More from Computer Things
New Logic for Programmers Release v0.10 is now available! This is a minor release, mostly focused on logic-based refactoring, with new material on set types and testing refactors are correct. See the full release notes at the changelog page. Due to conference pressure v0.11 will also likely be a minor release. AI is a gamechanger for TLA+ users TLA+ is a specification language to model and debug distributed systems. While very powerful, it's also hard for programmers to learn, and there's always questions of connecting specifications with actual code. That's why The Coming AI Revolution in Distributed Systems caught my interest. In the post, Cheng Huang claims that Azure successfully used LLMs to examine an existing codebase, derive a TLA+ spec, and find a production bug in that spec. "After a decade of manually crafting TLA+ specifications", he wrote, "I must acknowledge that this AI-generated specification rivals human work". This inspired me to experiment with LLMs in TLA+ myself. My goals are a little less ambitious than Cheng's: I wanted to see how LLMs could help junior specifiers write TLA+, rather than handling the entire spec automatically. Details on what did and didn't work below, but my takeaway is that LLMs are an immense specification force multiplier. All tests were done with a standard VSCode Copilot subscription, writing Claude 3.7 in Agent mode. Other LLMs or IDEs may be more or less effective, etc. Things Claude was good at Fixing syntax errors TLA+ uses a very different syntax than mainstream programming languages, meaning beginners make a lot of mistakes where they do a "programming syntax" instead of TLA+ syntax: NotThree(x) = \* should be ==, not = x != 3 \* should be #, not != The problem is that the TLA+ syntax checker, SANY, is 30 years old and doesn't provide good information. Here's what it says for that snippet: Was expecting "==== or more Module body" Encountered "NotThree" at line 6, column 1 That only isolates one error and doesn't tell us what the problem is, only where it is. Experienced TLA+ users get "error eyes" and can quickly see what the problem is, but beginners really struggle with this. The TLA+ foundation has made LLM integration a priority, so the VSCode extension naturally supports several agents actions. One of these is running SANY, meaning an agent can get an error, fix it, get another error, fix it, etc. Provided the above sample and asked to make it work, Claude successfully fixed both errors. It also fixed many errors in a larger spec, as well as figure out why PlusCal specs weren't compiling to TLA+. This by itself is already enough to make LLMs a worthwhile tool, as it fixes one of the biggest barriers to entry. Understanding error traces When TLA+ finds a violated property, it outputs the sequence of steps that leads to the error. This starts in plaintext, and VSCode parses it into an interactive table: Learning to read these error traces is a skill in itself. You have to understand what's happening in each step and how it relates back to the actually broken property. It takes a long time for people to learn how to do this well. Claude was successful here, too, accurately reading 20+ step error traces and giving a high-level explanation of what went wrong. It also could condense error traces: if ten steps of the error trace could be condensed into a one-sentence summary (which can happen if you're modeling a lot of process internals) Claude would do it. I did have issues here with doing this in agent mode: while the extension does provide a "run model checker" command, the agent would regularly ignore this and prefer to run a terminal command instead. This would be fine except that the LLM consistently hallucinated invalid commands. I had to amend every prompt with "run the model checker via vscode, do not use a terminal command". You can skip this if you're willing to copy and paste the error trace into the prompt. As with syntax checking, if this was the only thing LLMs could effectively do, that would already be enough1 to earn a strong recommend. Even as a TLA+ expert I expect I'll be using this trick regularly. Boilerplate tasks TLA+ has a lot of boilerplate. One of the most notorious examples is UNCHANGED rules. Specifications are extremely precise — so precise that you have to specify what variables don't change in every step. This takes the form of an UNCHANGED clause at the end of relevant actions: RemoveObjectFromStore(srv, o, s) == /\ o \in stored[s] /\ stored' = [stored EXCEPT ![s] = @ \ {o}] /\ UNCHANGED <<capacity, log, objectsize, pc>> Writing this is really annoying. Updating these whenever you change an action, or add a new variable to the spec, is doubly so. Syntax checking and error analysis are important for beginners, but this is what I wanted for myself. I took a spec and prompted Claude Add UNCHANGED <> for each variable not changed in an action. And it worked! It successfully updated the UNCHANGED in every action. (Note, though, that it was a "well-behaved" spec in this regard: only one "action" happened at a time. In TLA+ you can have two actions happen simultaneously, that each update half of the variables, meaning neither of them should have an UNCHANGED clause. I haven't tested how Claude handles that!) That's the most obvious win, but Claude was good at handling other tedious work, too. Some examples include updating vars (the conventional collection of all state variables), lifting a hard-coded value into a model parameter, and changing data formats. Most impressive to me, though, was rewriting a spec designed for one process to instead handle multiple processes. This means taking all of the process variables, which originally have types like Int, converting them to types like [Process -> Int], and then updating the uses of all of those variables in the spec. It didn't account for race conditions in the new concurrent behavior, but it was an excellent scaffold to do more work. Writing properties from an informal description You have to be pretty precise with your intended property description but it handles converting that precise description into TLA+'s formalized syntax, which is something beginners often struggle with. Things it is less good at Generating model config files To model check TLA+, you need both a specification (.tla) and a model config file (.cfg), which have separate syntaxes. Asking the agent to generate the second often lead to it using TLA+ syntax. It automatically fixed this after getting parsing errors, though. Fixing specs Whenever the ran model checking and discovered a bug, it would naturally propose a change to either the invalid property or the spec. Sometimes the changes were good, other times the changes were not physically realizable. For example, if it found that a bug was due to a race condition between processes, it would often suggest fixing it by saying race conditions were okay. I mean yes, if you say bugs are okay, then the spec finds that bugs are okay! Or it would alternatively suggest adding a constraint to the spec saying that race conditions don't happen. But that's a huge mistake in specification, because race conditions happen if we don't have coordination. We need to specify the mechanism that is supposed to prevent them. Finding properties of the spec After seeing how capable it was at translating my properties to TLA+, I started prompting Claude to come up with properties on its own. Unfortunately, almost everything I got back was either trivial, uninteresting, or too coupled to implementation details. I haven't tested if it would work better to ask it for "properties that may be violated". Generating code from specs I have to be specific here: Claude could sometimes convert Python into a passable spec, an vice versa. It wasn't good at recognizing abstraction. For example, TLA+ specifications often represent sequential operations with a state variable, commonly called pc. If modeling code that nonatomically retrieves a counter value and increments it, we'd have one action that requires pc = "Get" and sets the new value to "Inc", then another that requires it be "Inc" and sets it to "Done". I found that Claude would try to somehow convert pc into part of the Python program's state, rather than recognize it as a TLA+ abstraction. On the other side, when converting python code to TLA+ it would often try to translate things like sleep into some part of the spec, not recognizing that it is abstractable into a distinct action. I didn't test other possible misconceptions, like converting randomness to nondeterminism. For the record, when converting TLA+ to Python Claude tended to make simulators of the spec, rather than possible production code implementing the spec. I really wasn't expecting otherwise though. Unexplored Applications Things I haven't explored thoroughly but could possibly be effective, based on what I know about TLA+ and AI: Writing Java Overrides Most TLA+ operators are resolved via TLA+ interpreters, but you can also implement them in "native" Java. This lets you escape the standard language semantics and add capabilities like executing programs during model-checking or dynamically constrain the depth of the searched state space. There's a lot of cool things I think would be possible with overrides. The problem is there's only a handful of people in the world who know how to write them. But that handful have written quite a few overrides and I think there's enough there for Claude to work with. Writing specs, given a reference mechanism In all my experiments, the LLM only had my prompts and the occasional Python script as information. That makes me suspect that some of its problems with writing and fixing specs come down to not having a system model. Maybe it wouldn't suggest fixes like "these processes never race" if it had a design doc saying that the processes can't coordinate. (Could a Sufficiently Powerful LLM derive some TLA+ specification from a design document?) Connecting specs and code This is the holy grail of TLA+: taking a codebase and showing it correctly implements a spec. Currently the best ways to do this are by either using TLA+ to generate a test suite, or by taking logged production traces and matching them to TLA+ behaviors. This blog post discusses both. While I've seen a lot of academic research into these approaches there are no industry-ready tools. So if you want trace validation you have to do a lot of manual labour tailored to your specific product. If LLMs could do some of this work for us then that'd really amplify the usefulness of TLA+ to many companies. Thoughts Right now, agents seem good at the tedious and routine parts of TLA+ and worse at the strategic and abstraction parts. But, since the routine parts are often a huge barrier to beginners, this means that LLMs have the potential to make TLA+ far, far more accessible than it previously was. I have mixed thoughts on this. As an advocate, this is incredible. I want more people using formal specifications because I believe it leads to cheaper, safer, more reliable software. Anything that gets people comfortable with specs is great for our industry. As a professional TLA+ consultant, I'm worried that this obsoletes me. Most of my income comes from training and coaching, which companies will have far less demand of now. Then again, maybe this an opportunity to pitch "agentic TLA+ training" to companies! Anyway, if you're interested in TLA+, there has never been a better time to try it. I mean it, these tools handle so much of the hard part now. I've got a free book available online, as does the inventor of TLA+. I like this guide too. Happy modeling! Dayenu. ↩
Systems Distributed I'll be speaking at Systems Distributed next month! The talk is brand new and will aim to showcase some of the formal methods mental models that would be useful in mainstream software development. It has added some extra stress on my schedule, though, so expect the next two monthly releases of Logic for Programmers to be mostly minor changes. What does "Undecidable" mean, anyway Last week I read Against Curry-Howard Mysticism, which is a solid article I recommend reading. But this newsletter is actually about one comment: I like to see posts like this because I often feel like I can’t tell the difference between BS and a point I’m missing. Can we get one for questions like “Isn’t XYZ (Undecidable|NP-Complete|PSPACE-Complete)?” I've already written one of these for NP-complete, so let's do one for "undecidable". Step one is to pull a technical definition from the book Automata and Computability: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (pg 220) Step two is to translate the technical computer science definition into more conventional programmer terms. Warning, because this is a newsletter and not a blog post, I might be a little sloppy with terms. Machines and Decision Problems In automata theory, all inputs to a "program" are strings of characters, and all outputs are "true" or "false". A program "accepts" a string if it outputs "true", and "rejects" if it outputs "false". You can think of this as automata studying all pure functions of type f :: string -> boolean. Problems solvable by finding such an f are called "decision problems". This covers more than you'd think, because we can bootstrap more powerful functions from these. First, as anyone who's programmed in bash knows, strings can represent any other data. Second, we can fake non-boolean outputs by instead checking if a certain computation gives a certain result. For example, I can reframe the function add(x, y) = x + y as a decision problem like this: IS_SUM(str) { x, y, z = split(str, "#") return x + y == z } Then because IS_SUM("2#3#5") returns true, we know 2 + 3 == 5, while IS_SUM("2#3#6") is false. Since we can bootstrap parameters out of strings, I'll just say it's IS_SUM(x, y, z) going forward. A big part of automata theory is studying different models of computation with different strengths. One of the weakest is called "DFA". I won't go into any details about what DFA actually can do, but the important thing is that it can't solve IS_SUM. That is, if you give me a DFA that takes inputs of form x#y#z, I can always find an input where the DFA returns true when x + y != z, or an input which returns false when x + y == z. It's really important to keep this model of "solve" in mind: a program solves a problem if it correctly returns true on all true inputs and correctly returns false on all false inputs. (total) Turing Machines A Turing Machine (TM) is a particular type of computation model. It's important for two reasons: By the Church-Turing thesis, a Turing Machine is the "upper bound" of how powerful (physically realizable) computational models can get. This means that if an actual real-world programming language can solve a particular decision problem, so can a TM. Conversely, if the TM can't solve it, neither can the programming language.1 It's possible to write a Turing machine that takes a textual representation of another Turing machine as input, and then simulates that Turing machine as part of its computations. Property (1) means that we can move between different computational models of equal strength, proving things about one to learn things about another. That's why I'm able to write IS_SUM in a pseudocode instead of writing it in terms of the TM computational model (and why I was able to use split for convenience). Property (2) does several interesting things. First of all, it makes it possible to compose Turing machines. Here's how I can roughly ask if a given number is the sum of two primes, with "just" addition and boolean functions: IS_SUM_TWO_PRIMES(z): x := 1 y := 1 loop { if x > z {return false} if IS_PRIME(x) { if IS_PRIME(y) { if IS_SUM(x, y, z) { return true; } } } y := y + 1 if y > x { x := x + 1 y := 0 } } Notice that without the if x > z {return false}, the program would loop forever on z=2. A TM that always halts for all inputs is called total. Property (2) also makes "Turing machines" a possible input to functions, meaning that we can now make decision problems about the behavior of Turing machines. For example, "does the TM M either accept or reject x within ten steps?"2 IS_DONE_IN_TEN_STEPS(M, x) { for (i = 0; i < 10; i++) { `simulate M(x) for one step` if(`M accepted or rejected`) { return true } } return false } Decidability and Undecidability Now we have all of the pieces to understand our original definition: A property P of strings is said to be decidable if ... there is a total Turing machine that accepts input strings that have property P and rejects those that do not. (220) Let IS_P be the decision problem "Does the input satisfy P"? Then IS_P is decidable if it can be solved by a Turing machine, ie, I can provide some IS_P(x) machine that always accepts if x has property P, and always rejects if x doesn't have property P. If I can't do that, then IS_P is undecidable. IS_SUM(x, y, z) and IS_DONE_IN_TEN_STEPS(M, x) are decidable properties. Is IS_SUM_TWO_PRIMES(z) decidable? Some analysis shows that our corresponding program will either find a solution, or have x>z and return false. So yes, it is decidable. Notice there's an asymmetry here. To prove some property is decidable, I need just to need to find one program that correctly solves it. To prove some property is undecidable, I need to show that any possible program, no matter what it is, doesn't solve it. So with that asymmetry in mind, do are there any undecidable problems? Yes, quite a lot. Recall that Turing machines can accept encodings of other TMs as input, meaning we can write a TM that checks properties of Turing machines. And, by Rice's Theorem, almost every nontrivial semantic3 property of Turing machines is undecidable. The conventional way to prove this is to first find a single undecidable property H, and then use that to bootstrap undecidability of other properties. The canonical and most famous example of an undecidable problem is the Halting problem: "does machine M halt on input i?" It's pretty easy to prove undecidable, and easy to use it to bootstrap other undecidability properties. But again, any nontrivial property is undecidable. Checking a TM is total is undecidable. Checking a TM accepts any inputs is undecidable. Checking a TM solves IS_SUM is undecidable. Etc etc etc. What this doesn't mean in practice I often see the halting problem misconstrued as "it's impossible to tell if a program will halt before running it." This is wrong. The halting problem says that we cannot create an algorithm that, when applied to an arbitrary program, tells us whether the program will halt or not. It is absolutely possible to tell if many programs will halt or not. It's possible to find entire subcategories of programs that are guaranteed to halt. It's possible to say "a program constructed following constraints XYZ is guaranteed to halt." The actual consequence of undecidability is more subtle. If we want to know if a program has property P, undecidability tells us We will have to spend time and mental effort to determine if it has P We may not be successful. This is subtle because we're so used to living in a world where everything's undecidable that we don't really consider what the counterfactual would be like. In such a world there might be no need for Rust, because "does this C program guarantee memory-safety" is a decidable property. The entire field of formal verification could be unnecessary, as we could just check properties of arbitrary programs directly. We could automatically check if a change in a program preserves all existing behavior. Lots of famous math problems could be solved overnight. (This to me is a strong "intuitive" argument for why the halting problem is undecidable: a halt detector can be trivially repurposed as a program optimizer / theorem-prover / bcrypt cracker / chess engine. It's too powerful, so we should expect it to be impossible.) But because we don't live in that world, all of those things are hard problems that take effort and ingenuity to solve, and even then we often fail. To be pendantic, a TM can't do things like "scrape a webpage" or "render a bitmap", but we're only talking about computational decision problems here. ↩ One notation I've adopted in Logic for Programmers is marking abstract sections of pseudocode with backticks. It's really handy! ↩ Nontrivial meaning "at least one TM has this property and at least one TM doesn't have this property". Semantic meaning "related to whether the TM accepts, rejects, or runs forever on a class of inputs". IS_DONE_IN_TEN_STEPS is not a semantic property, as it doesn't tell us anything about inputs that take longer than ten steps. ↩
You're walking down the street and need to pass someone going the opposite way. You take a step left, but they're thinking the same thing and take a step to their right, aka your left. You're still blocking each other. Then you take a step to the right, and they take a step to their left, and you're back to where you started. I've heard this called "walkwarding" Let's model this in TLA+. TLA+ is a formal methods tool for finding bugs in complex software designs, most often involving concurrency. Two people trying to get past each other just also happens to be a concurrent system. A gentler introduction to TLA+'s capabilities is here, an in-depth guide teaching the language is here. The spec ---- MODULE walkward ---- EXTENDS Integers VARIABLES pos vars == <<pos>> Double equals defines a new operator, single equals is an equality check. <<pos>> is a sequence, aka array. you == "you" me == "me" People == {you, me} MaxPlace == 4 left == 0 right == 1 I've gotten into the habit of assigning string "symbols" to operators so that the compiler complains if I misspelled something. left and right are numbers so we can shift position with right - pos. direction == [you |-> 1, me |-> -1] goal == [you |-> MaxPlace, me |-> 1] Init == \* left-right, forward-backward pos = [you |-> [lr |-> left, fb |-> 1], me |-> [lr |-> left, fb |-> MaxPlace]] direction, goal, and pos are "records", or hash tables with string keys. I can get my left-right position with pos.me.lr or pos["me"]["lr"] (or pos[me].lr, as me == "me"). Juke(person) == pos' = [pos EXCEPT ![person].lr = right - @] TLA+ breaks the world into a sequence of steps. In each step, pos is the value of pos in the current step and pos' is the value in the next step. The main outcome of this semantics is that we "assign" a new value to pos by declaring pos' equal to something. But the semantics also open up lots of cool tricks, like swapping two values with x' = y /\ y' = x. TLA+ is a little weird about updating functions. To set f[x] = 3, you gotta write f' = [f EXCEPT ![x] = 3]. To make things a little easier, the rhs of a function update can contain @ for the old value. ![me].lr = right - @ is the same as right - pos[me].lr, so it swaps left and right. ("Juke" comes from here) Move(person) == LET new_pos == [pos[person] EXCEPT !.fb = @ + direction[person]] IN /\ pos[person].fb # goal[person] /\ \A p \in People: pos[p] # new_pos /\ pos' = [pos EXCEPT ![person] = new_pos] The EXCEPT syntax can be used in regular definitions, too. This lets someone move one step in their goal direction unless they are at the goal or someone is already in that space. /\ means "and". Next == \E p \in People: \/ Move(p) \/ Juke(p) I really like how TLA+ represents concurrency: "In each step, there is a person who either moves or jukes." It can take a few uses to really wrap your head around but it can express extraordinarily complicated distributed systems. Spec == Init /\ [][Next]_vars Liveness == <>(pos[me].fb = goal[me]) ==== Spec is our specification: we start at Init and take a Next step every step. Liveness is the generic term for "something good is guaranteed to happen", see here for more. <> means "eventually", so Liveness means "eventually my forward-backward position will be my goal". I could extend it to "both of us eventually reach out goal" but I think this is good enough for a demo. Checking the spec Four years ago, everybody in TLA+ used the toolbox. Now the community has collectively shifted over to using the VSCode extension.1 VSCode requires we write a configuration file, which I will call walkward.cfg. SPECIFICATION Spec PROPERTY Liveness I then check the model with the VSCode command TLA+: Check model with TLC. Unsurprisingly, it finds an error: The reason it fails is "stuttering": I can get one step away from my goal and then just stop moving forever. We say the spec is unfair: it does not guarantee that if progress is always possible, progress will be made. If I want the spec to always make progress, I have to make some of the steps weakly fair. + Fairness == WF_vars(Next) - Spec == Init /\ [][Next]_vars + Spec == Init /\ [][Next]_vars /\ Fairness Now the spec is weakly fair, so someone will always do something. New error: \* First six steps cut 7: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 1, fb |-> 2]] 8: <Juke("me")> pos = [you |-> [lr |-> 0, fb |-> 4], me |-> [lr |-> 0, fb |-> 2]] 9: <Juke("me")> (back to state 7) In this failure, I've successfully gotten past you, and then spend the rest of my life endlessly juking back and forth. The Next step keeps happening, so weak fairness is satisfied. What I actually want is for both my Move and my Juke to both be weakly fair independently of each other. - Fairness == WF_vars(Next) + Fairness == WF_vars(Move(me)) /\ WF_vars(Juke(me)) If my liveness property also specified that you reached your goal, I could instead write \A p \in People: WF_vars(Move(p)) etc. I could also swap the \A with a \E to mean at least one of us is guaranteed to have fair actions, but not necessarily both of us. New error: 3: <Move("me")> pos = [you |-> [lr |-> 0, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 4: <Juke("you")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 5: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 1, fb |-> 3]] 6: <Juke("me")> pos = [you |-> [lr |-> 1, fb |-> 2], me |-> [lr |-> 0, fb |-> 3]] 7: <Juke("you")> (back to state 3) Now we're getting somewhere! This is the original walkwarding situation we wanted to capture. We're in each others way, then you juke, but before either of us can move you juke, then we both juke back. We can repeat this forever, trapped in a social hell. Wait, but doesn't WF(Move(me)) guarantee I will eventually move? Yes, but only if a move is permanently available. In this case, it's not permanently available, because every couple of steps it's made temporarily unavailable. How do I fix this? I can't add a rule saying that we only juke if we're blocked, because the whole point of walkwarding is that we're not coordinated. In the real world, walkwarding can go on for agonizing seconds. What I can do instead is say that Liveness holds as long as Move is strongly fair. Unlike weak fairness, strong fairness guarantees something happens if it keeps becoming possible, even with interruptions. Liveness == + SF_vars(Move(me)) => <>(pos[me].fb = goal[me]) This makes the spec pass. Even if we weave back and forth for five minutes, as long as we eventually pass each other, I will reach my goal. Note we could also by making Move in Fairness strongly fair, which is preferable if we have a lot of different liveness properties to check. A small exercise for the reader There is a presumed invariant that is violated. Identify what it is, write it as a property in TLA+, and show the spec violates it. Then fix it. Answer (in rot13): Gur vainevnag vf "ab gjb crbcyr ner va gur rknpg fnzr ybpngvba". Zbir thnenagrrf guvf ohg Whxr qbrf abg. More TLA+ Exercises I've started work on an exercises repo. There's only a handful of specific problems now but I'm planning on adding more over the summer. learntla is still on the toolbox, but I'm hoping to get it all moved over this summer. ↩
I started writing this early last week but Real Life Stuff happened and now you're getting the first-draft late this week. Warning, unedited thoughts ahead! New Logic for Programmers release! v0.9 is out! This is a big release, with a new cover design, several rewritten chapters, online code samples and much more. See the full release notes at the changelog page, and get the book here! Write the cleverest code you possibly can There are millions of articles online about how programmers should not write "clever" code, and instead write simple, maintainable code that everybody understands. Sometimes the example of "clever" code looks like this (src): # Python p=n=1 exec("p*=n*n;n+=1;"*~-int(input())) print(p%n) This is code-golfing, the sport of writing the most concise code possible. Obviously you shouldn't run this in production for the same reason you shouldn't eat dinner off a Rembrandt. Other times the example looks like this: def is_prime(x): if x == 1: return True return all([x%n != 0 for n in range(2, x)] This is "clever" because it uses a single list comprehension, as opposed to a "simple" for loop. Yes, "list comprehensions are too clever" is something I've read in one of these articles. I've also talked to people who think that datatypes besides lists and hashmaps are too clever to use, that most optimizations are too clever to bother with, and even that functions and classes are too clever and code should be a linear script.1. Clever code is anything using features or domain concepts we don't understand. Something that seems unbearably clever to me might be utterly mundane for you, and vice versa. How do we make something utterly mundane? By using it and working at the boundaries of our skills. Almost everything I'm "good at" comes from banging my head against it more than is healthy. That suggests a really good reason to write clever code: it's an excellent form of purposeful practice. Writing clever code forces us to code outside of our comfort zone, developing our skills as software engineers. Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you [will get excellent debugging practice at exactly the right level required to push your skills as a software engineer] — Brian Kernighan, probably There are other benefits, too, but first let's kill the elephant in the room:2 Don't commit clever code I am proposing writing clever code as a means of practice. Being at work is a job with coworkers who will not appreciate if your code is too clever. Similarly, don't use too many innovative technologies. Don't put anything in production you are uncomfortable with. We can still responsibly write clever code at work, though: Solve a problem in both a simple and a clever way, and then only commit the simple way. This works well for small scale problems where trying the "clever way" only takes a few minutes. Write our personal tools cleverly. I'm a big believer of the idea that most programmers would benefit from writing more scripts and support code customized to their particular work environment. This is a great place to practice new techniques, languages, etc. If clever code is absolutely the best way to solve a problem, then commit it with extensive documentation explaining how it works and why it's preferable to simpler solutions. Bonus: this potentially helps the whole team upskill. Writing clever code... ...teaches simple solutions Usually, code that's called too clever composes several powerful features together — the "not a single list comprehension or function" people are the exception. Josh Comeau's "don't write clever code" article gives this example of "too clever": const extractDataFromResponse = (response) => { const [Component, props] = response; const resultsEntries = Object.entries({ Component, props }); const assignIfValueTruthy = (o, [k, v]) => (v ? { ...o, [k]: v } : o ); return resultsEntries.reduce(assignIfValueTruthy, {}); } What makes this "clever"? I count eight language features composed together: entries, argument unpacking, implicit objects, splats, ternaries, higher-order functions, and reductions. Would code that used only one or two of these features still be "clever"? I don't think so. These features exist for a reason, and oftentimes they make code simpler than not using them. We can, of course, learn these features one at a time. Writing the clever version (but not committing it) gives us practice with all eight at once and also with how they compose together. That knowledge comes in handy when we want to apply a single one of the ideas. I've recently had to do a bit of pandas for a project. Whenever I have to do a new analysis, I try to write it as a single chain of transformations, and then as a more balanced set of updates. ...helps us master concepts Even if the composite parts of a "clever" solution aren't by themselves useful, it still makes us better at the overall language, and that's inherently valuable. A few years ago I wrote Crimes with Python's Pattern Matching. It involves writing horrible code like this: from abc import ABC class NotIterable(ABC): @classmethod def __subclasshook__(cls, C): return not hasattr(C, "__iter__") def f(x): match x: case NotIterable(): print(f"{x} is not iterable") case _: print(f"{x} is iterable") if __name__ == "__main__": f(10) f("string") f([1, 2, 3]) This composes Python match statements, which are broadly useful, and abstract base classes, which are incredibly niche. But even if I never use ABCs in real production code, it helped me understand Python's match semantics and Method Resolution Order better. ...prepares us for necessity Sometimes the clever way is the only way. Maybe we need something faster than the simplest solution. Maybe we are working with constrained tools or frameworks that demand cleverness. Peter Norvig argued that design patterns compensate for missing language features. I'd argue that cleverness is another means of compensating: if our tools don't have an easy way to do something, we need to find a clever way. You see this a lot in formal methods like TLA+. Need to check a hyperproperty? Cast your state space to a directed graph. Need to compose ten specifications together? Combine refinements with state machines. Most difficult problems have a "clever" solution. The real problem is that clever solutions have a skill floor. If normal use of the tool is at difficult 3 out of 10, then basic clever solutions are at 5 out of 10, and it's hard to jump those two steps in the moment you need the cleverness. But if you've practiced with writing overly clever code, you're used to working at a 7 out of 10 level in short bursts, and then you can "drop down" to 5/10. I don't know if that makes too much sense, but I see it happen a lot in practice. ...builds comradery On a few occasions, after getting a pull request merged, I pulled the reviewer over and said "check out this horrible way of doing the same thing". I find that as long as people know they're not going to be subjected to a clever solution in production, they enjoy seeing it! Next week's newsletter will probably also be late, after that we should be back to a regular schedule for the rest of the summer. Mostly grad students outside of CS who have to write scripts to do research. And in more than one data scientist. I think it's correlated with using Jupyter. ↩ If I don't put this at the beginning, I'll get a bajillion responses like "your team will hate you" ↩
More in programming
How a wild side-quest became the source of many of the articles you’ve read—and have come to expect—in this publication
Watch now | Privilege levels, syscall conventions, and how assembly code talks to the Linux kernel
Learn how disposable objects solve test cleanup problems in flat testing. Use TypeScript's using keyword to ensure reliable resource disposal in tests.
Digital Ghosts My mom recently had a free consultation from her electric company to assess replacing her propane water heater with an electric water pump heater. She forwarded the assessment report to me, and I spent some time reviewing and researching the program. Despite living quite far away, I have been surprised by how much […]
In the past few years, social media use has gained a bad reputation. More or less everyone is now aware that TikTok is ruining your attention span, and Twitter is radicalizing you into extreme ideologies. But, despite its enormous popularity amongst technology enthusiasts, there’s not a lot of attention given to Discord. I personally have been using Discord so much for so long that the majority of my social circle is made of people I met through the platform. I even spent two years of my life helping run the infrastructure behind the most popular Bot available on Discord. In this article, I will try to give my perspective on Discord, why I think it is harmful, and what can we do about it. appshunter.io A tale of two book clubs To explain my point of view about Discord, I will compare the experience between joining a real-life book-club, and one that communicates exclusively through Discord. This example is about books, but the same issues would apply if it was a community talking about investing, knitting, or collecting stamps. As Marshall McLuhan showed last century, examining media should be done independently of their content. In the first scenario, we have Bob. Bob enjoys reading books, which is generally a solitary hobby. To break this solitude, Bob decides to join a book club. This book club reunites twice a month in a library where they talk about a new book each time. In the second scenario, we have Alice. Alice also likes books. Alice also wants to meet fellow book lovers. Being a nerd, Alice decides to join a Discord server. This server does not have fixed meeting times. Most users simply use the text channels to talk about what they are reading anytime during the day. Crumbs of Belongingness In Bob’s book club, a session typically lasts an hour. First, the librarian takes some time to welcome everyone and introduce newcomers. After, that each club member talks about the book they were expected to read. They can talk about what they liked and disliked, how the book made them feel, and the chapters they found particularly noteworthy. Once each member had the time to talk about the book, they vote on the book they are going to read for the next date. After the session is concluded, some members move to the nearest coffeehouse to keep talking. During this session of one hour, Bob spent around one hour socializing. The need for belongingness that drove Bob to join this book club is fully met. On Alice’s side, the server is running 24/7. When she opens the app, even if there are sometimes more than 4000 members of her virtual book club online, most of the time, nobody is talking. If she was to spend an entire hour staring at the server she might witness a dozen or so messages. Those messages may be part of small conversations in which Alice can take part. Sadly, most of the time they will be simple uploads of memes, conversations about books she hasn’t read, or messages that do not convey enough meaning to start a conversation. In one hour of constant Discord use, Alice’s need for socializing has not been met. Susan Q Yin The shop is closed Even if Bob’s library is open every day, the book club is only open for a total of two hours a month. It is enough for Bob. Since the book club fulfills his need, he doesn’t want it to be around for longer. He has not even entertained the thought of joining a second book club, because too many meetings would be overwhelming. For Alice, Discord is always available. No matter if she is at home or away, it is always somewhere in her phone or taskbar. At any moment of the day, she might notice a red circle above the icon. It tells her there are unread messages on Discord. When she notices that, she instinctively stops her current task and opens the app to spend a few minutes checking her messages. Most of the time those messages do not lead to a meaningful conversation. Reading a few messages isn’t enough to meet her need for socialization. So, after having scrolled through the messages, she goes back to waiting for the next notification. Each time she interrupts her current task to check Discord, getting back into the flow can take several minutes or not happen at all. This can easily happen dozens of times a day and cost Alice hundreds of hours each month. Book hopping When Bob gets home, the club only requires him to read the next book. He may also choose to read two books at the same time, one for the book club and one from his personal backlog. But, if he were to keep his efforts to a strict minimum, he would still have things to talk about in the next session. Alice wants to be able to talk with other users about the books they are reading. So she starts reading the books that are trending and get mentionned often. The issue is, Discord’s conversation are instantaneous, and instantaneity compresses time. A book isn’t going to stay popular and relevant for two whole weeks, if it manages to be the thing people talk about for two whole days, it’s already great. Alice might try to purchase and read two to three books a week to keep up with the server rythm. Even if books are not terribly expensive, this can turn a 20 $/month hobby into a 200 $/month hobby. In addition to that, if reading a book takes Alice on average 10 hours, reading 3 books a week would be like adding a part-time job to her schedule. All this, while being constantly interrupted by the need to check if new conversations have been posted to the server. visnu deva Quitting Discord If you are in Alice’s situation, the solution is quite simple: use Discord less, ideally not at all. On my side, I’ve left every server that is not relevant to my current work. I blocked discord.com from the DNS of my coding computer (using NextDNS) and uninstalled the app from my phone. This makes the platform only usable as a direct messaging app, exclusively from my gaming device, which I cannot carry with me. I think many people realize the addictive nature of Discord, yet keep using the application all the time. One common objection to quitting the platform, is that there’s a need for an alternative: maybe we should go back to forums, or IRC, or use Matrix, etc… I don’t think any alternative internet chat platform can solve the problem. The real problem is that we want to be able to talk to people without leaving home, at any time, without any inconvenience. But what we should do is exactly that, leave home and join a real book club, one that is not open 24/7, and one where the members take the time to listen to each other. In the software community, we have also been convinced that every one of our projects needs to be on Discord. Every game needs a server, open-source projects offer support on Discord, and a bunch of AI startups even use it as their main user interface. I even made a server for Dice’n Goblins. I don’t think it’s really that useful. I’m not even sure it’s that convenient. Popular games are not popular because they have big servers, they have big servers because they are popular. Successful open-source projects often don’t even have a server.