Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
12
Sharp-Edged Finalizers in Go 2018-04-05, David Crawshaw For background, see my last post on why in general .finalizers do not work We cannot use an object finalizer for resource management, because finalizers are called at some unpredictable distant time long after resources need to be reclaimed. However, a finalizer does provide us with a bound on when a managed resource needs to have been released. If we reach an object finalizer, and a manually managed resource has not been freed, then there is a bug in the program. So we can use finalizers to detect resource leaks. This is a finalizer. Misuse the resource and it will cut your program short.sharp-edged I suspect this kind of aggressive finalizer is off-putting to many, who view resource management something nice to have. But there are many programs for which correct resource management is vital. Leaking a resource can leave to unsuspecting crashes, or data loss. For people in similar situations, you may want to consider a panicing...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from David Crawshaw

How I program with LLMs

How I program with LLMs 2025-01-06 This document is a summary of my personal experiences using generative models while programming over the past year. It has not been a passive process. I have intentionally sought ways to use LLMs while programming to learn about them. The result has been that I now regularly use LLMs while working and I consider their benefits net-positive on my productivity. (My attempts to go back to programming without them are unpleasant.) Along the way I have found oft-repeated steps that can be automated, and a few of us are working on building those into a tool specifically for Go programming: . It’s very early but so far the experience has been positive.sketch.dev I am typically curious about new technology. It took very little experimentation with LLMs for me to want to see if I could extract practical value. There is an allure to a technology that can (at least some of the time) craft sophisticated responses to challenging questions. It is even more exciting to watch a computer attempt to write a piece of a program as requested, and make solid progress. The only technological shift I have experienced that feels similar to me happened in 1995, when we first configured our LAN with a usable default route. We replaced the shared computer in the other room running Trumpet Winsock with a machine that could route a dialup connection, and all at once I had The Internet on tap. Having the internet all the time was astonishing, and felt like the future. Probably far more to me in that moment than to many who had been on the internet longer at universities, because I was immediately dropped into high internet technology: web browsers, JPEGs, and millions of people. Access to a powerful LLM feels like that. So I followed this curiosity, to see if a tool that can generate something mostly not wrong most of the time could be a net benefit in my daily work. The answer appears to be yes, generative models are useful for me when I program. It has not been easy to get to this point. My underlying fascination with the new technology is the only way I have managed to figure it out, so I am sympathetic when other engineers claim LLMs are “useless.” But as I have been asked more than once how I can possibly use them effectively, this post is my attempt to describe what I have found so far. There are three ways I use LLMs in my day-to-day programming: As this is about the of programming, this has been a fundamentally qualitative process that is hard to write about with quantitative rigor. The closest I will get to data is to say: it appears from my records that for every two hours of programming I do now, I accept more than 10 autocomplete suggestions, use LLM for a search-like task once, and program in a chat session once.practice The rest of this is about extracting value from chat-driven programming. Let me try to motivate this for the skeptical. A lot of the value I personally get out of chat-driven programming is I reach a point in the day when I know what needs to be written, I can describe it, but I don’t have the energy to create a new file, start typing, then start looking up the libraries I need. (I’m an early-morning person, so this is usually any time after 11am for me, though it can also be any time I context-switch into a different language/framework/etc.) LLMs perform that service for me in programming. They give me a first draft, with some good ideas, with several of the dependencies I need, and often some mistakes. Often, .I find fixing those mistakes is a lot easier than starting from scratch This means chat-based programming may not be for you. I am doing a particular kind of programming, product development, which could be roughly described as trying to bring programs to a user through a robust interface. That means I am building a lot, throwing away a lot, and bouncing around between environments. Some days I mostly write typescript, some days mostly Go. I spent a week in a C++ codebase last month exploring an idea, and just had an opportunity to learn the HTTP server-side events format. I am all over the place, constantly forgetting and relearning. If you spend more time proving your optimization of a cryptographic algorithm is not vulnerable to timing attacks than you do writing the code, I don’t think any of my observations here are going to be useful to you. Give an LLM a specific objective and all the background material it needs so it can craft a well-contained code review packet and expect it to adjust as you question it. There are two major elements to this: The ideal task for an LLM is one where it needs to use a lot of common libraries (more than a human can remember, so it is doing a lot of small-scale research for you), working to an interface you designed or produces a small interface you can verify as sensible quickly, and it can write readable tests. Sometimes this means choosing the library for it, if you want something obscure (though with open source code LLMs are quite good at this). You always need to pass an LLM’s code through a compiler and run the tests before spending time reading it. They all produce code that doesn’t compile sometimes. (Always making errors I find surprisingly human, every time I see one I think, there but for the grace of God go I.) The better LLMs are very good at recovering from their mistakes, often all they need is for you to paste the compiler error or test failure into the chat and they fix the code. There are vague tradeoffs we make every day around the cost of writing, the cost of reading, and the cost of refactoring code. Let’s take Go package boundaries as an example. The standard library has a package “net/http” that contains some fundamental types for dealing with wire format encoding, MIME types, etc. It contains an HTTP client, and an HTTP server. Should it be one package, or several? Reasonable people can disagree! So much so, I do not know if there is a correct answer today. What we have works, after 15 years of use it is still not clear to me that some other package arrangement would work better. Advantages of a larger package include: centralized documentation for callers, easier initial writing, easier refactoring, easier sharing of helper code without devising robust interfaces for them (which often involves pulling the fundamental types of a package out into yet another leaf package filled with types). The disadvantages include the package being harder to read because many different things are going on (try reading the net/http client implementation without tripping up and finding yourself in the server code for a few minutes), or it being harder to use because there is too much going on in it. For example I have a codebase that uses a C library in some fundamental types, but parts of the codebase need to be in a binary widely distributed to many platforms that does not technically need the C library, so have more packages than you might expect in the codebase isolating the use of the C library to avoid cgo in the multi-platform binary. There are no right answers here, instead we are trading off different types of work that an engineer will have to do (upfront and ongoing). LLMs influence those tradeoffs: Let me work an example to combine a few of the discussed ideas: Write a reservoir sampler for the quartiles of floats. First off, package structure. Were I doing this before LLMs, I would have chosen to have some sort of streamstat package that contained several algorithms, maybe one per file. This does not seem to be a unique opinion, here is an open source package following that model. Now, I want just this one algorithm in its own package. Other variants or related algorithms can have their own package.quantile Next up, what do we get from an LLM. The first pass is not bad. That prompt, with some details about wanting it in Go got me quartile_sampler.go: The core interface is good too: Great! There are also tests. An aside: this may be the place to stop. Sometimes I use LLM codegen as a form of specialized search. E.g. I’m curious about reservoir sampling, but want to see how the algorithm would be applied under some surprising constraint, for example time-windowed sampling. Instead of doing a literature search I might amend my prompt for an implementation that tracks freshness. (I could also ask it to include references to the literature in the comments, which I could manually check to see if it’s making things up or if there’s some solid research to work from.) Often I spend 60 seconds reading some generated code, see an obvious trick I hadn’t thought of, then throw it away and start over. Now I know the trick is possible. This is why it is so hard to attribute value generated by LLMs. Yes sometimes it makes bad code, gets stuck in a rut, makes up something impossible (it hallucinated a part of the monaco API I wish existed the other day) and wastes my time. It can also save me hours by pointing out something relevant I don’t know. Back to the code. Fascinatingly, the initial code produced didn’t compile. In the middle of the Quartiles implementation there was the line: Which is a fine line, sorted is a slice defined a few lines earlier. But the value is never used so gopls (and the Go compiler if you run go build) immediately says: This is a very easy fix. If I paste the error back into the LLM it will correct it. Though in this case, as I’m reading the code, it’s quite clear to me that I can just delete the line myself, so I do. Now the tests. I got what I expected. In quartile_sampler_test.go: Exactly the sort of thing I would write! I would run some cases through another implementation to generate expected outputs and copy them into a test like this. But there are two issues with this. The first is the LLM did run these numbers through another implementation. (To the best of my knowledge. When using a sophisticated LLM service, it is hard to say for sure what is happening behind the scenes.) It made them up, and LLMs have a reputation for being weak at arithmetic. So this sort of test, while reasonable for a human to write because we base it on the output of another tool, or if we are particularly old-school do some arithmetic ourselves, is not great from an LLM.not The second issue with this is we can do better. I am happy we now live in a time when programmers write their own tests, but we do not hold ourselves to the same standards with tests as we do with production code. That is a reasonable tradeoff, there are only so many hours in the day. But what LLMs lack in arithmetical prowess, they make up for in enthusiasm. Let’s ask for an even better test. This got us some new test code: The original test from above has been reworked to to use checkQuartiles and we have something new: This is fun, because it's wrong. My running tool immediately says:gopls Pasting that error back into the LLM gets it to regenerate the fuzz test such that it is built around a function that uses to extract floats from the data slice. Interactions like this point us towards automating the feedback from tools: all it needed was the obvious error message to make solid progress towards something useful. I was not needed.func(t *testing.T, data []byte)math.Float64frombits Doing a quick survey of the last few weeks of my LLM chat history shows (which as I mentioned earlier, is not a proper quantitative analysis by any measure) that more than 80% of the time there is a tooling error, the LLM can make useful progress without me adding any insight. About half the time it can completely resolve the issue without me saying anything of note, I am just acting as the messenger. There was a programming movement some 25 years ago focused around the principle “don’t repeat yourself.” As is so often the case with short snappy principles taught to undergrads, it got taken too far. There is a lot of cost associated with abstracting out a piece of code so it can be reused, it requires creating intermediate abstractions that must be learned, and it requires adding features to the factored out code to make it maximally useful to the maximum number of people, which means we depend on libraries filled with useless distracting features. The past 10-15 years has seen a far more tempered approach to writing code, with many programmers understanding it is better to reimplement a concept if the cost of sharing the implementation is higher than the cost of implementing and maintaining separate code. It is far less common for me to write on a code review “this isn’t worth it, separate the implementations.” (Which is fortunate, because people really don’t want to hear things like that after they have done all the work.) Programmers are getting better at tradeoffs. What we have now is a world where the tradeoffs have shifted. It is now easier to write more comprehensive tests. You can have the LLM write the fuzz test implementation you want but didn’t have the hours to build properly. You can spend a lot more time writing tests to be readable, because the LLM is not sitting there constantly thinking “it would be better for the company if I went and picked another bug off the issue tracker than doing this.” So the tradeoff shifts in favor of having more specialized implementations. The place where I expect this to be most visible is language-specific . Every major company API comes with dozens of these, usually low quality, wrappers written by people who aren’t actually using their implementations for a specific goal, instead are trying to capture every nook and cranny of an API in a large and complex interface. Even when it is done well, I have found it easier to go to the REST documentation (usually a set of curl commands), and implement a language wrapper for the 1% of the API I actually care about. It cuts down the amount of the API I need to learn upfront, and it cuts down how much future programmers (myself) reading the code need to understand.REST API wrappers For example, as part of my recent work on sketch.dev I implemented a Gemini API wrapper in Go. Even though the in Go has been carefully handcrafted by people who know the language well and clearly care, there is a lot to read to understand it:official wrapper My simplistic initial wrapper was 200 lines of code total, one method, three types. Reading the entire implementation is 20% of the work of reading the documentation of the official package, and if you decide to try digging into its implementation you will discover that it is a wrapper around another largely code-generated implementation with protos and grpc and the works. All I want is to cURL and parse a JSON object. There obviously comes a point in a project, where Gemini is the foundation of the entire app, where nearly every feature is used, where building on gRPC aligns well with the telemetry system elsewhere in your organization, where you should use the large official wrapper. But most of the time it is so much more time consuming, both upfront and ongoing, to do so given we almost always want only some wafer-thin sliver of whatever API we need to use today, that custom clients, largely written by a GPU, are far more effective for getting work done. So I foresee a world with far more specialized code, with fewer generalized packages, and more readable tests. Reusable code will continue to thrive around small robust interfaces and otherwise will be pulled apart into specialized code. Depending how well this is done, it will lead to either better software or worse software. I would expect both, with a long-term trend towards better software by the metrics that matter. As a programmer my instinct is to make computers do work for me. It is a lot of work getting value out of LLMs, how can a computer do it? I believe the key to solving a problem is not to overgeneralize. Solve a particular problem and then expand slowly. So instead of building a general-purpose UI for chat programming that is just as good at COBOL as it is for Haskell, we want to focus on one particular environment. The bulk of my programming is in Go, and so what I want is easy to imagine for a Go programmer: A few of us have built an early prototype of this: .sketch.dev The goal is not a “Web IDE” but rather to challenge the notion that chat-based programming even belongs in what is traditionally called an IDE. IDEs are collections of tools arranged for people. It is a delicate environment where I know what is going on. While an LLM is ultimately a developer tool, it is one that needs its own IDE to get the feedback it needs to operate effectively.I do not want an LLM spewing its first draft all over my current branch. Put another way: we didn’t embed goimports into sketch for it to be used by humans, but to get Go code closer to compiling using automatic signals, so that the compiler can provide better error feedback to the LLM driving it. It might be better to think of sketch.dev as a “Go IDE for LLMs”. This is all very recent work with a lot left to do, e.g. git integration so we can load existing packages for editing and drop the results on a branch. Better test feedback. More console control. (If the answer is to run sed, run sed. Be you the human or the LLM.) We are still exploring, but are convinced that focusing an environment for a particular kind of programming will give us better results than the generalized tool. Background Overview Why use chat at all? Chat-based LLMs do best with exam-style questions Extra code structure is much cheaper An example Where are we going? Better tests, maybe even less DRY Automating these observations: sketch.dev . This makes me more productive by doing a lot of the more-obvious typing for me. It turns out the current state of the art can be improved on here, but that’s a conversation for another day. Even the standard products you can get off the shelf are better for me than nothing. I convinced myself of that by trying to give them up. I could not go a week without getting frustrated by how much mundane typing I had to do before having a FIM model. This is the place to experiment first. Autocomplete . If I have a question about a complex environment, say “how do I make a button transparent in CSS” I will get a far better answer asking any consumer-based LLM, o1, sonnet 3.5, etc, than I do using an old fashioned web search engine and trying to parse the details out of whatever page I land on. (Sometimes the LLM is wrong. So are people. The other day I put my shoe on my head and asked my two year old what she thought of my hat. She dealt with it and gave me a proper scolding. I can deal with LLMs being wrong sometimes too.) Search . This is the hardest of the three. This is where I get the most value of LLMs, but also the one that bothers me the most. It involves learning a lot and adjusting how you program, and on principle I don’t like that. It requires at least as much messing about to get value out of LLM chat as it does to learn to use a slide rule, with the added annoyance that it is a non-deterministic service that is regularly changing its behavior and user interface. Indeed, the long-term goal in my work is to replace the need for chat-driven programming, to bring the power of these models to a developer in a way that is not so off-putting. But as of now I am dedicated to approaching the problem incrementally, which means figuring out how to do best with what we have and improve it.Chat-driven programming Avoid creating a situation with so much complexity and ambiguity that the LLM gets confused and produces bad results. This is why I have had little success with chat inside my IDE. My workspace is often messy, the repository I am working on is by default too large, it is filled with distractions. One thing humans appear to be much better than LLMs at (as of January 2025) is not getting distracted. That is why I still use an LLM via a web browser, because I want a blank slate on which to craft a well-contained request. Ask for work that is easy to verify. Your job as a programmer using an LLM is to read the code it produces, think about it, and decide if the work is good. You can ask an LLM to do things you would never ask a human to do. “Rewrite all of your new tests introducing an <intermediate concept designed to make the tests easier to read>” is an appalling thing to ask a human, you’re going to have days of tense back-and-forth about whether the cost of the work is worth the benefit. An LLM will do it in 60 seconds and not make you fight to get it done. Take advantage of the fact that .redoing work is extremely cheap As LLMs do better with exam-style questions, more and smaller packages make it easier to give a complete and yet isolated context for a piece of work. This is true for humans too, which is why we use packages at all, but we trade off package size against the extra typing/plumbing/filing to make more readable code. With an LLM both doing and benefiting from a big chunk of that extra work, the tradeoff shifts. (As a bonus, we humans get more readable code!) Smaller and more numerous packages can be compiled and tested independently of unrelated code. This is helpful for the LLM dev cycle as it means changes can be compiled and tested before other dependent packages are refactored, and the package has a simpler test environment. something like the Go playground, built around editing a package and tests with a chat interface onto editable code a little UNIX env where we can run go get and go test goimports integration gopls integration automatic model feedback: on model edit run go get, go build, go test, feedback missing packages, compiler errors, test failures to the model to try and get them fixed automatically // QuartileSampler maintains a reservoir sample to estimate quartiles of a stream // of float64 values. It uses reservoir sampling to maintain a representative // sample when processing large streams of data. type QuartileSampler struct { reservoir []float64 seen int maxSize int rng *rand.Rand } // NewQuartileSampler creates a new sampler that maintains up to maxSize samples. // A larger maxSize provides more accurate estimates but uses more memory. func NewQuartileSampler(maxSize int) *QuartileSampler { … } // Add adds a new value to the sampler. func (qs *QuartileSampler) Add(value float64) { … } // Quartiles returns the estimated 25th, 50th (median), and 75th percentiles // of the data seen so far. Returns (0,0,0) if no data has been added. func (qs *QuartileSampler) Quartiles() (q1, median, q3 float64) { if len(qs.reservoir) == 0 { return 0, 0, 0 } // Make a copy to avoid modifying the reservoir sorted := make([]float64, len(qs.reservoir)) copy(sorted, qs.reservoir) slices.Sort(sorted) n := len(sorted) q1 = percentile(sorted, 0.25) median = percentile(sorted, 0.50) q3 = percentile(sorted, 0.75) return q1, median, q3 } n := len(sorted) declared and not used: n func TestQuartileSampler(t *testing.T) { tests := []struct { name string data []float64 wantQ1 float64 wantMed float64 wantQ3 float64 epsilon float64 // allowed error for floating point comparison }{ { name: "basic sequence", data: []float64{1, 2, 3, 4, 5, 6, 7}, wantQ1: 2, wantMed: 4, wantQ3: 6, epsilon: 0.1, }, … } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { qs := NewQuartileSampler(100) // Use large reservoir for accurate testing for _, v := range tt.data { qs.Add(v) } q1, med, q3 := qs.Quartiles() if math.Abs(q1-tt.wantQ1) > tt.epsilon { t.Errorf("Q1 = %v, want %v (±%v)", q1, tt.wantQ1, tt.epsilon) } if math.Abs(med-tt.wantMed) > tt.epsilon { t.Errorf("Median = %v, want %v (±%v)", med, tt.wantMed, tt.epsilon) } if math.Abs(q3-tt.wantQ3) > tt.epsilon { t.Errorf("Q3 = %v, want %v (±%v)", q3, tt.wantQ3, tt.epsilon) } }) } } // referenceQuartiles calculates the exact quartiles for a slice of float64 values // using linear interpolation, matching the behavior expected from the sampler. func referenceQuartiles(data []float64) (q1, median, q3 float64) { … } // compareQuartiles checks if two sets of quartiles are within epsilon of each other. // Returns true if they match within the tolerance, false otherwise. func compareQuartiles(q1a, meda, q3a, q1b, medb, q3b, epsilon float64) bool { … } // checkQuartiles is a test helper that compares sampler output against the reference // implementation and reports any differences. func checkQuartiles(t *testing.T, data []float64, epsilon float64) { t.Helper() // Get reference values wantQ1, wantMed, wantQ3 := referenceQuartiles(data) // Get sampler values using a large reservoir for accuracy qs := NewQuartileSampler(1000) for _, v := range data { qs.Add(v) } gotQ1, gotMed, gotQ3 := qs.Quartiles() if !compareQuartiles(gotQ1, gotMed, gotQ3, wantQ1, wantMed, wantQ3, epsilon) { t.Errorf("Quartiles mismatch:\ngot (q1=%v, med=%v, q3=%v)\nwant (q1=%v, med=%v, q3=%v)\nepsilon=%v", gotQ1, gotMed, gotQ3, wantQ1, wantMed, wantQ3, epsilon) } } func FuzzQuartileSampler(f *testing.F) { // Add some seed corpus f.Add([]float64{1, 2, 3, 4, 5}) f.Fuzz(func(t *testing.T, data []float64) { // Use a larger epsilon for fuzzing since we might get more extreme values checkQuartiles(t, data, 0.2) }) } fuzzing arguments can only have the following types: string, bool, float32, float64, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, []byte $ go doc -all genai | wc -l 1155 In the tests, implement the simplest, most readable version of the standard code for quartiles over a fixed set of known values in a slice. Then pass the test cases through the standard code and the reservoir sampler and confirm they are within an epsilon of each other. Structure the comparison code such that it can be used in a fuzz test too.

5 months ago 22 votes
jsonfile: a quick hack for tinkering

jsonfile: a quick hack for tinkering Consider your requirements! A reference implementation A final thought 2024-02-06 The year is 2024. I am on vacation and dream up a couple of toy programs I would like to build. It has been a few years since I built a standalone toy, I have . So instead of actually building any of the toys I think of, I spend my time researching if anything has changed since the last time I did it. Should pick up new tools or techniques?been busy It turns out lots of things have changed! There’s some great stuff out there, including decent quorum-write regional cloud databases now. Oh and the ability to have a fascinating hour-long novel conversation with transistors. But things are still awkward for small fast tinkering. Going back in time, I struggled constantly rewriting the database for the prototype for Tailscale, so I ended up writing my in-memory objects out as . It went far further than I planned. Somewhere in the intervening years I convinced myself it must have been a bad idea even for toys, given all the pain migrating away from it caused. But now that I find myself in an empty text editor wanting to write a little web server, I am not so sure. The migration was painful, and a lot of that pain was born by others (which is unfortunate, I find handing a mess to someone else deeply unpleasant). Much of that pain came from the brittle design of the caching layers on top (also my doing), which came from not moving to an SQL system soon enough.a JSON file I suspect, considering the process retrospect, a great deal of that pain can be avoided by committing to migrating directly to an SQL system the moment you need an index. You can pay down a lot of exploratory design work in a prototype before you need an index, which n is small, full scans are fine. But you don’t make it very far into production before one of your values of n crosses something around a thousand and you long for an index. With a clear exit strategy for avoiding big messes, that means the JSON file as database is still a valid technique for prototyping. And having spent a couple of days remembering what a misery it is to write a unit test for software that uses postgresql (mocks? docker?? for a database program I first ran on a computer with less power than my 2024 wrist watch?) and struggling figuring out how to make my cgo sqlite cross-compile to Windows, I’m firmly back to thinking a JSON file can be a perfectly adequate database for a 200-line toy. Before you jump into this and discover it won’t work, or just as bad, dismiss the small and unscaling as always a bad idea, consider the requirements of your software. Using a JSON file as a database means your software: Programming is the art of tradeoffs. You have to decide what matters and what does not. Some of those decisions need to be made early, usually with imperfect information. You may very well need a powerful SQL DBMS from the moment you start programming, depending on the kind of program you’re writing! An implementation of jsonfile (which Brad called JSONMutexDB, which is cooler because it has an x in it, but requires more typing) can fit in about 70 lines of Go. But there are a couple of lessons we ran into in the early days of Tailscale that can be paid down relatively easily, growing the implementation to 85 lines. (More with comments!) I think it’s worth describing the interesting things we ran into, both in code and here. You can find the implementation of jsonfile here: . The interface is:https://github.com/crawshaw/jsonfile/blob/main/jsonfile.go There is some experience behind this design. In no particular order: One of the early pain points in the transition was figuring out the equivalent of when to , , and . The first version exposed the mutex directly (which was later converted into a RWMutex).BEGINCOMMITROLLBACK There is no advantage to paying this transition cost later. It is easy to box up read/write transactions with a callback. This API does that, and provides a great point to include other safety mechanisms. There are two forms of this. The first is if the write fn fails half-way through, having edited the db object in some way. To avoid this, the implementation first creates an entirely new copy of the DB before applying the edit, so the entire change set can be thrown away on error. Yes, this is inefficient. No, it doesn’t matter. Inefficiency in this design is dominated by the I/O required to write the entire database on every edit. If you are concerned about the duplicate-on-write cost, you are not modeling I/O cost appropriately (which is important, because if I/O matters, switch to SQL). The second is from a full disk. The easy to write a file in Go is to call os.WriteFile, which the first implementation did. But that means: A failure can occur in any of those system calls, resulting in a corrupt DB. So this implementation creates a new file, loads the DB into it, and when that has all succeeded, uses . It is not a panacea, our operating systems do not make all the promises we wish they would about rename. But it is much better than the default.rename(2) A nasty issue I have run into twice is aliasing memory. This involves doing something like: An intermediate version of this code kept the previous database file on write. But there’s an easier and even more robust strategy: never rename the file back to the original. Always create a new file, . On starting, load the most recent file. Then when your data is worth backing up (if ever), have a separate program prune down the number of files and send them somewhere robust.Backups.mydb.json.<timestamp> Not in this implementation but you may want to consider, is removing the risk of a Read function editing memory. You can do that with View* types generated by the tool. It’s neat, but more than quadruples the complexity of JSONFileDB, complicates the build system, and initially isn’t very important in the sorts of programs I write. I have found several memory aliasing bugs in all the code I’ve written on top of a JSON file, but have yet to accidentally write when reading. Still, for large code bases Views are quite pleasant and well-worth considering about the point when a project should move to a real SQL.Constant memory.viewer There is some room for performance improvements too (using cloner instead of unmarshalling a fresh copy of the data for writing), though I must point out again that needing more performance is a good sign it is time to move on to SQLite, or something bigger. It’s a tiny library. Copy and edit as needed. It is an all-new implementation so I will be fixing bugs as I find them. (As a bonus: this was my first time using a Go generic! 👴 It went fine. Parametric polymorphism is ok.) Why go out of my way to devise an inadequate replacement for a database? Most projects fail before they start. They fail because the is too high. Our dreams are big and usually too much, as dreams should be.activation energy But software is not building a house or traveling the world. You can realize a dream with the tools you have on you now, in a few spare hours. This is the great joy of it, you are free from physical and economic constraint. If you start. Be willing to compromise almost everything to start. Doesn’t have a lot of data. Keep it to a few megabytes. The data structure is boring enough not to require indexes. You don’t need something interesting like full-text search. You do plenty of reads, but writes are infrequent. Ideally no more than one every few seconds. Truncating the database file Making multiple system calls to .write(2) Calling .close(2) type JSONFile[Data any] struct { … } func New[Data any](path string) (*JSONFile[Data], error) func Load[Data any](path string) (*JSONFile[Data], error) func (p *JSONFile[Data]) Read(fn func(data *Data)) func (p *JSONFile[Data]) Write(fn func(*Data) error) error list := []int{1, 2, 3} db.Write(func() { db.List = list }) list[0] = 10 // editing the database! Transactions Database corruption through partial writes Memory aliasing Some changes you may want to consider

a year ago 19 votes
new year, same plan

new year, same plan 2022-12-31 Some months ago, the bill from GCE for hosting this blog jumped from nearly nothing to far too much for what it is, so I moved provider and needed to write a blog post to test it all. I could have figured out why my current provider hiked the price. Presumably I was Holding It Wrong and with just a few grip adjustments I could get the price dropped. But if someone mysteriously starts charging you more money, and there are other people who offer the same service, why would you stay? This has not been a particularly easy year, for a variety of reasons. But here I am at the end of it, and beyond a few painful mistakes that in retrospect I did not have enough information to get right, I made mostly the same decisions I would again. There were a handful of truly wonderful moments. So the plan for 2023 is the same: keep the kids intact, and make programming more fun. There is also the question of Twitter. It took me a few years to develop the skin to handle the generally unpleasant environment. (I can certainly see why almost no old Twitter employees used their product.) The experience recently has degraded, there are still plenty of funny tweets, but far less moments of interesting content. Here is a recent exception, but it is notable because it's the first time in weeks I learned anything from twitter: . I now find more new ideas hiding in HN comments than on Twitter.https://twitter.com/lrocket/status/1608883621980704768 Many people I know have sort-of moved to Mastodon, but it has a pretty horrible UX that is just enough work that I, on the whole, don't enjoy it much. And the fascinating insights don't seem to be there yet, but I'm still reading and waiting. On the writing side, it might be a good idea to lower the standards (and length) of my blog posts to replace writing tweets. But maybe there isn't much value in me writing short notes anyway, are my contributions as fascinating as the ones I used to sift through Twitter to read? Not really. So maybe the answer is to give up the format entirely. That might be something new for 2023. Here is something to think about for the new year: http://www.shoppbs.pbs.org/now/transcript/transcriptNOW140_full.html DAVID BRANCACCIO: There's a little sweet moment, I've got to say, in a very intense book– your latest– in which you're heading out the door and your wife says what are you doing? I think you say– I'm getting– I'm going to buy an envelope. KURT VONNEGUT: Yeah. DAVID BRANCACCIO: What happens then? KURT VONNEGUT: Oh, she says well, you're not a poor man. You know, why don't you go online and buy a hundred envelopes and put them in the closet? And so I pretend not to hear her. And go out to get an envelope because I'm going to have a hell of a good time in the process of buying one envelope. I meet a lot of people. And, see some great looking babes. And a fire engine goes by. And I give them the thumbs up. And, and ask a woman what kind of dog that is. And, and I don't know. The moral of the story is, is we're here on Earth to fart around. And, of course, the computers will do us out of that. And, what the computer people don't realize, or they don't care, is we're dancing animals. You know, we love to move around. And, we're not supposed to dance at all anymore.

over a year ago 18 votes
log4j: between a rock and a hard place

log4j: between a rock and a hard place 2021-12-11 What does backwards compatibility mean to me? Backwards compatibility should not have forced log4j to keep LDAP/JNDI URLs The other side of compatibility: being cautious adding features There is more than enough written on the mechanics of and mitigations for the recent . On prevention, this is the most interesting widely-reshared I have seen:severe RCE in log4jinsight This is making the rounds because highly-profitable companies are using infrastructure they do not pay for. That is a worthy topic, but not the most interesting thing in this particular case because it would not clearly have contributed to preventing this bug. It is the second statement in this tweet that is worthy of attention: the long ago, but could not because of the backwards compatibility promises they are held to.maintainers of log4j would have loved to remove this bad feature I am often heard to say that I love backwards compatibility, and that it is underrated. But what exactly do I mean? I don't mean that whenever I upgrade a dependency, I expect zero side effects. If a library function gets two times faster in an upgrade, that is a change in behavior that might break my software! But obviously the exact timings of functions can change between versions. In some extreme cases I need libraries to promise the algorithmic complexity of run time or memory usage, where I am providing extremely large inputs, or need constant-time algorithms to avoid timing attacks. But I don't need that from a logging library. So let me back up and describe what is important. The ideal version of this is I run my package manager's upgrade command, execute the tests, commit the output, and not think about it any more. This means the API/ABI stays similar enough that the compiler won't break, the behavior of the library routines is similar enough the tests will pass, and no other constraints, such as total binary size limits, are exceeded. This is impossible in the general case. The only way to achieve it is to not make any changes at all. When we write down a promise, we leave lots of definitional holes in the promise. E.g. take the (generally excellent) :Go compatibility promise Here "correctly" means according to the Go language specification and the API documentation. The spec and the docs do not cover run time, memory use, or binary size. The next version of Go can be 10x slower and be compatible! But I can assure you if that were the case I would fail my goal of not spending much time upgrading a dependency. But the Go team know this, and work to the spirit of their promise. Very occasionally they break things, for security reasons, and when they do I have to spend time upgrading a dependency for a really good reason: my program needs it.very If I want my program to work correctly I should write tests for all the behaviors I care about. But like all programmers, I am short on hours in the day to do all that needs doing, and never have enough tests. So whenever a change in behavior happens in an upstream library that my tests don't catch but makes it into production, my instinct is to blame upstream. This is of course unfair, the burden for releasing good programs is borne by the person pressing the release button. But it is an expression of a programming social contract that has taken hold: a good software project tries to break downstream as little as possible, and when we do break downstream, we should do our best to make the breakage obvious and easy to fix. No compatibility promise I have seen covers the spirit of minimizing breakage and moving it to the right part of the process. As far as I can tell, engineers aren't taught this in school, and many have never heard the concept articulated. So much of best practice in releasing libraries is learned on the job and not well communicated (yet). Good upstream dependencies are maintained by people who have figured this out the hard way and do their best by their users. As a user, it is extremely hard to know what kind of library you are getting when you first consider a dependency, unless it is a very old and well established project. This is where software goes wrong the most for me. I want, year after year, to come back to a tool and be able to apply the knowledge I acquired the last time I used it, to new things I learn, and build on it. I want to hone my craft by growing a deep understanding of the tools I use. Some new features are additive. If I buy a new for framing, and it has a notch on it my old one didn't that I can use as a shortcut in marking up a beam, its presence does not invalidate my old knowledge. If the new interior notch replaces a marking that was on the outside of the square, then when I go to find my trusty marking I remember from years ago, and it's missing, I need to stop and figure out a new way to solve this old problem. Maybe I will notice the new feature, or, more likely, I'll pull out the tape measure measure I know how to use and find my mark that (slower) way. If someone who knew what they were doing saw me they could correct me! But like programming, I'm usually making a mess with wood alone in a few spare hours on a Saturday.speed square When software "upgrades" invalidate my old knowledge, it makes me a worse programmer. I can spend time getting back to where I was, but that's time I am not spending improving on where I was. To give a concrete example: I will never be an expert at developing for macOS or iOS. I bounce into and out of projects for Apple devices, spending no more than 10% of my hours on their platform. Their APIs change constantly. The buttons in Xcode move so quickly I sometimes wonder if it's happening before my eyes. Try looking up some Swift syntax on stack overflow and you'll find the answers are constantly edited for the latest version of Swift. At this point, I assume every time I come back to macOS/iOS, that I know nothing and I am learning the platform for the first time. Compare the shifting sands of Swift with the stability of awk. I have spent not a tenth of the time learning awk that I have spent relearning Swift, and yet I am about as capable in each language. An awk one-liner I learned 20 years ago still works today! When I see someone use awk to solve a problem, I'm enthusiastic to learn how they did it, because I know that 20 years from now the trick will work. By what backwards compatibility means to me, a project like log4j will break fewer people by removing a feature like the JNDI URLs than by marking an old API method with some mechanical deprecation notice that causes a build process's equivalent of to fail and moving it to a new name. They will in practice, break fewer people removing this feature than they would by slowing down a critical path by 10%, which is the sort of thing that can trivially slip into a release unnoticed.-Wall But the spirit of compatibility promises appears to be poorly understood across our industry (as software updates demonstrate to me every week), and so we lean on the pseudo-legalistic wording of project documentation to write strongly worded emails or snarky tweets any time a project makes work for us (because most projects don't get it, so surely every example of a breakage must be a project that doesn't get it, not a good reason), and upstream maintainers become defensive and overly conservative. The result is now everyone's Java software is broken! We as a profession misunderstand and misuse the concept of backwards compatibility, both upstream and downstream, by focusing on narrow legalistic definitions instead of outcomes. This is a harder, longer topic that maybe I'll find enough clarity to write properly about one day. It should be easy to hack up code and share it! We should also be cautious about adding burdensome features. This particular bug feels impossibly strange to me, because my idea of a logging API is file descriptor number 2 with the system call. None of the bells and whistles are necessary and we should be conservative about our core libraries. Indeed libraries like these are why I have been growing ever-more skeptical of using any depdendencies, and now force myself to read a big chunk of any library before adding it to a project.write But I have also written my share of misfeatures, as much as I would like to forget them. I am thankful my code I don't like has never achieved the success or wide use of log4j, and I cannot fault diligent (and unpaid!) maintainers doing their best under those circumstances. Log4j maintainers have been working sleeplessly on mitigation measures; fixes, docs, CVE, replies to inquiries, etc. Yet nothing is stopping people to bash us, for work we aren't paid for, for a feature we all dislike yet needed to keep due to backward compatibility concerns. It is intended that programs written to the Go 1 specification will continue to compile and run correctly, unchanged, over the lifetime of that specification. I want to not spend much time upgrading a dependency I want any problems caused by the upgrade to be caught early, not in production. I want to be able to build knowledge of the library over a long time, to hone my craft

over a year ago 20 votes
Software I’m thankful for

Software I’m thankful for 2021-11-25 A few of the things that come to mind, this thanksgiving. Most Unix-ish APIs, from files to sockets are a bit of a mess today. Endless poorly documented sockopts, unexpected changes in write semantics across FSs and OSes, good luck trying to figure out . But despite the mess, I can generally wrap my head around open/read/write/close. I can strace a binary and figure out the sequence and decipher what’s going on. Sprinkle in some printfs and state is quickly debuggable. Stack traces are useful!mtimes Enormous effort has been spent on many projects to replace this style of I/O programming, for efficiency or aesthetics, often with an asynchronous bent. I am thankful for this old reliable standby of synchronous open/read/write/close, and hope to see it revived and reinvented throughout my career to be cleaner and simpler. Goroutines are coroutines with compiler/runtime optimized yielding, to make them behave like threads. This breathes new life into the previous technology I’m thankful for: simple blocking I/O. With goroutines it becomes cheap to write large-scale blocking servers without running out of OS resources (like heavy threads, on OSes where they’re heavy, or FDs). It also makes it possible to use blocking interfaces between “threads” within a process without paying the ever-growing price of a context switch in the post- world.spectre This is the first year where the team working on Tailscale has outgrown and eclipsed me to the point where I can be thankful for Tailscale without feeling like I’m thanking myself. Many of the wonderful new features that let me easily wire machines together wherever they are, like userspace networking or MagicDNS, are not my doing. I’m thankful for the product, and the opportunity to work with the best engineering team I’ve ever had the privilege of being part of. Much like open/read/write/close, SQLite is an island of stability in a constantly changing technical landscape. Techniques I learned 10 or 15 years ago using SQLite work today. As a bonus, it does so much more than then: WAL mode for highly-concurrent servers, advanced SQL like window functions, excellent ATTACH semantics. It has done all of this while keeping the number of, in the projects own language, “goofy design” decisions to a minimum and holding true to its mission of being “lite”. I aspire to write such wonderful software. JSON is the worst form of encoding — except for all the others that have been tried. It’s complicated, but not too complicated. It’s not easily read by humans, but it can be read by humans. It is possible to extend it in intuitive ways. When it gets printed onto your terminal, you can figure out what’s going on without going and finding the magic decoder ring of the week. It makes some things that are extremely hard with XML or INI easy, without introducing accidental Turing completeness or turning . Writing software is better for it, and shows the immense effect carefully describing something can do for programming. JSON was everywhere in our JavaScript before the term was defined, the definition let us see it and use it elsewhere.country codes into booleans WireGuard is a great demonstration of why the total complexity of the implementation ends up affecting the UX of the product. In theory I could have been making tunnels between my devices for years with IPSec or TLS, in practice I’d completely given it up until something came along that made it easier. It didn’t make it easier by putting a slick UI over complex technology, it made the underlying technology simpler, so even I could (eventually) figure out the configuration. Most importantly, by not eating my entire complexity budget with its own internals, I could suddenly see it as a building block in larger projects. Complexity makes more things possible, and fewer things possible, simultaneously. WireGuard is a beautiful example of simplicity and I’m thankful for it. Before Go became popular, the fast programming language compilers of the 90s had mostly fallen by the wayside, to be replaced with a bimodal world of interpreters/JITs on one side and creaky slow compilers attempting to produce extremely optimal code on the other. The main Go toolchain found, or rediscovered, a new optimal point in the plane of tradeoffs for programming languages to sit: ahead of time compiled, but with a fast less-than-optimal compiler. It has managed to continue to hold that interesting, unstable equilibrium for a decade now, which is incredibly impressive. (E.g. I personally would love to improve its inliner, but know that it’s nearly impossible to get too far into that project without sacrificing a lot of the compiler’s speed.) I’ve always been cranky about GCC: I find its codebase nearly impossible to modify, it’s slow, the associated ducks I need to line up to make it useful (binutils, libc, etc) blow out the complexity budget on any project I try to start before I get far, and it is associated with GNU, which I used to view as an oddity and now view as a millstone around the neck of an otherwise excellent software project. But these are all the sorts of complaints you only make when using something truly invaluable. GCC is invaluable. I would never have learned to program if a free C compiler hadn’t been available in the 90s, so I owe it my career. To this day, it vies neck-and-neck with LLVM for best performing object code. Without the competition between them, compiler technology would stagnate. And while LLVM now benefits from $10s or $100s of millions a year in Silicon Valley salaries working on it, GCC does it all with far less investment. I’m thankful it keeps on going. I keep trying to quit vim. I keep ending up inside a terminal, inside vim, writing code. Like SQLite, vim is an island of stability over my career. While I wish IDEs were better, I am extremely thankful for tools that work and respect the effort I have taken to learn them, decade after decade. SSH gets me from here to there, and has done since ~1999. There is a lot about ssh that needs reinventing, but I am thankful for stable, reliable tools. It takes a lot of work to keep something like ssh working and secure, and if the maintainers are ever looking for someone to buy them a round they know where to find me. How would I get anything done without all the wonderful information on the public web and search engines to find it? What an amazing achievement. Thanks everyone, for making computers so great. open/read/write/close goroutines Tailscale SQLite JSON WireGuard The speed of the Go compiler GCC vim ssh The public web and search engines

over a year ago 21 votes

More in programming

That boolean should probably be something else

One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away data: when the confirmation happened. You can instead store when the user confirmed their email in a nullable column. You can still get the same information by checking whether the column is null. But you also get richer data for other purposes. Maybe you find out down the road that there was a bug in your confirmation process. You can use these timestamps to check which users would be affected by that, based on when their confirmation was stored. This is the one I've seen discussed the most of all these. We run into it with almost every database we design, after all. You can detect it by asking if an action has to occur for the boolean to change values, and if values can only change one time. If you have both of these, then it really looks like it is a datetime being transformed into a boolean. Store the datetime! Enums Much of the remaining boolean data indicates either what type something is, or its status. Is a user an admin or not? Check the is_admin column! Did that job fail? Check the failed column! Is the user allowed to take this action? Return a boolean for that, yes or no! These usually make more sense as an enum. Consider the admin case: this is really a user role, and you should have an enum for it. If it's a boolean, you're going to eventually need more columns, and you'll keep adding on other statuses. Oh, we had users and admins, but now we also need guest users and we need super-admins. With an enum, you can add those easily. enum UserRole { User, Admin, Guest, SuperAdmin, } And then you can usually use your tooling to make sure that all the new cases are covered in your code. With a boolean, you have to add more booleans, and then you have to make sure you find all the places where the old booleans were used and make sure they handle these new cases, too. Enums help you avoid these bugs. Job status is one that's pretty clearly an enum as well. If you use booleans, you'll have is_failed, is_started, is_queued, and on and on. Or you could just have one single field, status, which is an enum with the various statuses. (Note, though, that you probably do want timestamp fields for each of these events—but you're still best having the status stored explicitly as well.) This begins to resemble a state machine once you store the status, and it means that you can make much cleaner code and analyze things along state transition lines. And it's not just for storing in a database, either. If you're checking a user's permissions, you often return a boolean for that. fn check_permissions(user: User) -> bool { false // no one is allowed to do anything i guess } In this case, true means the user can do it and false means they can't. Usually. I think. But you can really start to have doubts here, and with any boolean, because the application logic meaning of the value cannot be inferred from the type. Instead, this can be represented as an enum, even when there are just two choices. enum PermissionCheck { Allowed, NotPermitted(reason: String), } As a bonus, though, if you use an enum? You can end up with richer information, like returning a reason for a permission check failing. And you are safe for future expansions of the enum, just like with roles. You can detect when something should be an enum a proliferation of booleans which are mutually exclusive or depend on one another. You'll see multiple columns which are all changed at the same time. Or you'll see a boolean which is returned and used for a long time. It's important to use enums here to keep your program maintainable and understandable. Conditionals But when should we use a boolean? I've mainly run into one case where it makes sense: when you're (temporarily) storing the result of a conditional expression for evaluation. This is in some ways an optimization, either for the computer (reuse a variable[2]) or for the programmer (make it more comprehensible by giving a name to a big conditional) by storing an intermediate value. Here's a contrived example where using a boolean as an intermediate value. fn calculate_user_data(user: User, records: RecordStore) { // this would be some nice long conditional, // but I don't have one. So variables it is! let user_can_do_this: bool = (a && b) && (c || !d); if user_can_do_this && records.ready() { // do the thing } else if user_can_do_this && records.in_progress() { // do another thing } else { // and something else! } } But even here in this contrived example, some enums would make more sense. I'd keep the boolean, probably, simply to give a name to what we're calculating. But the rest of it should be a match on an enum! * * * Sure, not every boolean should go away. There's probably no single rule in software design that is always true. But, we should be paying a lot more attention to booleans. They're sneaky. They feel like they make sense for our data, but they make sense for our logic. The data is usually something different underneath. By storing a boolean as our data, we're coupling that data tightly to our application logic. Instead, we should remain critical and ask what data the boolean depends on, and should we maybe store that instead? It comes easier with practice. Really, all good design does. A little thinking up front saves you a lot of time in the long run. I know that using an em-dash is treated as a sign of using LLMs. LLMs are never used for my writing. I just really like em-dashes and have a dedicated key for them on one of my keyboard layers. ↩ This one is probably best left to the compiler. ↩

22 hours ago 3 votes
AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

14 hours ago 2 votes
An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

3 hours ago 2 votes
Implementation of optimized vector of strings in C++ in SumatraPDF

SumatraPDF is a fast, small, open-source PDF reader for Windows, written in C++. This article describes how I implemented StrVec class for efficiently storing multiple strings. Much ado about the strings Strings are among the most used types in most programs. Arrays of strings are also used often. I count ~80 uses of StrVec in SumatraPDF code. This article describes how I implemented an optimized array of strings in SumatraPDF C++ code . No STL for you Why not use std::vector<std::string>? In SumatraPDF I don’t use STL. I don’t use std::string, I don’t use std::vector. For me it’s a symbol of my individuality, and my belief in personal freedom. As described here, minimum size of std::string on 64-bit machines is 32 bytes for msvc / gcc and 24 bytes for short strings (15 chars for msvc / gcc, 22 chars for clang). For longer strings we have more overhead: 32⁄24 bytes for the header memory allocator overhead allocator metadata padding due to rounding allocations to at least 16 bytes There’s also std::vector overhead: for fast appends (push()) std::vectorimplementations over-allocated space Longer strings are allocated at random addresses so they can be spread out in memory. That is bad for cache locality and that often cause more slowness than executing lots of instructions. Design and implementation of StrVec StrVec (vector of strings) solves all of the above: per-string overhead of only 8 bytes strings are laid out next to each other in memory StrVec High level design of StrVec: backing memory is allocated in singly-linked pages similar to std::vector, we start with small page and increase the size of the page. This strikes a balance between speed of accessing a string at random index and wasted space unlike std::vector we don’t reallocate memory (most of the time). That saves memory copy when re-allocating backing space Here’s all there is to StrVec: struct StrVec { StrVecPage* first = nullptr; int nextPageSize = 256; int size = 0; } size is a cached number of strings. It could be calculated by summing the size in all StrVecPages. nextPageSize is the size of the next StrVecPage. Most array implementation increase the size of next allocation by 1.4x - 2x. I went with the following progression: 256 bytes, 1k, 4k, 16k, 32k and I cap it at 64k. I don’t have data behind those numbers, they feel right. Bigger page wastes more space. Smaller page makes random access slower because to find N-th string we need to traverse linked list of StrVecPage. nextPageSize is exposed to allow the caller to optimize use. E.g. if it expects lots of strings, it could set nextPageSize to a large number. StrVecPage Most of the implementation is in StrVecPage. The big idea here is: we allocate a block of memory strings are allocated from the end of memory block at the beginning of the memory block we build and index of strings. For each string we have: u32 size u32 offset of the string within memory block, counting from the beginning of the block The layout of memory block is: StrVecPage struct { size u32; offset u32 } [] … not yet used space strings This is StrVecPage: struct StrVecPage { struct StrVecPage* next; int pageSize; int nStrings; char* currEnd; } next is for linked list of pages. Since pages can have various sizes we need to record pageSize. nStrings is number of strings in the page and currEnd points to the end of free space within page. Implementing operations Appending a string Appending a string at the end is most common operation. To append a string: we calculate how much memory inside a page it’ll need: str::Len(string) + 1 + sizeof(u32) + sizeof(u32). +1 is for 0-termination for compatibility with C APIs that take char*, and 2xu32 for size and offset. If we have enough space in last page, we add size and offset at the end of index and append a string from the end i.e. `currEnd - (str::Len(string) + 1). If there is not enough space in last page, we allocate new page We can calculate how much space we have left with: int indexEntrySize = sizeof(u32) + sizeof(u32); // size + offset char* indexEnd = (char*)pageStart + sizeof(StrVecPage) + nStrings*indexEntrySize int nBytesFree = (int)(currEnd - indexEnd) Removing a string Removing a string is easy because it doesn’t require moving memory inside StrVecPage. We do nStrings-- and move index values of strings after the removed string. I don’t bother freeing the string memory within a page. It’s possible but complicated enough I decided to skip it. You can compact StrVec to remove all overhead. If you do not care about preserving order of strings after removal, I haveRemoveAtFast() which uses a trick: instead of copying memory of all index values after removed string, I copy a single index from the end into a slot of the string being removed. Replacing a string or inserting in the middle Replacing a string or inserting a string in the middle is more complicated because there might not be enough space in the page for the string. When there is enough space, it’s as simple as append. When there is not enough space, I re-use the compacting capability: I compact all existing pages into a single page with extra space for the string and some extra space as an optimization for multiple inserts. Iteration A random access requires traversing a linked list. I think it’s still fast because typically there aren’t many pages and we only need to look at a single nStrings value. After compaction to a single page, random access is as fast as it could ever be. C++ iterator is optimized for sequential access: struct iterator { const StrVec* v; int idx; // perf: cache page, idxInPage from prev iteration int idxInPage; StrVecPage* page; } We cache the current state of iteration as page and idxInPage. To advance to next string we advance idxInPage. If it exceeds nStrings, we advance to page->next. Optimized search Finding a string is as optimized as it could be without a hash table. Typically to compare char* strings you need to call str::Eq(s, s2) for every string you compare it to. That is a function call and it has to touch s2 memory. That is bad for performance because it blows the cache. In StrVec I calculate length of the string to find once and then traverse the size / offset index. Only when size is different I have to compare the strings. Most of the time we just look at offset / size in L1 cache, which is very fast. Compacting If you know that you’ll not be adding more strings to StrVec you can compact all pages into a single page with no overhead of empty space. It also speeds up random access because we don’t have multiple pages to traverse to find the item and a given index. Representing a nullptr char* Even though I have a string class, I mostly use char* in SumatraPDF code. In that world empty string and nullptr are 2 different things. To allow storing nullptr strings in StrVec (and not turning them into empty strings on the way out) I use a trick: a special u32 value kNullOffset represents nullptr. StrVec is a string pool allocator In C++ you have to track the lifetime of each object: you allocate with malloc() or new when you no longer need to object, you call free() or delete However, the lifetime of allocations is often tied together. For example in SumatraPDF an opened document is represented by a class. Many allocations done to construct that object last exactly as long as the object. The idea of a pool allocator is that instead of tracking the lifetime of each allocation, you have a single allocator. You allocate objects with the same lifetime from that allocator and you free them with a single call. StrVec is a string pool allocator: all strings stored in StrVec have the same lifetime. Testing In general I don’t advocate writing a lot of tests. However, low-level, tricky functionality like StrVec deserves decent test coverage to ensure basic functionality works and to exercise code for corner cases. I have 360 lines of tests for ~700 lines of of implementation. Potential tweaks and optimization When designing and implementing data structures, tradeoffs are aplenty. Interleaving index and strings I’m not sure if it would be faster but instead of storing size and offset at the beginning of the page and strings at the end, we could store size / string sequentially from the beginning. It would remove the need for u32 of offset but would make random access slower. Varint encoding of size and offset Most strings are short, under 127 chars. Most offsets are under 16k. If we stored size and offset as variable length integers, we would probably bring down average per-string overhead from 8 bytes to ~4 bytes. Implicit size When strings are stored sequentially size is implicit as difference between offset of the string and offset of next string. Not storing size would make insert and set operations more complicated and costly: we would have to compact and arrange strings in order every time. Storing index separately We could store index of size / offset in a separate vector and use pages to only allocate string data. This would simplify insert and set operations. With current design if we run out of space inside a page, we have to re-arrange memory. When offset is stored outside of the page, it can refer to any page so insert and set could be as simple as append. The evolution of StrVec The design described here is a second implementation of StrVec. The one before was simply a combination of str::Str (my std::string) for allocating all strings and Vec<u32> (my std::vector) for storing offset index. It had some flaws: appending a string could re-allocate memory within str::Str. The caller couldn’t store returned char* pointer because it could be invalidated. As a result the API was akward and potentially confusing: I was returning offset of the string so the string was str::Str.Data() + offset. The new StrVec doesn’t re-allocate on Append, only (potentially) on InsertAt and SetAt. The most common case is append-only which allows the caller to store the returned char* pointers. Before implementing StrVec I used Vec<char*>. Vec is my version of std::vector and Vec<char*> would just store pointer to individually allocated strings. Cost vs. benefit I’m a pragmatist: I want to achieve the most with the least amount of code, the least amount of time and effort. While it might seem that I’m re-implementing things willy-nilly, I’m actually very mindful of the cost of writing code. Writing software is a balance between effort and resulting quality. One of the biggest reasons SumatraPDF so popular is that it’s fast and small. That’s an important aspect of software quality. When you double click on a PDF file in an explorer, SumatraPDF starts instantly. You can’t say that about many similar programs and about other software in general. Keeping SumatraPDF small and fast is an ongoing focus and it does take effort. StrVec.cpp is only 705 lines of code. It took me several days to complete. Maybe 2 days to write the code and then some time here and there to fix the bugs. That being said, I didn’t start with this StrVec. For many years I used obvious Vec<char*>. Then I implemented somewhat optimized StrVec. And a few years after that I implemented this ultra-optimized version. References SumatraPDF is a small, fast, multi-format (PDF/eBook/Comic Book and more), open-source reader for Windows. The implementation described here: StrVec.cpp, StrVec.h, StrVec_ut.cpp By the time you read this, the implementation could have been improved.

22 hours ago 1 votes
The parental dead end of consent morality

Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot.  This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!

yesterday 2 votes