More from Irrational Exuberance
One of my side quests at work is to get a simple feedback loop going where we can create knowledge bases that comment on Notion documents. I was curious if I could hook this together following these requirements: No custom code hosting Prompt is editable within Notion rather than requiring understanding of Zapier Should be be fairly quickly Ultimately, I was able to get it working. So a quick summary of how it works, some comments on why I don’t particularly like this approach, then some more detailed comments on getting it working. General approach Create a Notion database of prompts. Create a specific prompt for providing feedback on RFCs. Create a Notion database for all RFCs. Add an automation into this database that calls a Zapier webhook. The Zapier webhook does a variety of things that culminate in using the RFC prompt to provide feedback on the specific RFC as a top-level comment in the RFC. Altogether this works fairly well. The challenges with this approach The best thing about this approach is that it actually works, and it works fairly well. However, as we dig into the implementation details, you’ll also see that a series of things are unnaturally difficult with Zapier: Managing rich text in Notion because it requires navigating the blocks datastructure Allowing looping API constructs such as making it straightforward to leave multiple comments on specific blocks rather than a single top-level comment Notion only allows up to 2,000 characters per block, but chunking into multiple blocks is moderately unnatural. In a true Python environment, it would be trivial to translate to and from Markdown using something like md2notion Ultimately, I could only recommend this approach as an initial validation. It’s definitely not the right long-term resting place for this kind of approach. Zapier implementation I already covered the Notion side of the integration, so let’s dig into the Zapier pieces a bit. Overall it had eight steps. I’ve skipped the first step, which was just a default webhook receiver. The second step was retrieving a statically defined Notion page containing the prompt. (In later steps I just use the Notion API directly, which I would do here if I was redoing this, but this worked too. The advantage of the API is that it returns a real JSON object, this doesn’t, probably because I didn’t specify the content-type header or some such.) This is the configuration page of step 2, where I specify the prompt’s page explicitly. ) Probably because I didn’t set content-type, I think I was getting post formatted data here, so I just regular expressed the data out. It’s a bit sloppy, but hey it worked, so there’s that. ) Here is using the Notion API request tool to retrieve the updated RFC (as opposed to the prompt which we already retrieved). ) The API request returns a JSON object that you can navigate without writing regular expressions, so that’s nice. ) Then we send both the prompt as system instructions and the RFC as the user message to Open AI. ) Then pass the response from OpenAI to json.dumps to encode it for being included in an API call. This is mostly solving for newlines being \n rather than literal newlines. ) Then format the response into an API request to add a comment to the document. Anyway, this wasn’t beautiful, and I think you could do a much better job by just doing all of this in Python, but it’s a workable proof of concept.
Last weekend, I wrote a bit about using Zapier to load Notion pages as prompts to comment on other Notion pages. That worked well enough, but not that well. This weekend I spent some time getting the next level of this working, creating an agent that runs as an AWS Lambda. This, among other things, allowed me to rely on agent tool usage to support both page and block-level comments, and altogether I think the idea works extremely well. This was mostly implemented by Claude Code, and I think the code is actually fairly bad as a result, but you can see the full working implementation at lethain:basic_notion-agent on Github. Installation and configuration options are there as well. Watch a quick walkthrough of the project I recorded on YouTube. Screenshots To give a sense of what the end experience is, here are some screenshots. You start by creating a prompt in a Notion document. Then it will provide inline comments on blocks within your document. It will also provide a summary comment on the document overall (although this is configurable if you only want in-line comments). A feature I particularly like is that the agent is aware of existing comments on the document, and who made them, and will reply to those comments. Altogether, it’s a fun little project and works surprisingly well, as almost all agents do with enough prompt tuning.
For managers who have spent a long time reporting to a specific leader or working in an organization with well‑understood goals, it’s easy to develop skill gaps without realizing it. Usually this happens because those skills were not particularly important in the environment you grew up in. You may become extremely confident in your existing skills, enter a new organization that requires a different mix of competencies, and promptly fall on your face. There are a few common varieties of this, but the one I want to discuss here is when managers grow up in an organization that operates from top‑down plans (“orchestration‑heavy roles”) and then find themselves in a sufficiently senior role, or in a bottom‑up organization, that expects them to lead rather than orchestrate (“leadership‑heavy roles”). Orchestration versus leadership You can break the components of solving a problem down in a number of ways, and I’m not saying this is the perfect way to do it, but here are six important components of directing a team’s work: Problem discovery: Identifying which problems to work on Problem selection: Aligning with your stakeholders on the problems you’ve identified Solution discovery: Identifying potential solutions to the selected problem Solution selection: Aligning with your stakeholders on the approach you’ve chosen Execution: Implementing the selected solution Ongoing revision: Keeping your team and stakeholders aligned as you evolve the plan In an orchestration‑heavy management role, you might focus only on the second half of these steps. In a leadership‑heavy management role, you work on all six steps. Folks who’ve only worked in orchestration-heavy roles often have no idea that they are expected to perform all of these. So, yes, there’s a skill gap in performing the work, but more importantly there’s an awareness gap that the work actually exists to be done. Here are a few ways you can identify an orchestration‑heavy manager that doesn’t quite understand their current, leadership‑heavy circumstances: Focuses on prioritization as “solution of first resort.” When you’re not allowed to change the problem or the approach, prioritization becomes one of the best tools you have. Accepts problems and solutions as presented. If a stakeholder asks for something, questions are around priority rather than whether the project makes sense to do at all, or suggestions of alternative approaches. There’s no habit of questioning whether the request makes sense—that’s left to the stakeholder or to more senior functional leadership. Focuses on sprint planning and process. With the problem and approach fixed, protecting your team from interruption and disruption is one of your most valuable tools. Operating strictly to a sprint cadence (changing plans only at the start of each sprint) is a powerful technique. All of these things are still valuable in a leadership‑heavy role, but they just aren’t necessarily the most valuable things you could be doing. Operating in a leadership-heavy role There is a steep learning curve for managers who find themselves in a leadership‑heavy role, because it’s a much more expansive role. However, it’s important to realize that there are no senior engineering leadership roles focused solely on orchestration. You either learn this leadership style or you get stuck in mid‑level roles (even in organizations that lean orchestration-heavy). Further, the technology industry generally believes it overinvested in orchestration‑heavy roles in the 2010s. Consequently, companies are eliminating many of those roles and preventing similar roles from being created in the next generation of firms. There’s a pervasive narrative attributing this shift to the increased productivity brought by LLMs, but I’m skeptical of that relationship—this change was already underway before LLMs became prominent. My advice for folks working through the leadership‑heavy role learning curve is: Think of your job’s core loop as four steps: Identify the problems your team should be working on Decide on a destination that solves those problems Explain to your team, stakeholders, and executives the path the team will follow to reach that destination Communicate both data and narratives that provide evidence you’re walking that path successfully If you are not doing these four things, you are not performing your full role, even if people say you do some parts well. Similarly, if you want to get promoted or secure more headcount, those four steps are the path to doing so (I previously discussed this in How to get more headcount). Ask your team for priorities and problems to solve. Mining for bottom‑up projects is a critical part of your role. If you wait only for top‑down and lateral priorities, you aren’t performing the first step of the core loop. It’s easy to miss this expectation—it’s invisible to you but obvious to everyone else, so they don’t realize it needs to be said. If you’re not sure, ask. If your leadership chain is running the core loop for your team, it’s because they lack evidence that you can run it yourself. That’s a bad sign. What’s “business as usual” in an orchestration‑heavy role actually signals a struggling manager in a leadership‑heavy role. Get your projects prioritized by following the core loop. If you have a major problem on your team and wonder why it isn’t getting solved, that’s on you. Leadership‑heavy roles won’t have someone else telling you how to frame your team’s work—unless they think you’re doing a bad job. Picking the right problems and solutions is your highest‑leverage work. No, this is not only your product manager’s job or your tech lead’s—it is your job. It’s also theirs, but leadership overlaps because getting it right is so valuable. Generalizing a bit, your focus now is effectiveness of your team’s work, not efficiency in implementing it. Moving quickly on the wrong problem has no value. Understand your domain and technology in detail. You don’t have to write all the software—but you should have written some simple pull requests to verify you can reason about the codebase. You don’t have to author every product requirement or architecture proposal, but you should write one occasionally to prove you understand the work. If you don’t feel capable of that, that’s okay. But you need to urgently write down steps you’ll take to close that gap and share that plan with your team and manager. They currently see you as not meeting expectations and want to know how you’ll start meeting them. If you think that gap cannot be closed or that it’s unreasonable to expect you to close it, you misunderstand your role. Some organizations will allow you to misunderstand your role for a long time, provided you perform parts of it well, but they rarely promote you under those circumstances—and most won’t tolerate it for senior leaders. Align with your team and cross‑functional stakeholders as much as you align with your executive. If your executive is wrong and you follow them, it is your fault that your team and stakeholders are upset: part of your job is changing your executive’s mind. Yes, it can feel unfair if you’re the type to blame everything on your executive. But it’s still true: expecting your executive to get everything right is a sure way to feel superior without accomplishing much. Now that I’ve shared my perspective, I admit I’m being a bit extreme on purpose—people who don’t pick up on this tend to dispute its validity strongly unless there is no room to debate. There is room for nuance, but if you think my entire point is invalid, I encourage you to have a direct conversation with your manager and team about their expectations and how they feel you’re meeting them.
I’m turning forty in a few weeks, and there’s a listicle archetype along the lines of “Things I’ve learned in the first half of my career as I turn forty and have now worked roughly twenty years in the technology industry.” How do you write that and make it good? Don’t ask me. I don’t know! As I considered what I would write to summarize my career learnings so far, I kept thinking about updating my post Advancing the industry from a few years ago, where I described using that concept as a north star for my major career decisions. So I wrote about that instead. Recapping the concept Adopting advancing the industry as my framework for career decisions came down to three things: The opportunity to be more intentional: After ~15 years in the industry, I entered a “third stage” of my career where neither financial considerations (1st stage) nor controlling pace to support an infant/toddler (2nd stage) were my highest priorities. Although I might not be working wholly by choice, I had enough flexibility that I could no longer hide behind “maximizing financial return” to guide, or excuse, my decision making. My decade goals kept going stale. Since 2020, I’ve tracked against my decade goals for the 2020s, and annual tracking has been extremely valuable. Part of that value was realizing that I’d made enough progress on several initial goals that they weren’t meaningful to continue measuring. For example, I had written and published three professional books. Publishing another book was not a goal for me. That’s not to say I wouldn’t write another—in fact, I have—but it would serve another goal, not be a goal in itself. As a second example, I set a goal to get twenty people I’ve managed or mentored into VPE/CTO roles running engineering organizations of 50+ people or $100M+ valuation. By the end of last year, ten people met that criteria after four years. Based on that, it seems quite likely I’ll reach twenty within the next six years, and I’d already increased that goal from ten to twenty a few years ago, so I’m not interested in raising it again. “Advancing the industry” offered a solution to both, giving me a broader goal to work toward and reframe my decade and annual goals. That mission still resonates with me: it’s large, broad, and ambiguous enough to support many avenues of progress while feeling achievable within two decades. Though the goal resonates, my thinking about the best mechanism to make progress toward it has shifted over the past few years. Writing from primary to secondary mechanism Roughly a decade ago, I discovered the most effective mechanism I’ve found to advance the industry: learn at work, write blog posts about those learnings, and then aggregate the posts into a book. An Elegant Puzzle was the literal output of that loop. Staff Engineer was a more intentional effort but still the figurative output. My last two books have been more designed than aggregated, but still generally followed this pattern. That said, as I finish up Crafting Engineering Strategy, I think the loop remains valid, but it’s run its course for me personally. There are several reasons: First, what was energizing four books ago feels like a slog today. Making a book is a lot of work, and much of it isn’t fun, so you need to be really excited about the fun parts to balance it out. I used to check my Amazon sales standing every day, thrilled to see it move up and down the charts. Each royalty payment felt magical: something I created that people paid real money for. It’s still cool, but the excitement has tempered over six years. Second, most of my original thinking is already captured in my books or fits shorter-form content like blog posts. I won’t get much incremental leverage from another book. I do continue to get leverage from shorter-form writing and will keep doing it. Finally, as I wrote in Writers who operate, professional writing quality often suffers when writing becomes the “first thing” rather than the “second thing.” Chasing distribution subtly damages quality. I’ve tried hard to keep writing as a second thing, but over the past few years my topic choices have been overly pulled toward filling book chapters instead of what’s most relevant to my day-to-day work. If writing is second, what is first? My current thinking on how to best advance the industry rests on four pillars: Industry leadership and management practices are generally poor. We can improve these by making better practices more accessible (my primary focus in years past but where I’ve seen diminishing returns). We can improve practices by growing the next generation of industry leaders (the rationale behind my decade goal to mentor/manage people into senior roles, but I can’t scale it much through executive roles alone) We can improve practices by modeling them authentically in a very successful company and engineering organization. The fourth pillar is my current focus and likely will remain so for the upcoming decade, though who knows—your focus can change a lot over ten years. Why now? Six years ago, I wouldn’t have believed I could influence my company enough to make this impact, but the head of engineering roles I’ve pursued are exactly those that can. With access to such roles at companies with significant upward trajectories, I have the best laboratory to validate and evolve ways to advance the industry: leading engineering in great companies. Cargo-culting often spreads the most influential ideas—20% time at Google, AI adoption patterns at Spotify, memo culture at Amazon, writing culture at Stripe, etc. Hopefully, developing and documenting ideas with integrity will hopefully be even more effective than publicity-driven cargo-culting. That said, I’d be glad to accept the “mere” success of ideas like 20% time. Returning to the details Most importantly for me personally, focusing on modeling ideas in my own organization aligns “advancing the industry” with something I’ve been craving for a long time now: spending more time in the details of the work. Writing for broad audiences is a process of generalizing, but day-to-day execution succeeds or fails on particulars. I’ve spent much of the past decade translating between the general and the particular, and I’m relieved to return fully to the particulars. Joining Imprint six weeks ago gave me a chance to practice this: I’ve written/merged/deployed six pull requests at work, tweaked our incident tooling to eliminate gaps in handoff with Zapier integrations, written an RFC, debugged a production incident, and generally been two or three layers deeper than at Carta. Part of that is that Imprint’s engineering team is currently much smaller— 40 rather than 350—and another part is that industry expectations in the post-ZIRP reentrenchment and LLM boom pull leaders towards the details. But mostly, it’s just where my energy is pulling me lately.
More in programming
Every 6 months or so, I decide to leave my cave and check out what the cool kids are doing with AI. Apparently the latest trend is to use fancy command line tools to write code using LLMs. This is a very nice change, since it suddenly makes AI compatible with my allergy to getting out of the terminal. The most popular of these tools seems to be Claude Code. It promises to be able to build in total autonomy, being able to use search code, write code, run tests, lint, and commit the changes. While this sounds great on paper, I’m not keen on getting locked into vendor tools from an unprofitable company. At some point, they will either need to raise their prices, enshittify their product, or most likely do both. So I went looking for what the free and open source alternatives are. Picking a model There’s a large amount of open source large language models on the market, with new ones getting released all the time. However, they are not all ready to be used locally in coding tasks, so I had to try a bunch of them before settling on one. deepseek-r1:8b Deepseek is the most popular open source model right now. It was created by the eponymous Chinese company. It made the news by beating numerous benchmarks while being trained on a budget that is probably lower than the compensation of some OpenAI workers. The 8b variant only weights 5.2 GB and runs decently on limited hardware, like my three years old Mac. This model is famous for forgetting about world events from 1989, but also seems to have a few issues when faced with concrete coding tasks. It is a reasoning model, meaning it “thinks” before acting, which should lead to improved accuracy. In practice, it regularly gets stuck indefinitely searching where it should start and jumping from one problem to the other in a loop. This can happen even on simple problems, and made it unusable for me. mistral:7b Mistral is the French alternative to American and Chinese models. I have already talked about their 7b model on this blog. It is worth noting that they have kept updating their models, and it should now be much more accurate than two years ago. Mistral is not a reasoning model, so it will jump straight to answering. This is very good if you’re working with tasks where speed and low compute use are a priority. Sadly, the accuracy doesn’t seem good enough for coding. Even on simple tasks, it will hallucinate functions or randomly delete parts of the code I didn’t want to touch. qwen3:8b Another model from China, qwen3 was created by the folks at Alibaba. It also claims impressive benchmark results, and can work as both a reasoning or non-thinking model. It was made with modern AI tooling in mind, by supporting MCPs and a framework for agentic development. This model actually seems to work as expected, providing somewhat accurate code output while not hanging in the reasoning part. Since it runs decently on my local setup, I decided to stick to that model for now. Setting up a local API with Ollama Ollama is now the default way to download and run local LLMs. It can be simply installed by downloading it from their website. Once installed, it works like Docker for models, by giving us access to commands like pull, run, or rm. Ollama will expose an API on localhost which can be used by other programs. For example, you can use it from your Python programs through ollama-python. Pair programming with aider The next piece of software I installed is aider. I assume it’s pronounced like the French word, but I could not confirm that. Aider describes itself as a “pair programming” application. Its main job is to pass context to the model, let it write the output to files, run linters, and commit the changes. Getting started It can be installed using the official Python package or via Homebrew if you use Mac. Once it is installed, just navigate to your code repository and launch it: export OLLAMA_API_BASE=http://127.0.0.1:11434 aider --model ollama_chat/qwen3:8b The CLI should automatically create some configuration files and add them to the repo’s .gitignore. Usage Aider isn’t meant to be left alone in complete autonomy. You’ll have to guide the AI through the process of making changes to your repository. To start, use the /add command to add files you want to focus on. Those files will be passed entirely to the model’s context and the model will be able to write in them. You can then ask questions using the /ask command. If you want to generate code, a good strategy can be to starting by requesting a plan of actions. When you want it to actually write to the files, you can prompt it using the /code command. This is also the default mode. There’s no absolute guarantee that it will follow a plan if you agreed on one previously, but it is still a good idea to have one. The /architect command seems to automatically ask for a plan, accept it, and write the code. The specificity of this command is that it lets you use different models to plan and write the changes. Refactoring I tried coding with aider in a few situations to see how it performs in practice. First, I tried making it do a simple refactoring on Itako, which is a project of average complexity. When pointed to the exact part of code where the issues happened, and explained explicitly what to do, the model managed to change the target struct according to the instructions. It did unexpectedly change a function that was outside the scope of what I asked, but this was easy to spot. On paper, this looks like a success. In practice, the time spent crafting a prompt, waiting for the AI to run and fixing the small issue that came up immensely exceeds the 10 minutes it would have taken me to edit the file myself. I don’t think coding that way would lead me to a massive performance improvement for now. Greenfield project For a second scenario, I wanted to see how it would perform on a brand-new project. I quickly set up a Python virtual environment, and asked aider to work with me at building a simple project. We would be opening a file containing Japanese text, parsing it with fugashi, and counting the words. To my surprise, this was a disaster. All I got was a bunch on hallucination riddled python that wouldn’t run under any circumstances. It may be that the lack of context actually made it harder for the model to generate code. Troubleshooting Finally, I went back to Itako, and decided to check how it would perform on common troubleshooting tasks. I introduced a few bugs to my code and gathered some error messages. I then proceeded to simply give aider the files mentioned by the error message and just use /ask to have it explain the errors to me, without requiring it to implement the code. This part did work very well. If I compare it with Googling unknown error messages, I think this can cut the time spent on the issue by half This is not just because Google is getting worse every day, but the model having access to the actual code does give it a massive advantage. I do think this setup is something I can use instead of the occasional frustration of scrolling through StackOverflow threads when something unexpected breaks. What about the Qwen CLI? With everyone jumping on the trend of CLI tools for LLMs, the Qwen team released its own Qwen Code. It can be installed using npm, and connects to a local model if configured like this: export OPENAI_API_KEY="ollama" export OPENAI_BASE_URL="http://localhost:11434/v1/" export OPENAI_MODEL="qwen3:8b" Compared to aider, it aims at being fully autonomous. For example, it will search your repository using grep. However, I didn’t manage to get it to successfully write any code. The tool seems optimized for larger, online models, with context sizes up to 1M tokens. Our local qwen3 context only has a 40k tokens context size, which can get overwhelmed very quickly when browsing entire code repositories. Even when I didn’t run out of context, the tool mysteriously failed when trying to write files. It insists it can only write to absolute paths, which the model doesn’t seem to agree with providing. I did not investigate the issue further.
Ideals are supposed to be unattainable for the great many. If everyone could be the smartest, strongest, prettiest, or best, there would be no need for ideals — we'd all just be perfect. But we're not, so ideals exist to show us the peak of humanity and to point our ambition and appreciation toward it. This is what I always hated about the 90s. It was a decade that made it cool to be a loser. It was the decade of MTV's Beavis and Butt-Head. It was the age of grunge. I'm generationally obliged to like Nirvana, but what a perfectly depressive, suicidal soundtrack to loser culture. Naomi Wolf's The Beauty Myth was published in 1990. It took a critical theory-like lens on beauty ideals, and finding it all so awfully oppressive. Because, actually, seeing beautiful, slim people in advertising or media is bad. Because we don't all look like that! And who's even to say what "beauty" is, anyway? It's all just socially constructed! The final stage of that dead-end argument appeared as an ad here in Copenhagen thirty years later during the 2020 insanity: I passed it every day biking the boys to school for weeks. Next to other slim, fit Danes also riding their bikes. None of whom resembled the grotesque display of obesity towering over them on their commute from Calvin Klein. While this campaign was laughably out of place in Copenhagen, it's possible that it brought recognition and representation in some parts of America. But a celebration of ideals it was not. That's the problem with the whole "representation" narrative. It proposes we're all better off if all we see is a mirror of ourselves, however obese, lazy, ignorant, or incompetent, because at least it won't be "unrealistic". Screw that. The last thing we need is a patronizing message that however little you try, you're perfect just the way you are. No, the beauty of ideals is that they ask more of us. Ask us to pursue knowledge, fitness, and competence by taking inspiration from the best human specimens. Thankfully, no amount of post-modern deconstruction or academic theory babble seems capable of suppressing the intrinsic human yearning for excellence forever. The ideals are finally starting to emerge again.
Some lessons I’ve learned from experience. 1. Install Stuff Indiscriminately From npm Become totally dependent on others, that’s why they call them “dependencies” after all! Lean in to it. Once your dependencies break — and they will, time breaks all things — then you can spend lots of time and energy (which was your goal from the beginning) ripping out those dependencies and replacing them with new dependencies that will break later. Why rip them out? Because you can’t fix them. You don’t even know how they work, that’s why you introduced them in the first place! Repeat ad nauseam (that is, until you decide you don’t want to make websites that require lots of your time and energy, but that’s not your goal if you’re reading this article). 2. Pick a Framework Before You Know You Need One Once you hitch your wagon to a framework (a dependency, see above) then any updates to your site via the framework require that you first understand what changed in the framework. More of your time and energy expended, mission accomplished! 3. Always, Always Require a Compilation Step Put a critical dependency between working on your website and using it in the browser. You know, some mechanism that is required to function before you can even see your website — like a complication step or build process. The bigger and more complex, the better. This is a great way to spend lots of time and energy working on your website. (Well, technically it’s not really working on your website. It’s working on the thing that spits out your website. So you’ll excuse me for recommending something that requires your time and energy that isn’t your website — since that’s not the stated goal — but trust me, this apparent diversion will directly affect the overall amount of time and energy you spend making a website. So, ultimately, it will still help you reach our stated goal.) Requiring that the code you write be transpiled, compiled, parsed, and evaluated before it can be used in your website is a great way to spend extra time and energy making a website (as opposed to, say, writing code as it will be run which would save you time and energy and is not our goal here). More? Do you have more advice on building a website that will require a lot of your time and energy? Share your recommendations with others, in case they’re looking for such advice. Email · Mastodon · Bluesky
Am I a good programmer? The short answer is: I don’t know what that means. I have been programming for 52 years now, having started in a public high school class in 1973, which is pretty rare because few high schools offered such an opportunity back then. I
The world is waking to the fact that talk therapy is neither the only nor the best way to cure a garden-variety petite depression. Something many people will encounter at some point in their lives. Studies have shown that exercise, for example, is a more effective treatment than talk therapy (and pharmaceuticals!) when dealing with such episodes. But I'm just as interested in the role building competence can have in warding off the demons. And partly because of this meme: I've talked about it before, but I keep coming back to the fact that it's exactly backwards. That signing up for an educational quest into Linux, history, or motorcycle repair actually is an incredibly effective alternative to therapy! At least for men who'd prefer to feel useful over being listened to, which, in my experience, is most of them. This is why I find it so misguided when people who undertake those quests sell their journey short with self-effacing jibes about how much an unattractive nerd it makes them to care about their hobby. Mihaly Csikszentmihalyi detailed back in 1990 how peak human happiness arrives exactly in these moments of flow when your competence is stretched by a difficult-but-doable challenge. Don't tell me those endorphins don't also help counter the darkness. But it's just as much about the fact that these pursuits of competence usually offer a great opportunity for community as well that seals the deal. I've found time and again that people are starved for the kind of topic-based connections that, say, learning about Linux offers in spades. You're not just learning, you're learning with others. That is a time-tested antidote to depression: Forming and cultivating meaningful human connections. Yes, doing so over the internet isn't as powerful as doing it in person, but it's still powerful. It still offers community, involvement, and plenty of invitation to carry a meaningful burden. Open source nails this trifecta of motivations to a T. There are endless paths of discovery and mastery available. There are tons of fellow travelers with whom to connect and collaborate. And you'll find an unlimited number of meaningful burdens in maintainerships open for the taking. So next time you see that meme, you should cheer that the talk therapy table is empty. Leave it available for the severe, pathological cases that exercise and the pursuit of competence can't cure. Most people just don't need therapy, they need purpose, they need competence, they need exercise, and they need community.