Full Width [alt+shift+f] FOCUS MODE Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
33
Here are a few tangentially-related ideas vaguely near the theme of comparison operators. comparison style clamp style clamp is median clamp in range range style style clash? comparison style Some languages such as BCPL, Icon, Python have chained comparison operators, like if min <= x <= max: ... In languages without chained comparison, I like to write comparisons as if they were chained, like, if min <= x && x <= max { // ... } A rule of thumb is to prefer less than (or equal) operators and avoid greater than. In a sequence of comparisons, order values from (expected) least to greatest. clamp style The clamp() function ensures a value is between some min and max, def clamp(min, x, max): if x < min: return min if max < x: return max return x I like to order its arguments matching the expected order of the values, following my rule of thumb for comparisons. (I used that flavour of clamp() in my article about GCRA.) But I seem...
a month ago

Comments

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Tony Finch's blog

strongly typed?

What does it mean when someone writes that a programming language is “strongly typed”? I’ve known for many years that “strongly typed” is a poorly-defined term. Recently I was prompted on Lobsters to explain why it’s hard to understand what someone means when they use the phrase. I came up with more than five meanings! how strong? The various meanings of “strongly typed” are not clearly yes-or-no. Some developers like to argue that these kinds of integrity checks must be completely perfect or else they are entirely worthless. Charitably (it took me a while to think of a polite way to phrase this), that betrays a lack of engineering maturity. Software engineers, like any engineers, have to create working systems from imperfect materials. To do so, we must understand what guarantees we can rely on, where our mistakes can be caught early, where we need to establish processes to catch mistakes, how we can control the consequences of our mistakes, and how to remediate when somethng breaks because of a mistake that wasn’t caught. strong how? So, what are the ways that a programming language can be strongly or weakly typed? In what ways are real programming languages “mid”? Statically typed as opposed to dynamically typed? Many languages have a mixture of the two, such as run time polymorphism in OO languages (e.g. Java), or gradual type systems for dynamic languages (e.g. TypeScript). Sound static type system? It’s common for static type systems to be deliberately unsound, such as covariant subtyping in arrays or functions (Java, again). Gradual type systems migh have gaping holes for usability reasons (TypeScript, again). And some type systems might be unsound due to bugs. (There are a few of these in Rust.) Unsoundness isn’t a disaster, if a programmer won’t cause it without being aware of the risk. For example: in Lean you can write “sorry” as a kind of “to do” annotation that deliberately breaks soundness; and Idris 2 has type-in-type so it accepts Girard’s paradox. Type safe at run time? Most languages have facilities for deliberately bypassing type safety, with an “unsafe” library module or “unsafe” language features, or things that are harder to spot. It can be more or less difficult to break type safety in ways that the programmer or language designer did not intend. JavaScript and Lua are very safe, treating type safety failures as security vulnerabilities. Java and Rust have controlled unsafety. In C everything is unsafe. Fewer weird implicit coercions? There isn’t a total order here: for instance, C has implicit bool/int coercions, Rust does not; Rust has implicit deref, C does not. There’s a huge range in how much coercions are a convenience or a source of bugs. For example, the PHP and JavaScript == operators are made entirely of WAT, but at least you can use === instead. How fancy is the type system? To what degree can you model properties of your program as types? Is it convenient to parse, not validate? Is the Curry-Howard correspondance something you can put into practice? Or is it only capable of describing the physical layout of data? There are probably other meanings, e.g. I have seen “strongly typed” used to mean that runtime representations are abstract (you can’t see the underlying bytes); or in the past it sometimes meant a language with a heavy type annotation burden (as a mischaracterization of static type checking). how to type So, when you write (with your keyboard) the phrase “strongly typed”, delete it, and come up with a more precise description of what you really mean. The desiderata above are partly overlapping, sometimes partly orthogonal. Some of them you might care about, some of them not. But please try to communicate where you draw the line and how fuzzy your line is.

2 days ago 10 votes
p-fast trie, but smaller

Previously, I wrote some sketchy ideas for what I call a p-fast trie, which is basically a wide fan-out variant of an x-fast trie. It allows you to find the longest matching prefix or nearest predecessor or successor of a query string in a set of names in O(log k) time, where k is the key length. My initial sketch was more complicated and greedy for space than necessary, so here’s a simplified revision. (“p” now stands for prefix.) layout A p-fast trie stores a lexicographically ordered set of names. A name is a sequence of characters from some small-ish character set. For example, DNS names can be represented as a set of about 50 letters, digits, punctuation and escape characters, usually one per byte of name. Names that are arbitrary bit strings can be split into chunks of 6 bits to make a set of 64 characters. Every unique prefix of every name is added to a hash table. An entry in the hash table contains: A shared reference to the closest name lexicographically greater than or equal to the prefix. Multiple hash table entries will refer to the same name. A reference to a name might instead be a reference to a leaf object containing the name. The length of the prefix. To save space, each prefix is not stored separately, but implied by the combination of the closest name and prefix length. A bitmap with one bit per possible character, corresponding to the next character after this prefix. For every other prefix that matches this prefix and is one character longer than this prefix, a bit is set in the bitmap corresponding to the last character of the longer prefix. search The basic algorithm is a longest-prefix match. Look up the query string in the hash table. If there’s a match, great, done. Otherwise proceed by binary chop on the length of the query string. If the prefix isn’t in the hash table, reduce the prefix length and search again. (If the empty prefix isn’t in the hash table then there are no names to find.) If the prefix is in the hash table, check the next character of the query string in the bitmap. If its bit is set, increase the prefix length and search again. Otherwise, this prefix is the answer. predecessor Instead of putting leaf objects in a linked list, we can use a more complicated search algorithm to find names lexicographically closest to the query string. It’s tricky because a longest-prefix match can land in the wrong branch of the implicit trie. Here’s an outline of a predecessor search; successor requires more thought. During the binary chop, when we find a prefix in the hash table, compare the complete query string against the complete name that the hash table entry refers to (the closest name greater than or equal to the common prefix). If the name is greater than the query string we’re in the wrong branch of the trie, so reduce the length of the prefix and search again. Otherwise search the set bits in the bitmap for one corresponding to the greatest character less than the query string’s next character; if there is one remember it and the prefix length. This will be the top of the sub-trie containing the predecessor, unless we find a longer match. If the next character’s bit is set in the bitmap, continue searching with a longer prefix, else stop. When the binary chop has finished, we need to walk down the predecessor sub-trie to find its greatest leaf. This must be done one character at a time – there’s no shortcut. thoughts In my previous note I wondered how the number of search steps in a p-fast trie compares to a qp-trie. I have some old numbers measuring the average depth of binary, 4-bit, 5-bit, 6-bit and 4-bit, 5-bit, dns qp-trie variants. A DNS-trie varies between 7 and 15 deep on average, depending on the data set. The number of steps for a search matches the depth for exact-match lookups, and is up to twice the depth for predecessor searches. A p-fast trie is at most 9 hash table probes for DNS names, and unlikely to be more than 7. I didn’t record the average length of names in my benchmark data sets, but I guess they would be 8–32 characters, meaning 3–5 probes. Which is far fewer than a qp-trie, though I suspect a hash table probe takes more time than chasing a qp-trie pointer. (But this kind of guesstimate is notoriously likely to be wrong!) However, a predecessor search might need 30 probes to walk down the p-fast trie, which I think suggests a linked list of leaf objects is a better option.

3 weeks ago 20 votes
p-fast trie: lexically ordered hash map

Here’s a sketch of an idea that might or might not be a good idea. Dunno if it’s similar to something already described in the literature – if you know of something, please let me know via the links in the footer! The gist is to throw away the tree and interior pointers from a qp-trie. Instead, the p-fast trie is stored using a hash map organized into stratified levels, where each level corresponds to a prefix of the key. Exact-match lookups are normal O(1) hash map lookups. Predecessor / successor searches use binary chop on the length of the key. Where a qp-trie search is O(k), where k is the length of the key, a p-fast trie search is O(log k). This smaller O(log k) bound is why I call it a “p-fast trie” by analogy with the x-fast trie, which has O(log log N) query time. (The “p” is for popcount.) I’m not sure if this asymptotic improvement is likely to be effective in practice; see my thoughts towards the end of this note. layout A p-fast trie consists of: Leaf objects, each of which has a name. Each leaf object refers to its successor forming a circular linked list. (The last leaf refers to the first.) Multiple interior nodes refer to each leaf object. A hash map containing every (strict) prefix of every name in the trie. Each prefix maps to a unique interior node. Names are treated as bit strings split into chunks of (say) 6 bits, and prefixes are whole numbers of chunks. An interior node contains a (1<<6) == 64 wide bitmap with a bit set for each chunk where prefix+chunk matches a key. Following the bitmap is a popcount-compressed array of references to the leaf objects that are the closest predecessor of the corresponding prefix+chunk key. Prefixes are strictly shorter than names so that we can avoid having to represent non-values after the end of a name, and so that it’s OK if one name is a prefix of another. The size of chunks and bitmaps might change; 6 is a guess that I expect will work OK. For restricted alphabets you can use something like my DNS trie name preparation trick to squash 8-bit chunks into sub-64-wide bitmaps. In Rust where cross-references are problematic, there might have to be a hash map that owns the leaf objects, so that the p-fast trie can refer to them by name. Or use a pool allocator and refer to leaf objects by numerical index. search To search, start by splitting the query string at its end into prefix + final chunk of bits. Look up the prefix in the hash map and check the chunk’s bit in the bitmap. If it’s set, you can return the corresponding leaf object because it’s either an exact match or the nearest predecessor. If it isn’t found, and you want the predecessor or successor, continue with a binary chop on the length of the query string. Look up the chopped prefix in the hash map. The next chunk is the chunk of bits in the query string immediately after the prefix. If the prefix is present and the next chunk’s bit is set, remember the chunk’s leaf pointer, make the prefix longer, and try again. If the prefix is present and the next chunk’s bit is not set and there’s a lesser bit that is set, return the leaf pointer for the lesser bit. Otherwise make the prefix shorter and try again. If the prefix isn’t present, make the prefix shorter and try again. When the binary chop bottoms out, return the longest-matching leaf you remembered. The leaf’s key and successor bracket the query string. modify When inserting a name, all its prefixes must be added to the hash map from longest to shortest. At the point where it finds that the prefix already exists, the insertion routine needs to walk down the (implicit) tree of successor keys, updating pointers that refer to the new leaf’s predecessor so they refer to the new leaf instead. Similarly, when deleting a name, remove every prefix from longest to shortest from the hash map where they only refer to this leaf. At the point where the prefix has sibling nodes, walk down the (implicit) tree of successor keys, updating pointers that refer to the deleted leaf so they refer to its predecessor instead. I can’t “just” use a concurrent hash map and expect these algorithms to be thread-safe, because they require multiple changes to the hashmaps. I wonder if the search routine can detect when the hash map is modified underneath it and retry. thoughts It isn’t obvious how a p-fast trie might compare to a qp-trie in practice. A p-fast trie will use a lot more memory than a qp-trie because it requires far more interior nodes. They need to exist so that the random-access binary chop knows whether to shorten or lengthen the prefix. To avoid wasting space the hash map keys should refer to names in leaf objects, instead of making lots of copies. This is probably tricky to get right. In a qp-trie the costly part of the lookup is less than O(k) because non-branching interior nodes are omitted. How does that compare to a p-fast trie’s O(log k)? Exact matches in a p-fast trie are just a hash map lookup. If they are worth optimizing then a qp-trie could also be augmented with a hash map. Many steps of a qp-trie search are checking short prefixes of the key near the root of the tree, which should be well cached. By contrast, a p-fast trie search will typically skip short prefixes and instead bounce around longer prefixes, which suggests its cache behaviour won’t be so friendly. A qp-trie predecessor/successor search requires two traversals, one to find the common prefix of the key and another to find the prefix’s predecessor/successor. A p-fast trie requires only one.

3 weeks ago 22 votes
Golang and Let's Encrypt: a free software story

Here’s a story from nearly 10 years ago. the bug I think it was my friend Richard Kettlewell who told me about a bug he encountered with Let’s Encrypt in its early days in autumn 2015: it was failing to validate mail domains correctly. the context At the time I had previously been responsible for Cambridge University’s email anti-spam system for about 10 years, and in 2014 I had been given responsibility for Cambridge University’s DNS. So I knew how Let’s Encrypt should validate mail domains. Let’s Encrypt was about one year old. Unusually, the code that runs their operations, Boulder, is free software and open to external contributors. Boulder is written in Golang, and I had not previously written any code in Golang. But its reputation is to be easy to get to grips with. So, in principle, the bug was straightforward for me to fix. How difficult would it be as a Golang newbie? And what would Let’s Encrypt’s contribution process be like? the hack I cloned the Boulder repository and had a look around the code. As is pretty typical, there are a couple of stages to fixing a bug in an unfamiliar codebase: work out where the problem is try to understand if the obvious fix could be better In this case, I remember discovering a relatively substantial TODO item that intersected with the bug. I can’t remember the details, but I think there were wider issues with DNS lookups in Boulder. I decided it made sense to fix the immediate problem without getting involved in things that would require discussion with Let’s Encrypt staff. I faffed around with the code and pushed something that looked like it might work. A fun thing about this hack is that I never got a working Boulder test setup on my workstation (or even Golang, I think!) – I just relied on the Let’s Encrypt cloud test setup. The feedback time was very slow, but it was tolerable for a simple one-off change. the fix My pull request was small, +48-14. After a couple of rounds of review and within a few days, it was merged and put into production! A pleasing result. the upshot I thought Golang (at least as it was used in the Boulder codebase) was as easy to get to grips with as promised. I did not touch it again until several years later, because there was no need to, but it seemed fine. I was very impressed by the Let’s Encrypt continuous integration and automated testing setup, and by their low-friction workflow for external contributors. One of my fastest drive-by patches to get into worldwide production. My fix was always going to be temporary, and all trace of it was overwritten years ago. It’s good when “temporary” turns out to be true! the point I was reminded of this story in the pub this evening, and I thought it was worth writing down. It demonstrated to me that Let’s Encrypt really were doing all the good stuff they said they were doing. So thank you to Let’s Encrypt for providing an exemplary service and for giving me a happy little anecdote.

2 months ago 42 votes

More in programming

Why Amateur Radio

I always had a diffuse idea of why people are spending so much time and money on amateur radio. Once I got my license and started to amass radios myself, it became more clear.

yesterday 2 votes
strongly typed?

What does it mean when someone writes that a programming language is “strongly typed”? I’ve known for many years that “strongly typed” is a poorly-defined term. Recently I was prompted on Lobsters to explain why it’s hard to understand what someone means when they use the phrase. I came up with more than five meanings! how strong? The various meanings of “strongly typed” are not clearly yes-or-no. Some developers like to argue that these kinds of integrity checks must be completely perfect or else they are entirely worthless. Charitably (it took me a while to think of a polite way to phrase this), that betrays a lack of engineering maturity. Software engineers, like any engineers, have to create working systems from imperfect materials. To do so, we must understand what guarantees we can rely on, where our mistakes can be caught early, where we need to establish processes to catch mistakes, how we can control the consequences of our mistakes, and how to remediate when somethng breaks because of a mistake that wasn’t caught. strong how? So, what are the ways that a programming language can be strongly or weakly typed? In what ways are real programming languages “mid”? Statically typed as opposed to dynamically typed? Many languages have a mixture of the two, such as run time polymorphism in OO languages (e.g. Java), or gradual type systems for dynamic languages (e.g. TypeScript). Sound static type system? It’s common for static type systems to be deliberately unsound, such as covariant subtyping in arrays or functions (Java, again). Gradual type systems migh have gaping holes for usability reasons (TypeScript, again). And some type systems might be unsound due to bugs. (There are a few of these in Rust.) Unsoundness isn’t a disaster, if a programmer won’t cause it without being aware of the risk. For example: in Lean you can write “sorry” as a kind of “to do” annotation that deliberately breaks soundness; and Idris 2 has type-in-type so it accepts Girard’s paradox. Type safe at run time? Most languages have facilities for deliberately bypassing type safety, with an “unsafe” library module or “unsafe” language features, or things that are harder to spot. It can be more or less difficult to break type safety in ways that the programmer or language designer did not intend. JavaScript and Lua are very safe, treating type safety failures as security vulnerabilities. Java and Rust have controlled unsafety. In C everything is unsafe. Fewer weird implicit coercions? There isn’t a total order here: for instance, C has implicit bool/int coercions, Rust does not; Rust has implicit deref, C does not. There’s a huge range in how much coercions are a convenience or a source of bugs. For example, the PHP and JavaScript == operators are made entirely of WAT, but at least you can use === instead. How fancy is the type system? To what degree can you model properties of your program as types? Is it convenient to parse, not validate? Is the Curry-Howard correspondance something you can put into practice? Or is it only capable of describing the physical layout of data? There are probably other meanings, e.g. I have seen “strongly typed” used to mean that runtime representations are abstract (you can’t see the underlying bytes); or in the past it sometimes meant a language with a heavy type annotation burden (as a mischaracterization of static type checking). how to type So, when you write (with your keyboard) the phrase “strongly typed”, delete it, and come up with a more precise description of what you really mean. The desiderata above are partly overlapping, sometimes partly orthogonal. Some of them you might care about, some of them not. But please try to communicate where you draw the line and how fuzzy your line is.

2 days ago 10 votes
Logical Duals in Software Engineering

(Last week's newsletter took too long and I'm way behind on Logic for Programmers revisions so short one this time.1) In classical logic, two operators F/G are duals if F(x) = !G(!x). Three examples: x || y is the same as !(!x && !y). <>P ("P is possibly true") is the same as ![]!P ("not P isn't definitely true"). some x in set: P(x) is the same as !(all x in set: !P(x)). (1) is just a version of De Morgan's Law, which we regularly use to simplify boolean expressions. (2) is important in modal logic but has niche applications in software engineering, mostly in how it powers various formal methods.2 The real interesting one is (3), the "quantifier duals". We use lots of software tools to either find a value satisfying P or check that all values satisfy P. And by duality, any tool that does one can do the other, by seeing if it fails to find/check !P. Some examples in the wild: Z3 is used to solve mathematical constraints, like "find x, where f(x) >= 0. If I want to prove a property like "f is always positive", I ask z3 to solve "find x, where !(f(x) >= 0), and see if that is unsatisfiable. This use case powers a LOT of theorem provers and formal verification tooling. Property testing checks that all inputs to a code block satisfy a property. I've used it to generate complex inputs with certain properties by checking that all inputs don't satisfy the property and reading out the test failure. Model checkers check that all behaviors of a specification satisfy a property, so we can find a behavior that reaches a goal state G by checking that all states are !G. Here's TLA+ solving a puzzle this way.3 Planners find behaviors that reach a goal state, so we can check if all behaviors satisfy a property P by asking it to reach goal state !P. The problem "find the shortest traveling salesman route" can be broken into some route: distance(route) = n and all route: !(distance(route) < n). Then a route finder can find the first, and then convert the second into a some and fail to find it, proving n is optimal. Even cooler to me is when a tool does both finding and checking, but gives them different "meanings". In SQL, some x: P(x) is true if we can query for P(x) and get a nonempty response, while all x: P(x) is true if all records satisfy the P(x) constraint. Most SQL databases allow for complex queries but not complex constraints! You got UNIQUE, NOT NULL, REFERENCES, which are fixed predicates, and CHECK, which is one-record only.4 Oh, and you got database triggers, which can run arbitrary queries and throw exceptions. So if you really need to enforce a complex constraint P(x, y, z), you put in a database trigger that queries some x, y, z: !P(x, y, z) and throws an exception if it finds any results. That all works because of quantifier duality! See here for an example of this in practice. Duals more broadly "Dual" doesn't have a strict meaning in math, it's more of a vibe thing where all of the "duals" are kinda similar in meaning but don't strictly follow all of the same rules. Usually things X and Y are duals if there is some transform F where X = F(Y) and Y = F(X), but not always. Maybe the category theorists have a formal definition that covers all of the different uses. Usually duals switch properties of things, too: an example showing some x: P(x) becomes a counterexample of all x: !P(x). Under this definition, I think the dual of a list l could be reverse(l). The first element of l becomes the last element of reverse(l), the last becomes the first, etc. A more interesting case is the dual of a K -> set(V) map is the V -> set(K) map. IE the dual of lived_in_city = {alice: {paris}, bob: {detroit}, charlie: {detroit, paris}} is city_lived_in_by = {paris: {alice, charlie}, detroit: {bob, charlie}}. This preserves the property that x in map[y] <=> y in dual[x]. And after writing this I just realized this is partial retread of a newsletter I wrote a couple months ago. But only a partial retread! ↩ Specifically "linear temporal logics" are modal logics, so "eventually P ("P is true in at least one state of each behavior") is the same as saying !always !P ("not P isn't true in all states of all behaviors"). This is the basis of liveness checking. ↩ I don't know for sure, but my best guess is that Antithesis does something similar when their fuzzer beats videogames. They're doing fuzzing, not model checking, but they have the same purpose check that complex state spaces don't have bugs. Making the bug "we can't reach the end screen" can make a fuzzer output a complete end-to-end run of the game. Obvs a lot more complicated than that but that's the general idea at least. ↩ For CHECK to constraint multiple records you would need to use a subquery. Core SQL does not support subqueries in check. It is an optional database "feature outside of core SQL" (F671), which Postgres does not support. ↩

3 days ago 10 votes
Omarchy 2.0

Omarchy 2.0 was released on Linux's 34th birthday as a gift to perhaps the greatest open-source project the world has ever known. Not only does Linux run 95% of all servers on the web, billions of devices as an embedded OS, but it also turns out to be an incredible desktop environment! It's crazy that it took me more than thirty years to realize this, but while I spent time in Apple's walled garden, the free software alternative simply grew better, stronger, and faster. The Linux of 2025 is not the Linux of the 90s or the 00s or even the 10s. It's shockingly more polished, capable, and beautiful. It's been an absolute honor to celebrate Linux with the making of Omarchy, the new Linux distribution that I've spent the last few months building on top of Arch and Hyprland. What began as a post-install script has turned into a full-blown ISO, dedicated package repository, and flourishing community of thousands of enthusiasts all collaborating on making it better. It's been improving rapidly with over twenty releases since the premiere in late June, but this Version 2.0 update is the biggest one yet. If you've been curious about giving Linux a try, you're not afraid of an operating system that asks you to level up and learn a little, and you want to see what a totally different computing experience can look and feel like, I invite you to give it a go. Here's a full tour of Omarchy 2.0.

4 days ago 8 votes
Dissecting the Apple M1 GPU, the end

In 2020, Apple released the M1 with a custom GPU. We got to work reverse-engineering the hardware and porting Linux. Today, you can run Linux on a range of M1 and M2 Macs, with almost all hardware working: wireless, audio, and full graphics acceleration. Our story begins in December 2020, when Hector Martin kicked off Asahi Linux. I was working for Collabora working on Panfrost, the open source Mesa3D driver for Arm Mali GPUs. Hector put out a public call for guidance from upstream open source maintainers, and I bit. I just intended to give some quick pointers. Instead, I bought myself a Christmas present and got to work. In between my university coursework and Collabora work, I poked at the shader instruction set. One thing led to another. Within a few weeks, I drew a triangle. In 3D graphics, once you can draw a triangle, you can do anything. Pretty soon, I started work on a shader compiler. After my final exams that semester, I took a few days off from Collabora to bring up an OpenGL driver capable of spinning gears with my new compiler. Over the next year, I kept reverse-engineering and improving the driver until it could run 3D games on macOS. Meanwhile, Asahi Lina wrote a kernel driver for the Apple GPU. My userspace OpenGL driver ran on macOS, leaving her kernel driver as the missing piece for an open source graphics stack. In December 2022, we shipped graphics acceleration in Asahi Linux. In January 2023, I started my final semester in my Computer Science program at the University of Toronto. For years I juggled my courses with my part-time job and my hobby driver. I faced the same question as my peers: what will I do after graduation? Maybe Panfrost? I started reverse-engineering of the Mali Midgard GPU back in 2017, when I was still in high school. That led to an internship at Collabora in 2019 once I graduated, turning into my job throughout four years of university. During that time, Panfrost grew from a kid’s pet project based on blackbox reverse-engineering, to a professional driver engineered by a team with Arm’s backing and hardware documentation. I did what I set out to do, and the project succeeded beyond my dreams. It was time to move on. What did I want to do next? Finish what I started with the M1. Ship a great driver. Bring full, conformant OpenGL drivers to the M1. Apple’s drivers are not conformant, but we should strive for the industry standard. Bring full, conformant Vulkan to Apple platforms, disproving the myth that Vulkan isn’t suitable for Apple hardware. Bring Proton gaming to Asahi Linux. Thanks to Valve’s work for the Steam Deck, Windows games can run better on Linux than even on Windows. Why not reap those benefits on the M1? Panfrost was my challenge until we “won”. My next challenge? Gaming on Linux on M1. Once I finished my coursework, I started full-time on gaming on Linux. Within a month, we shipped OpenGL 3.1 on Asahi Linux. A few weeks later, we passed official conformance for OpenGL ES 3.1. That put us at feature parity with Panfrost. I wanted to go further. OpenGL (ES) 3.2 requires geometry shaders, a legacy feature not supported by either Arm or Apple hardware. The proprietary OpenGL drivers emulate geometry shaders with compute, but there was no open source prior art to borrow. Even though multiple Mesa drivers need geometry/tessellation emulation, nobody did the work to get there. My early progress on OpenGL was fast thanks to the mature common code in Mesa. It was time to pay it forward. Over the rest of the year, I implemented geometry/tessellation shader emulation. And also the rest of the owl. In January 2024, I passed conformance for the full OpenGL 4.6 specification, finishing up OpenGL. Vulkan wasn’t too bad, either. I polished the OpenGL driver for a few months, but once I started typing a Vulkan driver, I passed 1.3 conformance in a few weeks. What remained was wiring up the geometry/tessellation emulation to my shiny new Vulkan driver, since those are required for Direct3D. Et voilà, Proton games. Along the way, Karol Herbst passed OpenCL 3.0 conformance on the M1, running my compiler atop his “rusticl” frontend. Meanwhile, when the Vulkan 1.4 specification was published, we were ready and shipped a conformant implementation on the same day. After that, I implemented sparse texture support, unlocking Direct3D 12 via Proton. …Now what? Ship a great driver? Check. Conformant OpenGL 4.6, OpenGL ES 3.2, and OpenCL 3.0? Check. Conformant Vulkan 1.4? Check. Proton gaming? Check. That’s a wrap. We’ve succeeded beyond my dreams. The challenges I chased, I have tackled. The drivers are fully upstream in Mesa. Performance isn’t too bad. With the Vulkan on Apple myth busted, conformant Vulkan is now coming to macOS via LunarG’s KosmicKrisp project building on my work. Satisfied, I am now stepping away from the Apple ecosystem. My friends in the Asahi Linux orbit will carry the torch from here. As for me? Onto the next challenge!

4 days ago 13 votes