn’t leave room for interpretation. For example, Calm’s policy for working in the monolith: We write all code in the monolith. It has been ambiguous if new code (especially new application code) should be written in our JavaScript monolith, or if all new code must be written in a new service outside of the monolith. This is no longer ambiguous: all new code must be written in the monolith. In the rare case that there is a functional requirement that makes writing in the monolith implausible, then you should seek an exception as described below. In that case, the team couldn’t agree on what should go into the monolith. Individuals would often make incompatible decisions, so creating consistency required removing personal judgment from the equation. Sometimes judgment is the issue, and sometimes consistency is difficult due to misaligned incentives. A good example of this comes in strategy on working with new Private Equity ownership: We will move to an “N-1” backfill policy, where departures are backfilled with a less senior level. We will also institute a strict maximum of one Principal Engineer per business unit. It’s likely that hiring managers would simply ignore this backfill policy if it was stated more softly, although sometimes less forceful policies are useful. Guidance provides a recommendation about how a decision should be made. Guidance is useful when there’s enough nuance, ambiguity, or complexity that you can explain the desired destination, but you can’t mandate the path to reaching it. One example of guidance comes from the Index acquisition integration strategy: Minimize changes to tokenization environment: because point-of-sale devices directly work with customer payment details, the API that directly supports the point-of-sale device must live within our secured environment where payment details are stored. However, any other functionality must not be added to our tokenization environment. This might read like direction, but it’s clarifying the desired outcome of avoiding unnecessary complexity in the tokenization environment. However, it’s not able to articulate what complexity is necessary, so ultimately it’s guidance because it requires significant judgment to interpret. A second example of guidance comes in the strategy on decomposing a monolithic codebase: Merge existing services into business-unit monoliths where you can. We believe that each choice to move existing services back into a monolith should be made “in the details” rather than from a top-down strategy perspective. Consequently, we generally encourage teams to wind down their existing services outside of their business unit’s monolith, but defer to teams to make the right decision for their local context. This is another case of knowing the desired outcome, but encountering too much uncertainty to direct the team on how to get there. If you ask five engineers about whether it’s possible to merge a given service back into a monolithic codebase, they’ll probably disagree. That’s fine, and highlights the value of guidance: it makes it possible to make incremental progress in areas where more concrete direction would cause confusion. When you’re working on a strategy’s policy section, it’s important to consider all of these categories. Which feel most natural to use will vary depending on your team and role, but they’re all usable: If you’re a developer productivity team, you might have to lean heavily on guidance in your policies and increased support for that guidance within the details of your platform. If you’re an executive, you might lean heavily on direction. Indeed, you might lean too heavily on direction, where guidance often works better for areas where you understand the direction but not the path. If you’re a product engineering organization, you might have to narrow the scope of your direction to the engineers within that organization to deal with the realities of complex cross-organization dynamics. Finally, if you have a clear approach you want to take that doesn’t fit cleanly into any of these categories, then don’t let this framework dissuade you. Give it a try, and adapt if it doesn’t initially work out. Maintaining strategy altitude The chapter on when to write engineering strategy introduced the concept of strategy altitude, which is being deliberate about where certain kinds of policies are created within your organization. Without repeating that section in its entirety, it’s particularly relevant when you set policy to consider how your new policies eliminate flexibility within your organization. Consider these two somewhat opposing strategies: Stripe’s Sorbet strategy only worked in an organization that enforced the use of a single programming language across (essentially) all teams Uber’s service migration strategy worked well in an organization that was unwilling to enforce consistent programming language adoption across teams Stripe’s organization-altitude policy took away the freedom of individual teams to select their preferred technology stack. In return, they unlocked the ability to centralize investment in a powerful way. Uber went the opposite way, unlocking the ability of teams to pick their preferred technology stack, while significantly reducing their centralized teams’ leverage. Both altitudes make sense. Both have consequences. Criteria for effective policies In The Engineering Executive’s Primer’s chapter on engineering strategy, I introduced three criteria for evaluating policies. They ought to be applicable, enforced, and create leverage. Defining those a bit: Applicable: it can be used to navigate complex, real scenarios, particularly when making tradeoffs. Enforced: teams will be held accountable for following the guiding policy. Create Leverage: create compounding or multiplicative impact. The last of these three, create leverage, made sense in the context of a book about engineering executives, but probably doesn’t make as much sense here. Some policies certainly should create leverage (e.g. empower developer experience team by restricting new services), but others might not (e.g. moving to an N-1 backfill policy). Outside the executive context, what’s important isn’t necessarily creating leverage, but that a policy solves for part of the diagnosis. That leaves the other two–being applicable and enforced–both of which are necessary for a policy to actually address the diagnosis. Any policy which you can’t determine how to apply, or aren’t willing to enforce, simply won’t be useful. Let’s apply these criteria to a handful of potential policies. First let’s think about policies we might write to improve the talent density of our engineering team: “We only hire world-class engineers.” This isn’t applicable, because it’s unclear what a world-class engineer means. Because there’s no mutually agreeable definition in this policy, it’s also not consistently enforceable. “We only hire engineers that get at least one ‘strong yes’ in scorecards.” This is applicable, because there’s a clear definition. This is enforceable, depending on the willingness of the organization to reject seemingly good candidates who don’t happen to get a strong yes. Next, let’s think about a policy regarding code reuse within a codebase: “We follow a strict Don’t Repeat Yourself policy in our codebase.” There’s room for debate within a team about whether two pieces of code are truly duplicative, but this is generally applicable. Because there’s room for debate, it’s a very context specific determination to decide how to enforce a decision. “Code authors are responsible for determining if their contributions violate Don’t Repeat Yourself, and rewriting them if they do.” This is much more applicable, because now there’s only a single person’s judgment to assess the potential repetition. In some ways, this policy is also more enforceable, because there’s no longer any ambiguity around who is deciding whether a piece of code is a repetition. The challenge is that enforceability now depends on one individual, and making this policy effective will require holding individuals accountable for the quality of their judgement. An organization that’s unwilling to distinguish between good and bad judgment won’t get any value out of the policy. This is a good example of how a good policy in one organization might become a poor policy in another. If you ever find yourself wanting to include a policy that for some reason either can’t be applied or can’t be enforced, stop to ask yourself what you’re trying to accomplish and ponder if there’s a different policy that might be better suited to that goal. Developing novel policies My experience is that there are vanishingly few truly novel policies to write. There’s almost always someone else has already done something similar to your intended approach. Calm’s engineering strategy is such a case: the details are particular to the company, but the general approach is common across the industry. The most likely place to find truly novel policies is during the adoption phase of a new widespread technology, such as the rise of ubiquitous mobile phones, cloud computing, or large language models. Even then, as explored in the strategy for adopting large-language models, the new technology can be engaged with as a generic technology: Develop an LLM-backed process for reactivating departed and suspended drivers in mature markets. Through modeling our driver lifecycle, we determined that improving onboarding time will have little impact on the total number of active drivers. Instead, we are focusing on mechanisms to reactivate departed and suspended drivers, which is the only opportunity to meaningfully impact active drivers. You could simply replace “LLM” with “data-driven” and it would be equally readable. In this way, policy can generally sidestep areas of uncertainty by being a bit abstract. This avoids being overly specific about topics you simply don’t know much about. However, even if your policy isn’t novel to the industry, it might still be novel to you or your organization. The steps that I’ve found useful to debug novel policies are the same steps as running a condensed version of the strategy process, with a focus on exploration and refinement: Collect a number of similar policies, with a focus on how those policies differ from the policy you are creating Create a systems model to articulate how this policy will work, and also how it will differ from the similar policies you’re considering Run a strategy testing cycle for your proto-policy to discover any unknown-unknowns about how it works in practice Whether you run into this scenario is largely a function of the extent of your, and your organization’s, experience. Early in my career, I found myself doing novel (for me) strategy work very frequently, and these days I rarely find myself doing novel work, instead focusing on adaptation of well-known policies to new circumstances. Are competing policy proposals an anti-pattern? When creating policy, you’ll often have to engage with the question of whether you should develop one preferred policy or a series of potential strategies to pick from. Developing these is a useful stage of setting policy, but rather than helping you refine your policy, I’d encourage you to think of this as exposing gaps in your diagnosis. For example, when Stripe developed the Sorbet ruby-typing tooling, there was debate between two policies: Should we build a ruby-typing tool to allow a centralized team to gradually migrate the company to a typed codebase? Should we migrate the codebase to a preexisting strongly typed language like Golang or Java? These were, initially, equally valid hypotheses. It was only by clarifying our diagnosis around resourcing that it became clear that incurring the bulk of costs in a centralized team was clearly preferable to spreading the costs across many teams. Specifically, recognizing that we wanted to prioritize short-term product engineering velocity, even if it led to a longer migration overall. If you do develop multiple policy options, I encourage you to move the alternatives into an appendix rather than including them in the core of your strategy document. This will make it easier for readers of your final version to understand how to follow your policies, and they are the most important long-term user of your written strategy. Recognizing constraints A similar problem to competing solutions is developing a policy that you cannot possibly fund. It’s easy to get enamored with policies that you can’t meaningfully enforce, but that’s bad policy, even if it would work in an alternate universe where it was possible to enforce or resource it. To consider a few examples: The strategy for controlling access to user data might have proposed requiring manual approval by a second party of every access to customer data. However, that would have gone nowhere. Our approach to Uber’s service migration might have required more staffing for the infrastructure engineering team, but we knew that wasn’t going to happen, so it was a meaningless policy proposal to make. The strategy for navigating private equity ownership might have argued that new ownership should not hold engineering accountable to a new standard on spending. But they would have just invalidated that strategy in the next financial planning period. If you find a policy that contemplates an impractical approach, it doesn’t only indicate that the policy is a poor one, it also suggests your policy is missing an important pillar. Rather than debating the policy options, the fastest path to resolution is to align on the diagnosis that would invalidate potential paths forward. In cases where aligning on the diagnosis isn’t possible, for example because you simply don’t understand the possibilities of a new technology as encountered in the strategy for adopting LLMs, then you’ve typically found a valuable opportunity to use strategy refinement to build alignment. Dealing with missing strategies At a recent company offsite, we were debating which policies we might adopt to deal with annual plans that kept getting derailed after less than a month. Someone remarked that this would be much easier if we could get the executive team to commit to a clearer, written strategy about which business units we were prioritizing. They were, of course, right. It would be much easier. Unfortunately, it goes back to the problem we discussed in the diagnosis chapter about reframing blockers into diagnosis. If a strategy from the company or a peer function is missing, the empowering thing to do is to include the absence in your diagnosis and move forward. Sometimes, even when you do this, it’s easy to fall back into the belief that you cannot set a policy because a peer function might set a conflicting policy in the future. Whether you’re an executive or an engineer, you’ll never have the details you want to make the ideal policy. Meaningful leadership requires taking meaningful risks, which is never something that gets comfortable. Summary After working through this chapter, you know how to develop policy, how to assemble policies to solve your diagnosis, and how to avoid a number of the frequent challenges that policy writers encounter. At this point, there’s only one phase of strategy left to dig into, operating the policies you’ve created.

22 hours ago 3 votes
Fast and random sampling in SQLite

I was building a small feature for the Flickr Commons Explorer today: show a random selection of photos from the entire collection. I wanted a fast and varied set of photos. This meant getting a random sample of rows from a SQLite table (because the Explorer stores all its data in SQLite). I’m happy with the code I settled on, but it took several attempts to get right. Approach #1: ORDER BY RANDOM() My first attempt was pretty naïve – I used an ORDER BY RANDOM() clause to sort the table, then limit the results: SELECT * FROM photos ORDER BY random() LIMIT 10 This query works, but it was slow – about half a second to sample a table with 2 million photos (which is very small by SQLite standards). This query would run on every request for the homepage, so that latency is unacceptable. It’s slow because it forces SQLite to generate a value for every row, then sort all the rows, and only then does it apply the limit. SQLite is fast, but there’s only so fast you can sort millions of values. I found a suggestion from Stack Overflow user Ali to do a random sort on the id column first, pick my IDs from that, and only fetch the whole row for the photos I’m selecting: SELECT * FROM photos WHERE id IN ( SELECT id FROM photos ORDER BY RANDOM() LIMIT 10 ) This means SQLite only has to load the rows it’s returning, not every row in the database. This query was over three times faster – about 0.15s – but that’s still slower than I wanted. Approach #2: WHERE rowid > (…) Scrolling down the Stack Overflow page, I found an answer by Max Shenfield with a different approach: SELECT * FROM photos WHERE rowid > ( ABS(RANDOM()) % (SELECT max(rowid) FROM photos) ) LIMIT 10 The rowid is a unique identifier that’s used as a primary key in most SQLite tables, and it can be looked up very quickly. SQLite automatically assigns a unique rowid unless you explicitly tell it not to, or create your own integer primary key. This query works by picking a point between the biggest and smallest rowid values used in the table, then getting the rows with rowids which are higher than that point. If you want to know more, Max’s answer has a more detailed explanation. This query is much faster – around 0.0008s – but I didn’t go this route. The result is more like a random slice than a random sample. In my testing, it always returned contiguous rows – 101, 102, 103, … – which isn’t what I want. The photos in the Commons Explorer database were inserted in upload order, so photos with adjacent row IDs were uploaded at around the same time and are probably quite similar. I’d get one photo of an old plane, then nine more photos of other planes. I want more variety! (This behaviour isn’t guaranteed – if you don’t add an ORDER BY clause to a SELECT query, then the order of results is undefined. SQLite is returning rows in rowid order in my table, and a quick Google suggests that’s pretty common, but that may not be true in all cases. It doesn’t affect whether I want to use this approach, but I mention it here because I was confused about the ordering when I read this code.) Approach #3: Select random rowid values outside SQLite Max’s answer was the first time I’d heard of rowid, and it gave me an idea – what if I chose random rowid values outside SQLite? This is a less “pure” approach because I’m not doing everything in the database, but I’m happy with that if it gets the result I want. Here’s the procedure I came up with: Create an empty list to store our sample. Find the highest rowid that’s currently in use: sqlite> SELECT MAX(rowid) FROM photos; 1913389 Use a random number generator to pick a rowid between 1 and the highest rowid: >>> import random >>> random.randint(1, max_rowid) 196476 If we’ve already got this rowid, discard it and generate a new one. (The rowid is a signed, 64-bit integer, so the minimum possible value is always 1.) Look for a row with that rowid: SELECT * FROM photos WHERE rowid = 196476 If such a row exists, add it to our sample. If we have enough items in our sample, we’re done. Otherwise, return to step 3 and generate another rowid. If such a row doesn’t exist, return to step 3 and generate another rowid. This requires a bit more code, but it returns a diverse sample of photos, which is what I really care about. It’s a bit slower, but still plenty fast enough (about 0.001s). This approach is best for tables where the rowid values are mostly contiguous – it would be slower if there are lots of rowids between 1 and the max that don’t exist. If there are large gaps in rowid values, you might try multiple missing entries before finding a valid row, slowing down the query. You might want to try something different, like tracking valid rowid values separately. This is a good fit for my use case, because photos don’t get removed from Flickr Commons very often. Once a row is written, it sticks around, and over 97% of the possible rowid values do exist. Summary Here are the four approaches I tried: Approach Performance (for 2M rows) Notes ORDER BY RANDOM() ~0.5s Slowest, easiest to read WHERE id IN (SELECT id …) ~0.15s Faster, still fairly easy to understand WHERE rowid > ... ~0.0008s Returns clustered results Random rowid in Python ~0.001s Fast and returns varied results, requires code outside SQL I’m using the random rowid in Python in the Commons Explorer, trading code complexity for speed. I’m using this random sample to render a web page, so it’s important that it returns quickly – when I was testing ORDER BY RANDOM(), I could feel myself waiting for the page to load. But I’ve used ORDER BY RANDOM() in the past, especially for asynchronous data pipelines where I don’t care about absolute performance. It’s simpler to read and easier to see what’s going on. Now it’s your turn – visit the Commons Explorer and see what random gems you can find. Let me know if you spot anything cool! [If the formatting of this post looks odd in your feed reader, visit the original article]

13 hours ago 2 votes
Choosing Languages
yesterday 3 votes
05 · Syncing Keyhive

How we sync Keyhive and Automerge

yesterday 1 votes