Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
15
One of the first types we learn about is the boolean. It's pretty natural to use, because boolean logic underpins much of modern computing. And yet, it's one of the types we should probably be using a lot less of. In almost every single instance when you use a boolean, it should be something else. The trick is figuring out what "something else" is. Doing this is worth the effort. It tells you a lot about your system, and it will improve your design (even if you end up using a boolean). There are a few possible types that come up often, hiding as booleans. Let's take a look at each of these, as well as the case where using a boolean does make sense. This isn't exhaustive—[1]there are surely other types that can make sense, too. Datetimes A lot of boolean data is representing a temporal event having happened. For example, websites often have you confirm your email. This may be stored as a boolean column, is_confirmed, in the database. It makes a lot of sense. But, you're throwing away...
2 weeks ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from ntietz.com blog - technically a blog

Proving that every program halts

One of the best known hard problems in computer science is the halting problem. In fact, it's widely thought[1] that you cannot write a program that will, for any arbitrary program as input, tell you correctly whether or not it will terminate. This is written from the framing of computers, though: can we do better with a human in the loop? It turns out, we can. And we can use a method that's generalizable, which many people can follow for many problems. Not everyone can use the method, which you'll see why in a bit. But lots of people can apply this proof technique. Let's get started. * * * We'll start by formalizing what we're talking about, just a little bit. I'm not going to give the full formal proof—that will be reserved for when this is submitted to a prestigious conference next year. We will call the set of all programs P. We want to answer, for any p in P, whether or not p will eventually halt. We will call this h(p) and h(p) = true if p eventually finished and false otherwise. Actually, scratch that. Let's simplify it and just say that yes, every program does halt eventually, so h(p) = true for all p. That makes our lives easier. Now we need to get from our starting assumptions, the world of logic we live in, to the truth of our statement. We'll call our goal, that h(p) = true for all p, the statement H. Now let's start with some facts. Fact one: I think it's always an appropriate time to play the saxophone. *honk*! Fact two: My wife thinks that it's sometimes inappropriate to play the saxophone, such as when it's "time for bed" or "I was in the middle of a sentence![2] We'll give the statement "It's always an appropriate time to play the saxophone" the name A. We know that I believe A is true. And my wife believes that A is false. So now we run into the snag: Fact three: The wife is always right. This is a truism in American culture, useful for settling debates. It's also useful here for solving major problems in computer science because, babe, we're both the wife. We're both right! So now that we're both right, we know that A and !A are both true. And we're in luck, we can apply a whole lot of fancy classical logic here. Since A and !A we know that A is true and we also know that !A is true. From A being true, we can conclude that A or H is true. And then we can apply disjunctive syllogism[3] which says that if A or H is true and !A is true, then H must be true. This makes sense, because if you've excluded one possibility then the other must be true. And we do have !A, so that means: H is true! There we have it. We've proved our proposition, H, which says that for any program p, p will eventually halt. The previous logic is, mostly, sound. It uses the principle of explosion, though I prefer to call it "proof by married lesbian." * * * Of course, we know that this is wrong. It falls apart with our assumptions. We built the system on contradictory assumptions to begin with, and this is something we avoid in logic[4]. If we allow contradictions, then we can prove truly anything. I could have also proved (by married lesbian) that no program will terminate. This has been a silly traipse through logic. If you want a good journey through logic, I'd recommend Hillel Wayne's Logic for Programmers. I'm sure that, after reading it, you'll find absolutely no flaws in my logic here. After all, I'm the wife, so I'm always right. It's widely thought because it's true, but we don't have to let that keep us from a good time. ↩ I fact checked this with her, and she does indeed hold this belief. ↩ I had to look this up, my uni logic class was a long time ago. ↩ The real conclusion to draw is that, because of proof by contradiction, it's certainly not true that the wife is always right. Proved that one via married lesbians having arguments. Or maybe gay relationships are always magical and happy and everyone lives happily ever after, who knows. ↩

3 weeks ago 20 votes
Taking a break

I've been publishing at least one blog post every week on this blog for about 2.5 years. I kept it up even when I was very sick last year with Lyme disease. It's time for me to take a break and reset. This is the right time, because the world is very difficult for me to move through right now and I'm just burnt out. I need to focus my energy on things that give me energy and right now, that's not writing and that's not tech. I'll come back to this, and it might look a little different. This is my last post for at least a month. It might be longer, if I still need more time, but I won't return before the end of May. I know I need at least that long to heal, and I also need that time to focus on music. I plan to play a set at West Philly Porchfest, so this whole month I'll be prepping that set. If you want to follow along with my music, you can find it on my bandcamp (only one track, but I'll post demos of the others that I prepare for Porchfest as they come together). And if you want to reach out, my inbox is open. Be kind to yourself. Stay well, drink some water. See you in a while.

2 months ago 20 votes
Measuring my Framework laptop's performance in 3 positions

A few months ago, I was talking with a friend about my ergonomic setup and they asked if being vertical helps it with cooling. I wasn't sure, because it seems like it could help but it was probably such a small difference that it wouldn't matter. So, I did what any self-respecting nerd would do: I procrastinated. The question didn't leave me, though, so after those months passed, I did the second thing any self-respecting nerd would do: benchmarks. The question and the setup What we want to find out is whether or not the position of the laptop would affect its CPU performance. I wanted to measure it in three positions: normal: using it the way any normal person uses their laptop, with the screen and keyboard at something like a 90-degree angle closed: using it like a tech nerd, closed but plugged into a monitor and peripherals vertical: using it like a weird blogger who has sunk a lot of time into her ergonomic setup and wants to justify it even further My hypothesis was that using it closed would slightly reduce CPU performance, and that using it normal or vertical would be roughly the same. For this experiment, I'm using my personal laptop. It's one of the early Framework laptops (2nd batch of shipments) which is about four years old. It has an 11th gen Intel CPU in it, the i7-1165G7. My laptop will be sitting on a laptop riser for the closed and normal positions, and it will be sitting in my ergonomic tray for the vertical one. For all three, it will be connected to the same set of peripherals through a single USB-C cable, and the internal display is disabled for all three. Running the tests I'm not too interested in the initial boost clock. I'm more interested in what clock speeds we can sustain. What happens under a sustained, heavy load, when we hit a saturation point and can't shed any more heat? To test that, I'm doing a test using heavy CPU load. The load is generated by stress-ng, which also reports some statistics. Most notably, it reports CPU temperatures and clock speeds during the tests. Here's the script I wrote to make these consistent. To skip the boost clock period, I warm it up first with a 3-minute load Then I do a 5-minute load and measure the CPU clock frequency and CPU temps every second along the way. #!/bin/bash # load the CPU for 3 minutes to warm it up sudo stress-ng --matrix $2 -t 3m --tz --raplstat 1 --thermalstat 1 -Y warmup-$1.yaml --log-file warmup-$1.log --timestamp --ignite-cpu # run for 5 minutes to gather our averages sudo stress-ng --matrix $2 -t 5m --tz --raplstat 1 --thermalstat 1 -Y cputhermal-$1.yaml --log-file cputhermal-$1.log --timestamp --ignite-cpu We need sudo since we're using an option (--ignite-cpu) which needs root privileges[1] and attempts to make the CPU run harder/hotter. Then we specify the stressor we're using with --matrix $2, which does some matrix calculations over a number of cores we specify. The remaining options are about reporting and logging. I let the computer cool for a minute or two between each test, but not for a scientific reason. Just because I was doing other things. Since my goal was to saturate the temperatures, and they got stable within each warmup period, cooldowh time wasn't necessary—we'd warm it back up anyway. So, I ran this with the three positions, and with two core count options: 8, one per thread on my CPU; and 4, one per physical core on my CPU. The results Once it was done, I analyzed the results. I took the average clock speed across the 5 minute test for each of the configurations. My hypothesis was partially right and partially wrong. When doing 8 threads, each position had different results: Our baseline normal open position had an average clock speed of 3.44 GHz and an average CPU temp of 91.75 F. With the laptop closed, the average clock speed was 3.37 GHz and the average CPU temp was 91.75 F. With the laptop open vertical, the average clock speed was 3.48 GHz and the average CPU temp was 88.75 F. With 4 threads, the results were: For the baseline normal open position, the average clock speed was 3.80 GHz with average CPU temps of 91.11 F. With the laptop closed, the average clock speed was 3.64 GHz with average CPU temps of 90.70 F. With the laptop open vertical, the average clock speed was 3.80 GHz with average CPU temps of 86.07 F. So, I was wrong in one big aspect: it does make a clearly measurable difference. Having it open and vertical reduces temps by 3 degrees in one test and 5 in the other, and it had a higher clock speed (by 0.05 GHz, which isn't a lot but isn't nothing). We can infer that, since clock speeds improved in the heavier load test but not in the lighter load test, that the lighter load isn't hitting our thermal limits—and when we do, the extra cooling from the vertical position really helps. One thing is clear: in all cases, the CPU ran slower when the laptop was closed. It's sorta weird that the CPU temps went down when closed in the second test. I wonder if that's from being able to cool down more when it throttled down a lot, or if there was a hotspot that throttled the CPU but which wasn't reflected in the temp data, maybe a different sensor. I'm not sure if having my laptop vertical like I do will ever make a perceptible performance difference. At any rate, that's not why I do it. But it does have lower temps, and that should let my fans run less often and be quieter when they do. That's a win in my book. It also means that when I run CPU-intensive things (say hi to every single Rust compile!) I should not close the laptop. And hey, if I decide to work from my armchair using my ergonomic tray, I can argue it's for efficiency: boss, I just gotta eke out those extra clock cycles. I'm not sure that this made any difference on my system. I didn't want to rerun the whole set without it, though, and it doesn't invalidate the tests if it simply wasn't doing anything. ↩

2 months ago 14 votes
The five stages of incident response

The scene: you're on call for a web app, and your pager goes off. Denial. No no no, the app can't be down. There's no way it's down. Why would it be down? It isn't down. Sure, my pager went off. And sure, the metrics all say it's down and the customer is complaining that it's down. But it isn't, I'm sure this is all a misunderstanding. Anger. Okay so it's fucking down. Why did this have to happen on my on-call shift? This is so unfair. I had my dinner ready to eat, and *boom* I'm paged. It's the PM's fault for not prioritizing my tech debt, ugh. Bargaining. Okay okay okay. Maybe... I can trade my on-call shift with Sam. They really know this service, so they could take it on. Or maybe I can eat my dinner while we respond to this... Depression. This is bad, this is so bad. Our app is down, and the customer knows. We're totally screwed here, why even bother putting it back up? They're all going to be mad, leave, the company is dead... There's not even any point. Acceptance. You know, it's going to be okay. This happens to everyone, apps go down. We'll get it back up, and everything will be fine.

2 months ago 28 votes

More in programming

Three attempts at making payments secure

In the early 1990s, three companies pioneered online transactions, facing challenges of security and user accessibility. They are hardly known today. The post Three attempts at making payments secure appeared first on The History of the Web.

23 hours ago 6 votes
Understanding Registers and Data Movement in x86-64 Assembly

A hands-on guide to general-purpose registers and data movement in x86-64

21 hours ago 5 votes
Linux crosses magic market share threshold in US

According to Statcounter, Linux has claimed 5% market share of desktop computing in the US. That's double of where it was just three years ago! Really impressive. Windows is still dominant at 63%, and Apple sit at 26%. But for the latter, it's quite a drop from their peak of 33% in June 2023. These are just browser stats, though (even if it's backed up by directionally-similar numbers from Cloudflare). There's undoubtedly some variability in the numbers, by the season, and by what lives in the relatively large 4% mystery box of "other". But there's no denying that Linux is trending in the right direction in the US. As a Dane, though, I find it sad that Denmark is once again a laggard when it comes to adoption. Windows is even more dominant there at almost 70% (with Apple at 15%). Linux is just under 2%. Interestingly, though, ChromeOS, which is basically a locked-down Linux distribution, is at almost 5%. I guess I really shouldn't be disappointed because this is how it always was. It was a big reason why I moved to the US back in 2005. When Ruby on Rails was taking off, it was in America first and foremost. Danish companies were too conservative, too complacent, too married to Microsoft to really pay attention. There are early indications that a willingness to change this laggard mentality might be sprouting, but we've yet to see any evidence that a shift has actually taken hold yet. It's hard to change culture! So while the Danes continue to fiddle, the Americans continue to push forward. Linux is on the up and up!

16 hours ago 3 votes
A Programmer’s Guide to x86-64 Assembly (Series Overview)

Welcome to my ongoing series on x86-64 assembly programming, designed for programmers who want to peel back the abstraction and understand how code really runs at the machine level.

yesterday 5 votes
Gaslight-driven development

Any person who has used a computer in the past ten years knows that doing meaningless tasks is just part of the experience. Millions of people create accounts, confirm emails, dismiss notifications, solve captchas, reject cookies, and accept terms and conditions—not because they particularly want to or even need to. They do it because that’s what the computer told them to do. Like it or not, we are already serving the machines. Well, now there is a new way to serve our silicon overlords. LLMs started to have opinions on how your API should look, and since 90% of all code will be written by AI comes September, we have no choice but to oblige. You might’ve heard a story of Soundslice adding a feature because ChatGPT kept telling people it exists. We see the same at Instant: for example, we used tx.update for both inserting and updating entities, but LLMs kept writing tx.create instead. Guess what: we now have tx.create, too. Is it good or is it bad? It definitely feels strange. In a sense, it’s helpful: LLMs here have seen millions of other APIs and are suggesting the most obvious thing, something every developer would think of first, too. It’s also a unique testing device: if developers use your API wrong, they blame themselves, read the documentation, and fix their code. In the end, you might never learn that they even had the problem. But with ChatGPT, you yourself can experience “newbie’s POV” at any time. Of course, this approach doesn’t work if you are trying to do something new and unique. LLMs just won’t “get it”. But how many of us are doing something new and unique? Maybe, API is not the place to get clever? Maybe, for most cases, it’s truly best if you did the most obvious thing? So welcome to the new era. AI is not just using tools we gave it. It now has opinions about how these tools should’ve been made. And instead of asking nicely, it gaslights everybody into thinking that’s how it’s always been.

yesterday 5 votes