Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
31
Davis Vantage Wireless Console/Reciever, Raspberry Pi 3 Model B Rev 1.2, RTC module—the heart of my weather center Despite their best efforts, all weather apps will eventually lie. Weather is often hyper-local. For example, trying to suss out the temperature this morning: App Temperature Accuweather 41°F (5°C) Carrot 36°F (2°C) Ventusky 22°F (-5°C) Garmin Running watch 48°F (8.8°C) So, in 2013, I set up a Davis Vantage Vue integrated sensor suite (ISS) and mounted it on a pole attached to my garage. Actual temperature (in my backyard): 47°F (8°C) My Davis Vantage Vue Wireless Integrated Sensor Suite in all its glory Weather station hardware 🖥️ In 2013, the DIY weather station route wasn’t for me. A DIY station was: 🙃 Beyond my skillset (at the time) 🏴󠁵󠁳󠁣󠁯󠁿 Built with fragile, general-purpose parts that may fail when tasked with standing up to the harsh Colorado sunshine year after year So, over time, I cobbled together an off-the-shelf solution: Davis Vantage...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Tyler Cipriani: blog

Eventually consistent plain text accounting

.title { text-wrap: balance } Spending for October, generated by piping hledger → R Over the past six months, I’ve tracked my money with hledger—a plain text double-entry accounting system written in Haskell. It’s been surprisingly painless. My previous attempts to pick up real accounting tools floundered. Hosted tools are privacy nightmares, and my stint with GnuCash didn’t last. But after stumbling on Dmitry Astapov’s “Full-fledged hledger” wiki1, it clicked—eventually consistent accounting. Instead of modeling your money all at once, take it one hacking session at a time. It should be easy to work towards eventual consistency. […] I should be able to [add financial records] bit by little bit, leaving things half-done, and picking them up later with little (mental) effort. – Dmitry Astapov, Full-Fledged Hledger Principles of my system I’ve cobbled together a system based on these principles: Avoid manual entry – Avoid typing in each transaction. Instead, rely on CSVs from the bank. CSVs as truth – CSVs are the only things that matter. Everything else can be blown away and rebuilt anytime. Embrace version control – Keep everything under version control in Git for easy comparison and safe experimentation. Learn hledger in five minutes hledger concepts are heady, but its use is simple. I divide the core concepts into two categories: Stuff hledger cares about: Transactions – how hledger moves money between accounts. Journal files – files full of transactions Stuff I care about: Rules files – how I set up accounts, import CSVs, and move money between accounts. Reports – help me see where my money is going and if I messed up my rules. Transactions move money between accounts: 2024-01-01 Payday income:work $-100.00 assets:checking $100.00 This transaction shows that on Jan 1, 2024, money moved from income:work into assets:checking—Payday. The sum of each transaction should be $0. Money comes from somewhere, and the same amount goes somewhere else—double-entry accounting. This is powerful technology—it makes mistakes impossible to ignore. Journal files are text files containing one or more transactions: 2024-01-01 Payday income:work $-100.00 assets:checking $100.00 2024-01-02 QUANSHENG UVK5 assets:checking $-29.34 expenses:fun:radio $29.34 Rules files transform CSVs into journal files via regex matching. Here’s a CSV from my bank: Transaction Date,Description,Category,Type,Amount,Memo 09/01/2024,DEPOSIT Paycheck,Payment,Payment,1000.00, 09/04/2024,PizzaPals Pizza,Food & Drink,Sale,-42.31, 09/03/2024,Amazon.com*XXXXXXXXY,Shopping,Sale,-35.56, 09/03/2024,OBSIDIAN.MD,Shopping,Sale,-10.00, 09/02/2024,Amazon web services,Personal,Sale,-17.89, And here’s a checking.rules to transform that CSV into a journal file so I can use it with hledger: # checking.rules # -------------- # Map CSV fields → hledger fields[0] fields date,description,category,type,amount,memo,_ # `account1`: the account for the whole CSV.[1] account1 assets:checking account2 expenses:unknown skip 1 date-format %m/%d/%Y currency $ if %type Payment account2 income:unknown if %category Food & Drink account2 expenses:food:dining # [0]: <https://hledger.org/hledger.html#field-names> # [1]: <https://hledger.org/hledger.html#account-field> With these two files (checking.rules and 2024-09_checking.csv), I can make the CSV into a journal: $ > 2024-09_checking.journal \ hledger print \ --rules-file checking.rules \ -f 2024-09_checking.csv $ head 2024-09_checking.journal 2024-09-01 DEPOSIT Paycheck assets:checking $1000.00 income:unknown $-1000.00 2024-09-02 Amazon web services assets:checking $-17.89 expenses:unknown $17.89 Reports are interesting ways to view transactions between accounts. There are registers, balance sheets, and income statements: $ hledger incomestatement \ --depth=2 \ --file=2024-09_bank.journal Revenues: $1000.00 income:unknown ----------------------- $1000.00 Expenses: $42.31 expenses:food $63.45 expenses:unknown ----------------------- $105.76 ----------------------- Net: $894.24 At the beginning of September, I spent $105.76 and made $1000, leaving me with $894.24. But a good chunk is going to the default expense account, expenses:unknown. I can use the hleger aregister to see what those transactions are: $ hledger areg expenses:unknown \ --file=2024-09_checking.journal \ -O csv | \ csvcut -c description,change | \ csvlook | description | change | | ------------------------ | ------ | | OBSIDIAN.MD | 10.00 | | Amazon web services | 17.89 | | Amazon.com*XXXXXXXXY | 35.56 | l Then, I can add some more rules to my checking.rules: if OBSIDIAN.MD account2 expenses:personal:subscriptions if Amazon web services account2 expenses:personal:web:hosting if Amazon.com account2 expenses:personal:shopping:amazon Now, I can reprocess my data to get a better picture of my spending: $ > 2024-09_bank.journal \ hledger print \ --rules-file bank.rules \ -f 2024-09_bank.csv $ hledger bal expenses \ --depth=3 \ --percent \ -f 2024-09_checking2.journal 30.0 % expenses:food:dining 33.6 % expenses:personal:shopping 9.5 % expenses:personal:subscriptions 16.9 % expenses:personal:web -------------------- 100.0 % For the Amazon.com purchase, I lumped it into the expenses:personal:shopping account. But I could dig deeper—download my order history from Amazon and categorize that spending. This is the power of working bit-by-bit—the data guides you to the next, deeper rabbit hole. Goals and non-goals Why am I doing this? For years, I maintained a monthly spreadsheet of account balances. I had a balance sheet. But I still had questions. Spending over six months, generated by piping hledger → gnuplot Before diving into accounting software, these were my goals: Granular understanding of my spending – The big one. This is where my monthly spreadsheet fell short. I knew I had money in the bank—I kept my monthly balance sheet. I budgeted up-front the % of my income I was saving. But I had no idea where my other money was going. Data privacy – I’m unwilling to hand the keys to my accounts to YNAB or Mint. Increased value over time – The more time I put in, the more value I want to get out—this is what you get from professional tools built for nerds. While I wished for low-effort setup, I wanted the tool to be able to grow to more uses over time. Non-goals—these are the parts I never cared about: Investment tracking – For now, I left this out of scope. Between monthly balances in my spreadsheet and online investing tools’ ability to drill down, I was fine.2 Taxes – Folks smarter than me help me understand my yearly taxes.3 Shared system – I may want to share reports from this system, but no one will have to work in it except me. Cash – Cash transactions are unimportant to me. I withdraw money from the ATM sometimes. It evaporates. hledger can track all these things. My setup is flexible enough to support them someday. But that’s unimportant to me right now. Monthly maintenance I spend about an hour a month checking in on my money Which frees me to spend time making fancy charts—an activity I perversely enjoy. Income vs. Expense, generated by piping hledger → gnuplot Here’s my setup: $ tree ~/Documents/ledger . ├── export │   ├── 2024-balance-sheet.txt │   └── 2024-income-statement.txt ├── import │   ├── in │   │   ├── amazon │   │   │   └── order-history.csv │   │   ├── credit │   │   │   ├── 2024-01-01_2024-02-01.csv │   │   │   ├── ... │   │   │   └── 2024-10-01_2024-11-01.csv │   │   └── debit │   │   ├── 2024-01-01_2024-02-01.csv │   │   ├── ... │   │   └── 2024-10-01_2024-11-01.csv │   └── journal │   ├── amazon │   │   └── order-history.journal │   ├── credit │   │   ├── 2024-01-01_2024-02-01.journal │   │   ├── ... │   │   └── 2024-10-01_2024-11-01.journal │   └── debit │   ├── 2024-01-01_2024-02-01.journal │   ├── ... │   └── 2024-10-01_2024-11-01.journal ├── rules │   ├── amazon │   │   └── journal.rules │   ├── credit │   │   └── journal.rules │   ├── debit │   │   └── journal.rules │   └── common.rules ├── 2024.journal ├── Makefile └── README Process: Import – download a CSV for the month from each account and plop it into import/in/<account>/<dates>.csv Make – run make Squint – Look at git diff; if it looks good, git add . && git commit -m "💸" otherwise review hledger areg to see details. The Makefile generates everything under import/journal: journal files from my CSVs using their corresponding rules. reports in the export folder I include all the journal files in the 2024.journal with the line: include ./import/journal/*/*.journal Here’s the Makefile: SHELL := /bin/bash RAW_CSV = $(wildcard import/in/**/*.csv) JOURNALS = $(foreach file,$(RAW_CSV),$(subst /in/,/journal/,$(patsubst %.csv,%.journal,$(file)))) .PHONY: all all: $(JOURNALS) hledger is -f 2024.journal > export/2024-income-statement.txt hledger bs -f 2024.journal > export/2024-balance-sheet.txt .PHONY clean clean: rm -rf import/journal/**/*.journal import/journal/%.journal: import/in/%.csv @echo "Processing csv $< to $@" @echo "---" @mkdir -p $(shell dirname $@) @hledger print --rules-file rules/$(shell basename $$(dirname $<))/journal.rules -f "$<" > "$@" If I find anything amiss (e.g., if my balances are different than what the bank tells me), I look at hleger areg. I may tweak my rules or my CSVs and then I run make clean && make and try again. Simple, plain text accounting made simple. And if I ever want to dig deeper, hledger’s docs have more to teach. But for now, the balance of effort vs. reward is perfect. while reading a blog post from Jonathan Dowland↩︎ Note, this is covered by full-fledged hledger – Investements↩︎ Also covered in full-fledged hledger – Tax returns↩︎

4 months ago 35 votes
Subliminal git commits

Luckily, I speak Leet. – Amita Ramanujan, Numb3rs, CBS’s IRC Drama There’s an episode of the CBS prime-time drama Numb3rs that plumbs the depths of Dr. Joel Fleischman’s1 knowledge of IRC. In one scene, Fleischman wonders, “What’s ‘leet’”? “Leet” is writing that replaces letters with numbers, e.g., “Numb3rs,” where 3 stands in for e. In short, leet is like the heavy-metal “S” you drew in middle school: Sweeeeet. / \ / | \ | | | \ \ | | | \ | / \ / ASCII art version of your misspent youth. Following years of keen observation, I’ve noticed Git commit hashes are also letters and numbers. Git commit hashes are, as Fleischman might say, prime targets for l33tification. What can I spell with a git commit? DenITDao via orlybooks) With hexidecimal we can spell any word containing the set of letters {A, B, C, D, E, F}—DEADBEEF (a classic) or ABBABABE (for Mama Mia aficionados). This is because hexidecimal is a base-16 numbering system—a single “digit” represents 16 numbers: Base-10: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 15 Base-16: 0 1 2 3 4 5 6 7 8 9 A B C D E F Leet expands our palette of words—using 0, 1, and 5 to represent O, I, and S, respectively. I created a script that scours a few word lists for valid words and phrases. With it, I found masterpieces like DADB0D (dad bod), BADA55 (bad ass), and 5ADBAB1E5 (sad babies). Manipulating commit hashes for fun and no profit Git commit hashes are no mystery. A commit hash is the SHA-1 of a commit object. And a commit object is the commit message with some metadata. $ mkdir /tmp/BADA55-git && cd /tmp/BAD55-git $ git init Initialized empty Git repository in /tmp/BADA55-git/.git/ $ echo '# BADA55 git repo' > README.md && git add README.md && git commit -m 'Initial commit' [main (root-commit) 68ec0dd] Initial commit 1 file changed, 1 insertion(+) create mode 100644 README.md $ git log --oneline 68ec0dd (HEAD -> main) Initial commit Let’s confirm we can recreate the commit hash: $ git cat-file -p 68ec0dd > commit-msg $ sha1sum <(cat \ <(printf "commit ") \ <(wc -c < commit-msg | tr -d '\n') \ <(printf '%b' '\0') commit-msg) 68ec0dd6dead532f18082b72beeb73bd828ee8fc /dev/fd/63 Our repo’s first commit has the hash 68ec0dd. My goal is: Make 68ec0dd be BADA55. Keep the commit message the same, visibly at least. But I’ll need to change the commit to change the hash. To keep those changes invisible in the output of git log, I’ll add a \t and see what happens to the hash. $ truncate -s -1 commit-msg # remove final newline $ printf '\t\n' >> commit-msg # Add a tab $ # Check the new SHA to see if it's BADA55 $ sha1sum <(cat \ <(printf "commit ") \ <(wc -c < commit-msg | tr -d '\n') \ <(printf '%b' '\0') commit-msg) 27b22ba5e1c837a34329891c15408208a944aa24 /dev/fd/63 Success! I changed the SHA-1. Now to do this until we get to BADA55. Fortunately, user not-an-aardvark created a tool for that—lucky-commit that manipulates a commit message, adding a combination of \t and [:space:] characters until you hit a desired SHA-1. Written in rust, lucky-commit computes all 256 unique 8-bit strings composed of only tabs and spaces. And then pads out commits up to 48-bits with those strings, using worker threads to quickly compute the SHA-12 of each commit. It’s pretty fast: $ time lucky_commit BADA555 real 0m0.091s user 0m0.653s sys 0m0.007s $ git log --oneline bada555 (HEAD -> main) Initial commit $ xxd -c1 <(git cat-file -p 68ec0dd) | grep -cPo ': (20|09)' 12 $ xxd -c1 <(git cat-file -p HEAD) | grep -cPo ': (20|09)' 111 Now we have an more than an initial commit. We have a BADA555 initial commit. All that’s left to do is to make ALL our commits BADA55 by abusing git hooks. $ cat > .git/hooks/post-commit && chmod +x .git/hooks/post-commit #!/usr/bin/env bash echo 'L337-ifying!' lucky_commit BADA55 $ echo 'A repo that is very l33t.' >> README.md && git commit -a -m 'l33t' L337-ifying! [main 0e00cb2] l33t 1 file changed, 1 insertion(+) $ git log --oneline bada552 (HEAD -> main) l33t bada555 Initial commit And now I have a git repo almost as cool as the sweet “S” I drew in middle school. This is a Northern Exposure spin off, right? I’ve only seen 1:48 of the show…↩︎ or SHA-256 for repos that have made the jump to a more secure hash function↩︎

5 months ago 50 votes
The Pull Request

A brief and biased history. Oh yeah, there’s pull requests now – GitHub blog, Sat, 23 Feb 2008 When GitHub launched, it had no code review. Three years after launch, in 2011, GitHub user rtomayko became the first person to make a real code comment, which read, in full: “+1”. Before that, GitHub lacked any way to comment on code directly. Instead, pull requests were a combination of two simple features: Cross repository compare view – a feature they’d debuted in 2010—git diff in a web page. A comments section – a feature most blogs had in the 90s. There was no way to thread comments, and the comments were on a different page than the diff. GitHub pull requests circa 2010. This is from the official documentation on GitHub. Earlier still, when the pull request debuted, GitHub claimed only that pull requests were “a way to poke someone about code”—a way to direct message maintainers, but one that lacked any web view of the code whatsoever. For developers, it worked like this: Make a fork. Click “pull request”. Write a message in a text form. Send the message to someone1 with a link to your fork. Wait for them to reply. In effect, pull requests were a limited way to send emails to other GitHub users. Ten years after this humble beginning—seven years after the first code comment—when Microsoft acquired GitHub for $7.5 Billion, this cobbled-together system known as “GitHub flow” had become the default way to collaborate on code via Git. And I hate it. Pull requests were never designed. They emerged. But not from careful consideration of the needs of developers or maintainers. Pull requests work like they do because they were easy to build. In 2008, GitHub’s developers could have opted to use git format-patch instead of teaching the world to juggle branches. Or they might have chosen to generate pull requests using the git request-pull command that’s existed in Git since 2005 and is still used by the Linux kernel maintainers today2. Instead, they shrugged into GitHub flow, and that flow taught the world to use Git. And commit histories have sucked ever since. For some reason, github has attracted people who have zero taste, don’t care about commit logs, and can’t be bothered. – Linus Torvalds, 2012 “Someone” was a person chosen by you from a checklist of the people who had also forked this repository at some point.↩︎ Though to make small, contained changes you’d use git format-patch and git am.↩︎

6 months ago 65 votes
Git the stupid password store

.title {text-wrap:balance;} GIT - the stupid content tracker “git” can mean anything, depending on your mood. – Linus Torvalds, Initial revision of “git”, the information manager from hell Like most git features, gitcredentials(7) are obscure, byzantine, and incredibly useful. And, for me, they’re a nice, hacky solution to a simple problem. Problem: Home directories teeming with tokens. Too many programs store cleartext credentials in config files in my home directory, making exfiltration all too easy. Solution: For programs I write, I can use git credential fill – the password library I never knew I installed. #!/usr/bin/env bash input="\ protocol=https host=example.com user=thcipriani " eval "$(echo "$input" | git credential fill)" echo "The password is: $password" Which looks like this when you run it: $ ./prompt.sh Password for 'https://thcipriani@example.com': The password is: hunter2 What did git credentials fill do? Accepted a protocol, username, and host on standard input. Called out to my git credential helper My credential helper checked for credentials matching https://thcipriani@example.com and found nothing Since my credential helper came up empty, it prompted me for my password Finally, it echoed <key>=<value>\n pairs for the keys protocol, host, username, and password to standard output. If I want, I can tell my credential helper to store the information I entered: git credential approve <<EOF protocol=$protocol username=$username host=$host password=$password EOF If I do that, the next time I run the script, it finds the password without prompting: $ ./prompt.sh The password is: hunter2 What are git credentials? Surprisingly, the intended purpose of git credentials is NOT “a weird way to prompt for passwords.” The problem git credentials solve is this: With git over ssh, you use your keys. With git over https, you type a password. Over and over and over. Beleaguered git maintainers solved this dilemma with the credential storage system—git credentials. With the right configuration, git will stop asking for your password when you push to an https remote. Instead, git credentials retrieve and send auth info to remotes. On the labyrinthine options of git credentials My mind initially refused to learn git credentials due to its twisty maze of terms that all sound alike: git credential fill: how you invoke a user’s configured git credential helper git credential approve: how you save git credentials (if this is supported by the user’s git credential helper) git credential.helper: the git config that points to a script that poops out usernames and passwords. These helper scripts are often named git-credential-<something>. git-credential-cache: a specific, built-in git credential helper that caches credentials in memory for a while. git-credential-store: STOP. DON’T TOUCH. This is a specific, built-in git credential helper that stores credentials in cleartext in your home directory. Whomp whomp. git-credential-manager: a specific and confusingly named git credential helper from Microsoft®. If you’re on Linux or Mac, feel free to ignore it. But once I mapped the terms, I only needed to pick a git credential helper. Configuring good credential helpers The built-in git-credential-store is a bad credential helper—it saves your passwords in cleartext in ~/.git-credentials.1 If you’re on a Mac, you’re in luck2—one command points git credentials to your keychain: git config --global credential.helper osxkeychain Third-party developers have contributed helpers for popular password stores: 1Password pass: the standard Unix password manager OAuth Git’s documentation contains a list of credential-helpers, too Meanwhile, Linux and Windows have standard options. Git’s source repo includes helpers for these options in the contrib directory. On Linux, you can use libsecret. Here’s how I configured it on Debian: sudo apt install libsecret-1-0 libsecret-1-dev cd /usr/share/doc/git/contrib/credential/libsecret/ sudo make sudo mv git-credential-libsecret /usr/local/bin/ git config --global credential.helper libsecret On Windows, you can use the confusingly named git credential manager. I have no idea how to do this, and I refuse to learn. Now, if you clone a repo over https, you can push over https without pain3. Plus, you have a handy trick for shell scripts. git-credential-store is not a git credential helper of honor. No highly-esteemed passwords should be stored with it. This message is a warning about danger. The danger is still present, in your time, as it was in ours.↩︎ I think. I only have Linux computers to test this on, sorry ;_;↩︎ Or the config option pushInsteadOf, which is what I actually do.↩︎

7 months ago 50 votes
Hexadecimal Sucks

Humans do no operate on hexadecimal symbols effectively […] there are exceptions. – Dan Kaminsky When SSH added ASCII art fingerprints (AKA, randomart), the author credited a talk by Dan Kaminsky. As a refresher, randomart looks like this: $ ssh-keygen -lv -f ~/.ssh/id_ed25519.pub 256 SHA256:XrvNnhQuG1ObprgdtPiqIGXUAsHT71SKh9/WAcAKoS0 thcipriani@foo.bar (ED25519) +--[ED25519 256]--+ | .++ ... | | o+.... o | |E .oo=.o . | | . .+.= . | | o= .S.o.o | | o o.o+.= + | | . . .o B * | | . . + & . | | ..+o*.= | +----[SHA256]-----+ Ben Cox describes the algorithm for generating random art on his blog. Here’s a slo-mo version of the algorithm in action: ASCII art ssh fingerprints slo-mo algorithm But in Dan’s talk, he never mentions anything about ASCII art. Instead, his talk was about exploiting our brain’s hardware acceleration to make it easier for us to recognize SSH fingerprints. The talk is worth watching, but I’ll attempt a summary. What’s the problem? We’ll never memorize SHA256:XrvNnhQuG1ObprgdtPiqIGXUAsHT71SKh9/WAcAKoS0—hexadecimal and base64 were built to encode large amounts of information rather than be easy to remember. But that’s ok for SSH keys because there are different kinds of memory: Rejection: I’ve never seen that before! Recognition: I know it’s that one—not the other one. Recollection: rote recall, like a phone number or address. For SSH you’ll use recognition—do you recognize this key? Of course, SSH keys are still a problem because our working memory is too small to recognize such long strings of letters and numbers. Hacks abound to shore up our paltry working memory—what Dan called “brain hardware acceleration.” Randomart attempts to tap into our hardware acceleration for pattern recognition—the visiuo-spacial sketchpad, where we store pictures. Dan’s idea tapped into a different aspect of hardware acceleration, one often cited by memory competition champions: chunking. Memory chunking and sha256 The web service what3words maps every three cubic meters (3m²) on Earth to three words. The White House’s Oval Office is ///curve.empty.buzz. Three words encode the same information as latitude and longitude—38.89, -77.03—chunking the information to be small enough to fit in our working memory. The mapping of locations to words uses a list of 40 thousand common English words, so each word encodes 15.29 bits of information—45.9 bits of information, identifying 64 trillion unique places. Meanwhile sha256 is 256 bits of information: ~116 quindecillion unique combinations. 64000000000000 # 64 trillion (what3words) 115792089237316195423570985008687907853269984665640564039457584007913129639936 # 116 (ish) quindecillion (sha256) For SHA256, we need more than three words or a dictionary larger than 40,000 words. Dan’s insight was we can identify SSH fingerprints using pairs of human names—couples. The math works like this1: 131,072 first names: 17 bits per name (×2) 524,288 last names: 19 bits per name 2,048 cities: 11 bits per city 17+17+19+11 = 64 bits With 64 bits per couple, you could uniquely identify 116 quindecillion items with four couples. Turning this: $ ssh foo.bar The authenticity of host 'foo.bar' can't be established. ED25519 key fingerprint is SHA256:XrvNnhQuG1ObprgdtPiqIGXUAsHT71SKh9/WAcAKoS0. Are you sure you want to continue connecting (yes/no/[fingerprint])? Into this2: $ ssh foo.bar The authenticity of host 'foo.bar' can't be established. SHA256:XrvNnhQuG1ObprgdtPiqIGXUAsHT71SKh9/WAcAKoS0 Key Data: Svasse and Tainen Jesudasson from Fort Wayne, Indiana, United States Illma and Sibeth Primack from Itārsi, Madhya Pradesh, India Maarja and Nisim Balyeat from Mukilteo, Washington, United States Hsu-Heng and Rasim Haozi from Manali, Tamil Nadu, India Are you sure you want to continue connecting (yes/no/[fingerprint])? With enough exposure, building recognition for these names and places should be possible—at least more possible than memorizing host keys. I’ve modified this from the original talk, in 2006 we were using md5 fingerprints of 160-bits. Now we’re using 256-bit fingerprints, so we needed to encode even more information, but the idea still works.↩︎ A (very) rough code implementation is on my github.↩︎

9 months ago 61 votes

More in programming

Supa Pecha Kucha

slug: supapechakucha

18 hours ago 3 votes
The Power of Principles in Web Development Decision-Making (article)

Discover how The Epic Programming Principles can transform your web development decision-making, boost your career, and help you build better software.

9 hours ago 2 votes
Closing the borders alone won't fix the problems

Denmark has been reaping lots of delayed accolades from its relatively strict immigration policy lately. The Swedes and the Germans in particular are now eager to take inspiration from The Danish Model, given their predicaments. The very same countries that until recently condemned the lack of open-arms/open-border policies they would champion as Moral Superpowers.  But even in Denmark, thirty years after the public opposition to mass immigration started getting real political representation, the consequences of culturally-incompatible descendants from MENAPT continue to stress the high-trust societal model. Here are just three major cases that's been covered in the Danish media in 2025 alone: Danish public schools are increasingly struggling with violence and threats against students and teachers, primarily from descendants of MENAPT immigrants. In schools with 30% or more immigrants, violence is twice as prevalent. This is causing a flight to private schools from parents who can afford it (including some Syrians!). Some teachers are quitting the profession as a result, saying "the Quran run the class room". Danish women are increasingly feeling unsafe in the nightlife. The mayor of the country's third largest city, Odense, says he knows why: "It's groups of young men with an immigrant background that's causing it. We might as well be honest about that." But unfortunately, the only suggestion he had to deal with the problem was that "when [the women] meet these groups... they should take a big detour around them". A soccer club from the infamous ghetto area of Vollsmose got national attention because every other team in their league refused to play them. Due to the team's long history of violent assaults and death threats against opposing teams and referees. Bizarrely leading to the situation were the team got to the top of its division because they'd "win" every forfeited match. Problems of this sort have existed in Denmark for well over thirty years. So in a way, none of this should be surprising. But it actually is. Because it shows that long-term assimilation just isn't happening at a scale to tackle these problems. In fact, data shows the opposite: Descendants of MENAPT immigrants are more likely to be violent and troublesome than their parents. That's an explosive point because it blows up the thesis that time will solve these problems. Showing instead that it actually just makes it worse. And then what? This is particularly pertinent in the analysis of Sweden. After the "far right" party of the Swedish Democrats got into government, the new immigrant arrivals have plummeted. But unfortunately, the net share of immigrants is still increasing, in part because of family reunifications, and thus the problems continue. Meaning even if European countries "close the borders", they're still condemned to deal with the damning effects of maladjusted MENAPT immigrant descendants for decades to come. If the intervention stops there. There are no easy answers here. Obviously, if you're in a hole, you should stop digging. And Sweden has done just that. But just because you aren't compounding the problem doesn't mean you've found a way out. Denmark proves to be both a positive example of minimizing the digging while also a cautionary tale that the hole is still there.

19 hours ago 2 votes
We all lose when art is anonymised

One rabbit hole I can never resist going down is finding the original creator of a piece of art. This sounds simple, but it’s often quite difficult. The Internet is a maze of social media accounts that only exist to repost other people’s art, usually with minimal or non-existent attribution. A popular image spawns a thousand copies, each a little further from the original. Signatures get cropped, creators’ names vanish, and we’re left with meaningless phrases like “no copyright intended”, as if that magically absolves someone of artistic theft. Why do I do this? I’ve always been a bit obsessive, a bit completionist. I’ve worked in cultural heritage for eight years, which has made me more aware of copyright and more curious about provenance. And it’s satisfying to know I’ve found the original source, that I can’t dig any further. This takes time. It’s digital detective work, using tools like Google Lens and TinEye, and it’s not always easy or possible. Sometimes the original pops straight to the top, but other times it takes a lot of digging to find the source of an image. So many of us have become accustomed to art as an endless, anonymous stream of “content”. A beautiful image appears in our feed, we give it a quick heart, and scroll on, with no thought for the human who sweated blood and tears to create it. That original artist feels distant, disconected. Whatever benefit they might get from the “exposure” of your work going viral, they don’t get any if their name has been removed first. I came across two examples recently that remind me it’s not just artists who miss out – it’s everyone who enjoys art. I saw a photo of some traffic lights on Tumblr. I love their misty, nighttime aesthetic, the way the bright colours of the lights cut through the fog, the totality of the surrounding darkness. But there was no name – somebody had just uploaded the image to their Tumblr page, it was reblogged a bunch of times, and then it appeared on my dashboard. Who took it? I used Google Lens to find the original photographer: Lucas Zimmerman. Then I discovered it was part of a series. And there was a sequel. I found interviews. Context. Related work. I found all this cool stuff, but only because I knew Lucas’s name. Traffic Lights, by Lucas Zimmerman. Published on Behance.net under a CC BY‑NC 4.0 license, and reposted here in accordance with that license. The second example was a silent video of somebody making tiny chess pieces, just captioned “wow”. It was clearly an edit of another video, with fast-paced cuts to make it accommodate a short attention span – and again with no attribution. This was a little harder to find – I had to search several frames in Google Lens before I found a summary on a Russian website, which had a link to a YouTube video by metalworker and woodworker Левша (Levsha). This video is four times longer than the cut-up version I found, in higher resolution, and with commentary from the original creator. I don’t speak Russian, but YouTube has auto-translated subtitles. Now I know how this amazing set was made, and I have a much better understanding of the materials and techniques involved. (This includes the delightful name Wenge wood, which I’d never heard before.) https://youtube.com/watch?v=QoKdDK3y-mQ A piece of art is more than just a single image or video. It’s a process, a human story. When art is detached from its context and creator, we lose something fundamental. Creators lose the chance to benefit from their work, and we lose the opportunity to engage with it in a deeper way. We can’t learn how it was made, find their other work, or discover how to make similar art for ourselves. The Internet has done many wonderful things for art, but it’s also a machine for endless copyright infringement. It’s not just about generative AI and content scraping – those are serious issues, but this problem existed long before any of us had heard of ChatGPT. It’s a thousand tiny paper cuts. How many of us have used an image from the Internet because it showed up in a search, without a second thought for its creator? When Google Images says “images may be subject to copyright”, how many of us have really thought about what that means? Next time you want to use an image from the web, look to see if it’s shared under a license that allows reuse, and make sure you include the appropriate attribution – and if not, look for a different image. Finding the original creator is hard, sometimes impossible. The Internet is full of shadows: copies of things that went offline years ago. But when I succeed, it feels worth the effort – both for the original artist and myself. When I read a book or watch a TV show, the credits guide me to the artists, and I can appreciate both them and the rest of their work. I wish the Internet was more like that. I wish the platforms we rely on put more emphasis on credit and attribution, and the people behind art. The next time an image catches your eye, take a moment. Who made this? What does it mean? What’s their story? [If the formatting of this post looks odd in your feed reader, visit the original article]

yesterday 1 votes
Apple does AI as Microsoft did mobile

When the iPhone first appeared in 2007, Microsoft was sitting pretty with their mobile strategy. They'd been early to the market with Windows CE, they were fast-following the iPod with their Zune. They also had the dominant operating system, the dominant office package, and control of the enterprise. The future on mobile must have looked so bright! But of course now, we know it wasn't. Steve Ballmer infamously dismissed the iPhone with a chuckle, as he believed all of Microsoft's past glory would guarantee them mobile victory. He wasn't worried at all. He clearly should have been! After reliving that Ballmer moment, it's uncanny to watch this CNBC interview from one year ago with Johny Srouji and John Ternus from Apple on their AI strategy. Ternus even repeats the chuckle!! Exuding the same delusional confidence that lost Ballmer's Microsoft any serious part in the mobile game.  But somehow, Apple's problems with AI seem even more dire. Because there's apparently no one steering the ship. Apple has been promising customers a bag of vaporware since last fall, and they're nowhere close to being able to deliver on the shiny concept demos. The ones that were going to make Apple Intelligence worthy of its name, and not just terrible image generation that is years behind the state of the art. Nobody at Apple seems able or courageous enough to face the music: Apple Intelligence sucks. Siri sucks. None of the vaporware is anywhere close to happening. Yet as late as last week, you have Cook promoting the new MacBook Air with "Apple Intelligence". Yikes. This is partly down to the org chart. John Giannandrea is Apple's VP of ML/AI, and he reports directly to Tim Cook. He's been in the seat since 2018. But Cook evidently does not have the product savvy to be able to tell bullshit from benefit, so he keeps giving Giannandrea more rope. Now the fella has hung Apple's reputation on vaporware, promised all iPhone 16 customers something magical that just won't happen, and even spec-bumped all their devices with more RAM for nothing but diminished margins. Ouch. This is what regression to the mean looks like. This is what fiefdom management looks like. This is what having a company run by a logistics guy looks like. Apple needs a leadership reboot, stat. That asterisk is a stain.

2 days ago 3 votes