Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
72
Happy new year, hackfolk! Today, a note about . I thought I was done with them, but it seems they are not done with me. The question at hand is, how do we efficiently and correctly implement ephemerons in a generational collector? ‘s answer turns out to be simple but subtle.ephemeronsWhippet The deal is, I want to be able to evaluate different collector constructions and configurations, and for that I need a performance oracle: a known point in performance space-time against which to compare the unknowns. For example, I want to know how a does relative to the conventional state of the art. To do that, I need to build a conventional system to compare against! If I manage to do a good job building the conventional evacuating nursery, it will have similar performance characteristics as other nurseries in other unlike systems, and thus I can use it as a point of comparison, even to systems I haven’t personally run myself.sticky mark-bit approach to generational collection So I am...
5 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from wingolog

a whippet waypoint

Hey peoples! Tonight, some meta-words. As you know I am fascinated by compilers and language implementations, and I just want to know all the things and implement all the fun stuff: intermediate representations, flow-sensitive source-to-source optimization passes, register allocation, instruction selection, garbage collection, all of that. It started long ago with a combination of curiosity and a hubris to satisfy that curiosity. The usual way to slake such a thirst is structured higher education followed by industry apprenticeship, but for whatever reason my path sent me through a nuclear engineering bachelor’s program instead of computer science, and continuing that path was so distasteful that I noped out all the way to rural Namibia for a couple years. Fast-forward, after 20 years in the programming industry, and having picked up some language implementation experience, a few years ago I returned to garbage collection. I have a good level of language implementation chops but never wrote a memory manager, and Guile’s performance was limited by its use of the Boehm collector. I had been on the lookout for something that could help, and when I learned of it seemed to me that the only thing missing was an appropriate implementation for Guile, and hey I could do that!Immix I started with the idea of an -style interface to a memory manager that was abstract enough to be implemented by a variety of different collection algorithms. This kind of abstraction is important, because in this domain it’s easy to convince oneself that a given algorithm is amazing, just based on vibes; to stay grounded, I find I always need to compare what I am doing to some fixed point of reference. This GC implementation effort grew into , but as it did so a funny thing happened: the as a direct replacement for the Boehm collector maintained mark bits in a side table, which I realized was a suitable substrate for Immix-inspired bump-pointer allocation into holes. I ended up building on that to develop an Immix collector, but without lines: instead each granule of allocation (16 bytes for a 64-bit system) is its own line.MMTkWhippetmark-sweep collector that I prototyped The is funny, because it defines itself as a new class of collector, fundamentally different from the three other fundamental algorithms (mark-sweep, mark-compact, and evacuation). Immix’s are blocks (64kB coarse-grained heap divisions) and lines (128B “fine-grained” divisions); the innovation (for me) is the discipline by which one can potentially defragment a block without a second pass over the heap, while also allowing for bump-pointer allocation. See the papers for the deets!Immix papermark-regionregionsoptimistic evacuation However what, really, are the regions referred to by ? If they are blocks, then the concept is trivial: everyone has a block-structured heap these days. If they are spans of lines, well, how does one choose a line size? As I understand it, Immix’s choice of 128 bytes was to be fine-grained enough to not lose too much space to fragmentation, while also being coarse enough to be eagerly swept during the GC pause.mark-region This constraint was odd, to me; all of the mark-sweep systems I have ever dealt with have had lazy or concurrent sweeping, so the lower bound on the line size to me had little meaning. Indeed, as one reads papers in this domain, it is hard to know the real from the rhetorical; the review process prizes novelty over nuance. Anyway. What if we cranked the precision dial to 16 instead, and had a line per granule? That was the process that led me to Nofl. It is a space in a collector that came from mark-sweep with a side table, but instead uses the side table for bump-pointer allocation. Or you could see it as an Immix whose line size is 16 bytes; it’s certainly easier to explain it that way, and that’s the tack I took in a .recent paper submission to ISMM’25 Wait what! I have a fine job in industry and a blog, why write a paper? Gosh I have meditated on this for a long time and the answers are very silly. Firstly, one of my language communities is Scheme, which was a research hotbed some 20-25 years ago, which means many practitioners—people I would be pleased to call peers—came up through the PhD factories and published many interesting results in academic venues. These are the folks I like to hang out with! This is also what academic conferences are, chances to shoot the shit with far-flung fellows. In Scheme this is fine, my work on Guile is enough to pay the intellectual cover charge, but I need more, and in the field of GC I am not a proven player. So I did an atypical thing, which is to cosplay at being an independent researcher without having first been a dependent researcher, and just solo-submit a paper. Kids: if you see yourself here, just go get a doctorate. It is not easy but I can only think it is a much more direct path to goal. And the result? Well, friends, it is this blog post :) I got the usual assortment of review feedback, from the very sympathetic to the less so, but ultimately people were confused by leading with a comparison to Immix but ending without an evaluation against Immix. This is fair and the paper does not mention that, you know, I don’t have an Immix lying around. To my eyes it was a good paper, an , but, you know, just a try. I’ll try again sometime.80% paper In the meantime, I am driving towards getting Whippet into Guile. I am hoping that sometime next week I will have excised all the uses of the BDW (Boehm GC) API in Guile, which will finally allow for testing Nofl in more than a laboratory environment. Onwards and upwards! whippet regions? paper??!?

a month ago 25 votes
partitioning ambiguous edges in guile

Today, some more words on memory management, on the practicalities of a system with conservatively-traced references. The context is that I have finally started banging into , initially in a configuration that continues to use the conservative Boehm-Demers-Weiser (BDW) collector behind the scene. In that way I can incrementally migrate over all of the uses of the BDW API in Guile to use Whippet API instead, and then if all goes well, I should be able to switch Whippet to use another GC algorithm, probably the . MMC scales better than BDW for multithreaded mutators, and it can eliminate fragmentation via Immix-inspired optimistic evacuation.WhippetGuilemostly-marking collector (MMC) A garbage-collected heap consists of memory, which is a set of addressable locations. An object is a disjoint part of a heap, and is the unit of allocation. A field is memory within an object that may refer to another object by address. Objects are nodes in a directed graph in which each edge is a field containing an object reference. A root is an edge into the heap from outside. Garbage collection reclaims memory from objects that are not reachable from the graph that starts from a set of roots. Reclaimed memory is available for new allocations. In the course of its work, a collector may want to relocate an object, moving it to a different part of the heap. The collector can do so if it can update all edges that refer to the object to instead refer to its new location. Usually a collector arranges things so all edges have the same representation, for example an aligned word in memory; updating an edge means replacing the word’s value with the new address. Relocating objects can improve locality and reduce fragmentation, so it is a good technique to have available. (Sometimes we say evacuate, move, or compact instead of relocate; it’s all the same.) Some collectors allow edges: words in memory whose value may be the address of an object, or might just be scalar data. Ambiguous edges usually come about if a compiler doesn’t precisely record which stack locations or registers contain GC-managed objects. Such ambiguous edges must be traced : the collector adds the object to its idea of the set of live objects, as if the edge were a real reference. This tracing mode isn’t supported by all collectors.ambiguousconservatively Any object that might be the target of an ambiguous edge cannot be relocated by the collector; a collector that allows conservative edges cannot rely on relocation as part of its reclamation strategy. Still, if the collector can know that a given object will not be the referent of an ambiguous edge, relocating it is possible. How can one know that an object is not the target of an ambiguous edge? We have to partition the heap somehow into possibly-conservatively-referenced and definitely-not-conservatively-referenced. The two ways that I know to do this are spatially and temporally. Spatial partitioning means that regardless of the set of root and intra-heap edges, there are some objects that will never be conservatively referenced. This might be the case for a type of object that is “internal” to a language implementation; third-party users that may lack the discipline to precisely track roots might not be exposed to objects of a given kind. Still, link-time optimization tends to weather these boundaries, so I don’t see it as being too reliable over time. Temporal partitioning is more robust: if all ambiguous references come from roots, then if one traces roots before intra-heap edges, then any object not referenced after the roots-tracing phase is available for relocation. So let’s talk about Guile! Guile uses BDW currently, which considers edges to be ambiguous by default. However, given that objects carry type tags, Guile can, with relatively little effort, switch to precisely tracing most edges. “Most”, however, is not sufficient; to allow for relocation, we need to intra-heap ambiguous edges, to confine conservative tracing to the roots-tracing phase.eliminate Conservatively tracing references from C stacks or even from static data sections is not a problem: these are roots, so, fine. Guile currently traces Scheme stacks almost-precisely: its compiler emits stack maps for every call site, which uses liveness analysis to only mark those slots that are Scheme values that will be used in the continuation. However it’s possible that any given frame is marked conservatively. The most common case is when using the BDW collector and a thread is pre-empted by a signal; then its most recent stack frame is likely not at a safepoint and indeed is likely undefined in terms of Guile’s VM. It can also happen if there is a call site within a VM operation, for example to a builtin procedure, if it throws an exception and recurses, or causes GC itself. Also, when are enabled, we can run Scheme between any two Guile VM operations.per-instruction traps So, Guile could change to trace Scheme stacks fully precisely, but this is a lot of work; in the short term we will probably just trace Scheme stacks as roots instead of during the main trace. However, there is one more significant source of ambiguous roots, and that is reified continuation objects. Unlike active stacks, these have to be discovered during a trace and cannot be partitioned out to the root phase. For delimited continuations, these consist of a slice of the Scheme stack. Traversing a stack slice precisely is less problematic than for active stacks, because it isn’t in motion, and it is captured at a known point; but we will have to deal with stack frames that are pre-empted in unexpected locations due to exceptions within builtins. If a stack map is missing, probably the solution there is to reconstruct one using local flow analysis over the bytecode of the stack frame’s function; time-consuming, but it should be robust as we do it elsewhere. Undelimited continuations (those captured by ) contain a slice of the C stack also, for historical reasons, and there we can’t trace it precisely at all. Therefore either we disable relocation if there are any live undelimited continuation objects, or we eagerly pin any object referred to by a freshly captured stack slice.call/cc If you want to follow along with the Whippet-in-Guile work, see the branch in Git. I’ve bumped its version to 4.0 because, well, why the hell not; if it works, it will certainly be worth it. Until next time, happy hacking!wip-whippet problem statement: how to manage ambiguous edges kinds of ambiguous edges in guile fin

2 months ago 12 votes
whippet lab notebook: untagged mallocs, bis

Earlier this weekGuileWhippet But now I do! Today’s note is about how we can support untagged allocations of a few different kinds in Whippet’s .mostly-marking collector Why bother supporting untagged allocations at all? Well, if I had my way, I wouldn’t; I would just slog through Guile and fix all uses to be tagged. There are only a finite number of use sites and I could get to them all in a month or so. The problem comes for uses of from outside itself, in C extensions and embedding programs. These users are loathe to adapt to any kind of change, and garbage-collection-related changes are the worst. So, somehow, we need to support these users if we are not to break the Guile community.scm_gc_malloclibguile The problem with , though, is that it is missing an expression of intent, notably as regards tagging. You can use it to allocate an object that has a tag and thus can be traced precisely, or you can use it to allocate, well, anything else. I think we will have to add an API for the tagged case and assume that anything that goes through is requesting an untagged, conservatively-scanned block of memory. Similarly for : you could be allocating a tagged object that happens to not contain pointers, or you could be allocating an untagged array of whatever. A new API is needed there too for pointerless untagged allocations.scm_gc_mallocscm_gc_mallocscm_gc_malloc_pointerless Recall that the mostly-marking collector can be built in a number of different ways: it can support conservative and/or precise roots, it can trace the heap precisely or conservatively, it can be generational or not, and the collector can use multiple threads during pauses or not. Consider a basic configuration with precise roots. You can make tagged pointerless allocations just fine: the trace function for that tag is just trivial. You would like to extend the collector with the ability to make pointerless allocations, for raw data. How to do this?untagged Consider first that when the collector goes to trace an object, it can’t use bits inside the object to discriminate between the tagged and untagged cases. Fortunately though . Of those 8 bits, 3 are used for the mark (five different states, allowing for future concurrent tracing), two for the , one to indicate whether the object is pinned or not, and one to indicate the end of the object, so that we can determine object bounds just by scanning the metadata byte array. That leaves 1 bit, and we can use it to indicate untagged pointerless allocations. Hooray!the main space of the mostly-marking collector has one metadata byte for each 16 bytes of payloadprecise field-logging write barrier However there is a wrinkle: when Whippet decides the it should evacuate an object, it tracks the evacuation state in the object itself; the embedder has to provide an implementation of a , allowing the collector to detect whether an object is forwarded or not, to claim an object for forwarding, to commit a forwarding pointer, and so on. We can’t do that for raw data, because all bit states belong to the object, not the collector or the embedder. So, we have to set the “pinned” bit on the object, indicating that these objects can’t move.little state machine We could in theory manage the forwarding state in the metadata byte, but we don’t have the bits to do that currently; maybe some day. For now, untagged pointerless allocations are pinned. You might also want to support untagged allocations that contain pointers to other GC-managed objects. In this case you would want these untagged allocations to be scanned conservatively. We can do this, but if we do, it will pin all objects. Thing is, conservative stack roots is a kind of a sweet spot in language run-time design. You get to avoid constraining your compiler, you avoid a class of bugs related to rooting, but you can still support compaction of the heap. How is this, you ask? Well, consider that you can move any object for which we can precisely enumerate the incoming references. This is trivially the case for precise roots and precise tracing. For conservative roots, we don’t know whether a given edge is really an object reference or not, so we have to conservatively avoid moving those objects. But once you are done tracing conservative edges, any live object that hasn’t yet been traced is fair game for evacuation, because none of its predecessors have yet been visited. But once you add conservatively-traced objects back into the mix, you don’t know when you are done tracing conservative edges; you could always discover another conservatively-traced object later in the trace, so you have to pin everything. The good news, though, is that we have gained an easier migration path. I can now shove Whippet into Guile and get it running even before I have removed untagged allocations. Once I have done so, I will be able to allow for compaction / evacuation; things only get better from here. Also as a side benefit, the mostly-marking collector’s heap-conservative configurations are now faster, because we have metadata attached to objects which allows tracing to skip known-pointerless objects. This regains an optimization that BDW has long had via its , used in Guile since time out of mind.GC_malloc_atomic With support for untagged allocations, I think I am finally ready to start getting Whippet into Guile itself. Happy hacking, and see you on the other side! inside and outside on intent on data on slop fin

3 months ago 32 votes
whippet lab notebook: on untagged mallocs

Salutations, populations. Today’s note is more of a work-in-progress than usual; I have been finally starting to look at getting into , and there are some open questions.WhippetGuile I started by taking a look at how Guile uses the ‘s API, to make sure I had all my bases covered for an eventual switch to something that was not BDW. I think I have a good overview now, and have divided the parts of BDW-GC used by Guile into seven categories.Boehm-Demers-Weiser collector Firstly there are the ways in which Guile’s run-time and compiler depend on BDW-GC’s behavior, without actually using BDW-GC’s API. By this I mean principally that we assume that any reference to a GC-managed object from any thread’s stack will keep that object alive. The same goes for references originating in global variables, or static data segments more generally. Additionally, we rely on GC objects not to move: references to GC-managed objects in registers or stacks are valid across a GC boundary, even if those references are outside the GC-traced graph: all objects are pinned. Some of these “uses” are internal to Guile’s implementation itself, and thus amenable to being changed, albeit with some effort. However some escape into the wild via Guile’s API, or, as in this case, as implicit behaviors; these are hard to change or evolve, which is why I am putting my hopes on Whippet’s , which allows for conservative roots.mostly-marking collector Then there are the uses of BDW-GC’s API, not to accomplish a task, but to protect the mutator from the collector: , explicitly enabling or disabling GC, calls to that take BDW-GC’s use of POSIX signals into account, and so on. BDW-GC can stop any thread at any time, between any two instructions; for most users is anodyne, but if ever you use weak references, things start to get really gnarly.GC_call_with_alloc_locksigmask Of course a new collector would have its own constraints, but switching to cooperative instead of pre-emptive safepoints would be a welcome relief from this mess. On the other hand, we will require client code to explicitly mark their threads as inactive during calls in more cases, to ensure that all threads can promptly reach safepoints at all times. Swings and roundabouts? Did you know that the Boehm collector allows for precise tracing? It does! It’s slow and truly gnarly, but when you need precision, precise tracing nice to have. (This is the interface.) Guile uses it to mark Scheme stacks, allowing it to avoid treating unboxed locals as roots. When it loads compiled files, Guile also adds some sliced of the mapped files to the root set. These interfaces will need to change a bit in a switch to Whippet but are ultimately internal, so that’s fine.GC_new_kind What is not fine is that Guile allows C users to hook into precise tracing, notably via . This is not only the wrong interface, not allowing for copying collection, but these functions are just truly gnarly. I don’t know know what to do with them yet; are our external users ready to forgo this interface entirely? We have been working on them over time, but I am not sure.scm_smob_set_mark Weak references, weak maps of various kinds: the implementation of these in terms of BDW’s API is incredibly gnarly and ultimately unsatisfying. We will be able to replace all of these with ephemerons and tables of ephemerons, which are natively supported by Whippet. The same goes with finalizers. The same goes for constructs built on top of finalizers, such as ; we’ll get to reimplement these on top of nice Whippet-supplied primitives. Whippet allows for resuscitation of finalized objects, so all is good here.guardians There is a long list of miscellanea: the interfaces to explicitly trigger GC, to get statistics, to control the number of marker threads, to initialize the GC; these will change, but all uses are internal, making it not a terribly big deal. I should mention one API concern, which is that BDW’s state is all implicit. For example, when you go to allocate, you don’t pass the API a handle which you have obtained for your thread, and which might hold some thread-local freelists; BDW will instead load thread-local variables in its API. That’s not as efficient as it could be and Whippet goes the explicit route, so there is some additional plumbing to do. Finally I should mention the true miscellaneous BDW-GC function: . Guile exposes it via an API, . It was already vestigial and we should just remove it, as it has no sensible semantics or implementation.GC_freescm_gc_free That brings me to what I wanted to write about today, but am going to have to finish tomorrow: the actual allocation routines. BDW-GC provides two, essentially: and . The difference is that “atomic” allocations don’t refer to other GC-managed objects, and as such are well-suited to raw data. Otherwise you can think of atomic allocations as a pure optimization, given that BDW-GC mostly traces conservatively anyway.GC_mallocGC_malloc_atomic From the perspective of a user of BDW-GC looking to switch away, there are two broad categories of allocations, tagged and untagged. Tagged objects have attached metadata bits allowing their type to be inspected by the user later on. This is the happy path! We’ll be able to write a function that takes any object, does a switch on, say, some bits in the first word, dispatching to type-specific tracing code. As long as the object is sufficiently initialized by the time the next safepoint comes around, we’re good, and given cooperative safepoints, the compiler should be able to ensure this invariant.gc_trace_object Then there are untagged allocations. Generally speaking, these are of two kinds: temporary and auxiliary. An example of a temporary allocation would be growable storage used by a C run-time routine, perhaps as an unbounded-sized alternative to . Guile uses these a fair amount, as they compose well with non-local control flow as occurring for example in exception handling.alloca An auxiliary allocation on the other hand might be a data structure only referred to by the internals of a tagged object, but which itself never escapes to Scheme, so you never need to inquire about its type; it’s convenient to have the lifetimes of these values managed by the GC, and when desired to have the GC automatically trace their contents. Some of these should just be folded into the allocations of the tagged objects themselves, to avoid pointer-chasing. Others are harder to change, notably for mutable objects. And the trouble is that for external users of , I fear that we won’t be able to migrate them over, as we don’t know whether they are making tagged mallocs or not.scm_gc_malloc One conventional way to handle untagged allocations is to manage to fit your data into other tagged data structures; V8 does this in many places with instances of FixedArray, for example, and Guile should do more of this. Otherwise, you make new tagged data types. In either case, all auxiliary data should be tagged. I think there may be an alternative, which would be just to support the equivalent of untagged and ; but for that, I am out of time today, so type at y’all tomorrow. Happy hacking!GC_mallocGC_malloc_atomic inventory what is to be done? implicit uses defensive uses precise tracing reachability misc allocation

3 months ago 34 votes
tracepoints: gnarly but worth it

Hey all, quick post today to mention that I added tracing support to the . If the support library for is available when Whippet is compiled, Whippet embedders can visualize the GC process. Like this!Whippet GC libraryLTTng Click above for a full-scale screenshot of the trace explorer processing the with the on a 2.5x heap. Of course no image will have all the information; the nice thing about trace visualizers like is that you can zoom in to sub-microsecond spans to see exactly what is happening, have nice mouseovers and clicky-clickies. Fun times!Perfetto microbenchmarknboyerparallel copying collector Adding tracepoints to a library is not too hard in the end. You need to , which has a file. You need to . Then you have a that includes the header, to generate the code needed to emit tracepoints.pull in the librarylttng-ustdeclare your tracepoints in one of your header filesminimal C filepkg-config Annoyingly, this header file you write needs to be in one of the directories; it can’t be just in the the source directory, because includes it seven times (!!) using (!!!) and because the LTTng file header that does all the computed including isn’t in your directory, GCC won’t find it. It’s pretty ugly. Ugliest part, I would say. But, grit your teeth, because it’s worth it.-Ilttngcomputed includes Finally you pepper your source with tracepoints, which probably you so that you don’t have to require LTTng, and so you can switch to other tracepoint libraries, and so on.wrap in some macro I wrote up a little . It’s not as easy as , which I think is an error. Another ugly point. Buck up, though, you are so close to graphs!guide for Whippet users about how to actually get tracesperf record By which I mean, so close to having to write a Python script to make graphs! Because LTTng writes its logs in so-called Common Trace Format, which as you might guess is not very common. I have a colleague who swears by it, that for him it is the lowest-overhead system, and indeed in my case it has no measurable overhead when trace data is not being collected, but his group uses custom scripts to convert the CTF data that he collects to... (?!?!?!!).GTKWave In my case I wanted to use Perfetto’s UI, so I found a to convert from CTF to the . But, it uses an old version of Babeltrace that wasn’t available on my system, so I had to write a (!!?!?!?!!), probably the most Python I have written in the last 20 years.scriptJSON-based tracing format that Chrome profiling used to usenew script Yes. God I love blinkenlights. As long as it’s low-maintenance going forward, I am satisfied with the tradeoffs. Even the fact that I had to write a script to process the logs isn’t so bad, because it let me get nice nested events, which most stock tracing tools don’t allow you to do. I fixed a small performance bug because of it – a . A win, and one that never would have shown up on a sampling profiler too. I suspect that as I add more tracepoints, more bugs will be found and fixed.worker thread was spinning waiting for a pool to terminate instead of helping out I think the only thing that would be better is if tracepoints were a part of Linux system ABIs – that there would be header files to emit tracepoint metadata in all binaries, that you wouldn’t have to link to any library, and the actual tracing tools would be intermediated by that ABI in such a way that you wouldn’t depend on those tools at build-time or distribution-time. But until then, I will take what I can get. Happy tracing! on adding tracepoints using the thing is it worth it? fin

4 months ago 34 votes

More in programming

Digital hygiene: Emails

Email is your most important online account, so keep it clean.

15 hours ago 4 votes
Building a container orchestrator

Kubernetes is not exactly the most fun piece of technology around. Learning it isn’t easy, and learning the surrounding ecosystem is even harder. Even those who have managed to tame it are still afraid of getting paged by an ETCD cluster corruption, a Kubelet certificate expiration, or the DNS breaking down (and somehow, it’s always the DNS). Samuel Sianipar If you’re like me, the thought of making your own orchestrator has crossed your mind a few times. The result would, of course, be a magical piece of technology that is both simple to learn and wouldn’t break down every weekend. Sadly, the task seems daunting. Kubernetes is a multi-million lines of code project which has been worked on for more than a decade. The good thing is someone wrote a book that can serve as a good starting point to explore the idea of building our own container orchestrator. This book is named “Build an Orchestrator in Go”, written by Tim Boring, published by Manning. The tasks The basic unit of our container orchestrator is called a “task”. A task represents a single container. It contains configuration data, like the container’s name, image and exposed ports. Most importantly, it indicates the container state, and so acts as a state machine. The state of a task can be Pending, Scheduled, Running, Completed or Failed. Each task will need to interact with a container runtime, through a client. In the book, we use Docker (aka Moby). The client will get its configuration from the task and then proceed to pull the image, create the container and start it. When it is time to finish the task, it will stop the container and remove it. The workers Above the task, we have workers. Each machine in the cluster runs a worker. Workers expose an API through which they receive commands. Those commands are added to a queue to be processed asynchronously. When the queue gets processed, the worker will start or stop tasks using the container client. In addition to exposing the ability to start and stop tasks, the worker must be able to list all the tasks running on it. This demands keeping a task database in the worker’s memory and updating it every time a task change’s state. The worker also needs to be able to provide information about its resources, like the available CPU and memory. The book suggests reading the /proc Linux file system using goprocinfo, but since I use a Mac, I used gopsutil. The manager On top of our cluster of workers, we have the manager. The manager also exposes an API, which allows us to start, stop, and list tasks on the cluster. Every time we want to create a new task, the manager will call a scheduler component. The scheduler has to list the workers that can accept more tasks, assign them a score by suitability and return the best one. When this is done, the manager will send the work to be done using the worker’s API. In the book, the author also suggests that the manager component should keep track of every tasks state by performing regular health checks. Health checks typically consist of querying an HTTP endpoint (i.e. /ready) and checking if it returns 200. In case a health check fails, the manager asks the worker to restart the task. I’m not sure if I agree with this idea. This could lead to the manager and worker having differing opinions about a task state. It will also cause scaling issues: the manager workload will have to grow linearly as we add tasks, and not just when we add workers. As far as I know, in Kubernetes, Kubelet (the equivalent of the worker here) is responsible for performing health checks. The CLI The last part of the project is to create a CLI to make sure our new orchestrator can be used without having to resort to firing up curl. The CLI needs to implement the following features: start a worker start a manager run a task in the cluster stop a task get the task status get the worker node status Using cobra makes this part fairly straightforward. It lets you create very modern feeling command-line apps, with properly formatted help commands and easy argument parsing. Once this is done, we almost have a fully functional orchestrator. We just need to add authentication. And maybe some kind of DaemonSet implementation would be nice. And a way to handle mounting volumes…

18 hours ago 3 votes
Bugs I fixed in SumatraPDF

Unexamined life is not worth living said Socrates. I don’t know about that but to become a better, faster, more productive programmer it pays to examine what makes you un-productive. Fixing bugs is one of those un-productive activities. You have to fix them but it would be even better if you didn’t write them in the first place. Therefore it’s good to reflect after fixing a bug. Why did the bug happen? Could I have done something to not write the bug in the first place? If I did write the bug, could I do something to diagnose or fix it faster? This seems like a great idea that I wasn’t doing. Until now. Here’s a random selection of bugs I found and fixed in SumatraPDF, with some reflections. SumatraPDF is a C++ win32 Windows app. It’s a small, fast, open-source, multi-format PDF/eBook/Comic Book reader. To keep the app small and fast I generally avoid using other people’s code. As a result most code is mine and most bugs are mine. Let’s reflect on those bugs. TabWidth doesn’t work A user reported that TabWidth advanced setting doesn’t work in 3.5.2 but worked in 3.4.6. I looked at the code and indeed: the setting was not used anywhere. The fix was to use it. Why did the bug happen? It was a refactoring. I heavily refactored tabs control. Somehow during the rewrite I forgot to use the advanced setting when creating the new tabs control, even though I did write the code to support it in the control. I guess you could call it sloppiness. How could I not write the bug? I could review the changes more carefully. There’s no-one else working on this project so there’s no one else to do additional code reviews. I typically do a code review by myself with webdiff but let’s face it: reviewing changes right after writing them is the worst possible time. I’m biased to think that the code I just wrote is correct and I’m often mentally exhausted. Maybe I should adopt a process when I review changes made yesterday with fresh, un-tired eyes? How could I detect the bug earlier?. 3.5.2 release happened over a year ago. Could I have found it sooner? I knew I was refactoring tabs code. I knew I have a setting for changing the look of tabs. If I connected the dots at the time, I could have tested if the setting still works. I don’t make releases too often. I could do more testing before each release and at the very least verify all advanced settings work as expected. The real problem In retrospect, I shouldn’t have implemented that feature at all. I like Sumatra’s customizability and I think it’s non-trivial contributor to it’s popularity but it took over a year for someone to notice and report that particular bug. It’s clear it’s not a frequently used feature. I implemented it because someone asked and it was easy. I should have said no to that particular request. Fix printing crash by correctly ref-counting engine Bugs can crash your program. Users rarely report crashes even though I did put effort into making it easy. When I a crash happens I have a crash handler that saves the diagnostic info to a file and I show a message box asking users to report the crash and with a press of a button I launch a notepad with diagnostic info and a browser with a page describing how to submit that as a GitHub issue. The other button is to ignore my pleas for help. Most users overwhelmingly choose to ignore. I know that because I also have crash reporting system that sends me a crash report. I get thousands of crash reports for every crash reported by the user. Therefore I’m convinced that the single most impactful thing for making software that doesn’t crash is to have a crash reporting system, look at the crashes and fix them. This is not a perfect system because all I have is a call stack of crashed thread, info about the computer and very limited logs. Nevertheless, sometimes all it takes is a look at the crash call stack and inspection of the code. I saw a crash in printing code which I fixed after some code inspection. The clue was that I was accessing a seemingly destroyed instance of Engine. That was easy to diagnose because I just refactored the code to add ref-counting to Engine so it was easy to connect the dots. I’m not a fan of ref-counting. It’s easy to mess up ref-counting (add too many refs, which leads to memory leaks or too many releases which leads to premature destruction). I’ve seen codebases where developers were crazy in love with ref-counting: every little thing, even objects with obvious lifetimes. In contrast,, that was the first ref-counted object in over 100k loc of SumatraPDF code. It was necessary in this case because I would potentially hand off the object to a printing thread so its lifetime could outlast the lifetime of the window for which it was created. How could I not write the bug? It’s another case of sloppiness but I don’t feel bad. I think the bug existed there before the refactoring and this is the hard part about programming: complex interactions between distant, in space and time, parts of the program. Again, more time spent reviewing the change could have prevented it. As a bonus, I managed to simplify the logic a bit. Writing software is an incremental process. I could feel bad about not writing the perfect code from the beginning but I choose to enjoy the process of finding and implementing improvements. Making the code and the program better over time. Tracking down a chm thumbnail crash Not all crashes can be fixed given information in crash report. I saw a report with crash related to creating a thumbnail crash. I couldn’t figure out why it crashes but I could add more logging to help figure out the issue if it happens again. If it doesn’t happen again, then I win. If it does happen again, I will have more context in the log to help me figure out the issue. Update: I did fix the crash. Fix crash when viewing favorites menu A user reported a crash. I was able to reproduce the crash and fix it. This is the bast case scenario: a bug report with instructions to reproduce a crash. If I can reproduce the crash when running debug build under the debugger, it’s typically very easy to figure out the problem and fix it. In this case I’ve recently implemented an improved version of StrVec (vector of strings) class. It had a compatibility bug compared to previous implementation in that StrVec::InsertAt(0) into an empty vector would crash. Arguably it’s not a correct usage but existing code used it so I’ve added support to InsertAt() at the end of vector. How could I not write the bug? I should have written a unit test (which I did in the fix). I don’t blindly advocate unit tests. Writing tests has a productivity cost but for such low-level, relatively tricky code, unit tests are good. I don’t feel too bad about it. I did write lots of tests for StrVec and arguably this particular usage of InsertAt() was borderline correct so it didn’t occur to me to test that condition. Use after free I saw a crash in crash reports, close to DeleteThumbnailForFile(). I looked at the code: if (!fs->favorites->IsEmpty()) { // only hide documents with favorites gFileHistory.MarkFileInexistent(fs->filePath, true); } else { gFileHistory.Remove(fs); DeleteDisplayState(fs); } DeleteThumbnailForFile(fs->filePath); I immediately spotted suspicious part: we call DeleteDisplayState(fs) and then might use fs->filePath. I looked at DeleteDisplayState and it does, in fact, deletes fs and all its data, including filePath. So we use freed data in a classic use after free bug. The fix was simple: make a copy of fs->filePath before calling DeleteDisplayState and use that. How could I not write the bug? Same story: be more careful when reviewing the changes, test the changes more. If I fail that, crash reporting saves my ass. The bug didn’t last more than a few days and affected only one user. I immediately fixed it and published an update. Summary of being more productive and writing bug free software If many people use your software, a crash reporting system is a must. Crashes happen and few of them are reported by users. Code reviews can catch bugs but they are also costly and reviewing your own code right after you write it is not a good time. You’re tired and biased to think your code is correct. Maybe reviewing the code a day after, with fresh eyes, would be better. I don’t know, I haven’t tried it.

yesterday 1 votes
An Analysis of Links From The White House’s “Wire” Website

A little while back I heard about the White House launching their version of a Drudge Report style website called White House Wire. According to Axios, a White House official said the site’s purpose was to serve as “a place for supporters of the president’s agenda to get the real news all in one place”. So a link blog, if you will. As a self-professed connoisseur of websites and link blogs, this got me thinking: “I wonder what kind of links they’re considering as ‘real news’ and what they’re linking to?” So I decided to do quick analysis using Quadratic, a programmable spreadsheet where you can write code and return values to a 2d interface of rows and columns. I wrote some JavaScript to: Fetch the HTML page at whitehouse.gov/wire Parse it with cheerio Select all the external links on the page Return a list of links and their headline text In a few minutes I had a quick analysis of what kind of links were on the page: This immediately sparked my curiosity to know more about the meta information around the links, like: If you grouped all the links together, which sites get linked to the most? What kind of interesting data could you pull from the headlines they’re writing, like the most frequently used words? What if you did this analysis, but with snapshots of the website over time (rather than just the current moment)? So I got to building. Quadratic today doesn’t yet have the ability for your spreadsheet to run in the background on a schedule and append data. So I had to look elsewhere for a little extra functionality. My mind went to val.town which lets you write little scripts that can 1) run on a schedule (cron), 2) store information (blobs), and 3) retrieve stored information via their API. After a quick read of their docs, I figured out how to write a little script that’ll run once a day, scrape the site, and save the resulting HTML page in their key/value storage. From there, I was back to Quadratic writing code to talk to val.town’s API and retrieve my HTML, parse it, and turn it into good, structured data. There were some things I had to do, like: Fine-tune how I select all the editorial links on the page from the source HTML (I didn’t want, for example, to include external links to the White House’s social pages which appear on every page). This required a little finessing, but I eventually got a collection of links that corresponded to what I was seeing on the page. Parse the links and pull out the top-level domains so I could group links by domain occurrence. Create charts and graphs to visualize the structured data I had created. Selfish plug: Quadratic made this all super easy, as I could program in JavaScript and use third-party tools like tldts to do the analysis, all while visualizing my output on a 2d grid in real-time which made for a super fast feedback loop! Once I got all that done, I just had to sit back and wait for the HTML snapshots to begin accumulating! It’s been about a month and a half since I started this and I have about fifty days worth of data. The results? Here’s the top 10 domains that the White House Wire links to (by occurrence), from May 8 to June 24, 2025: youtube.com (133) foxnews.com (72) thepostmillennial.com (67) foxbusiness.com (66) breitbart.com (64) x.com (63) reuters.com (51) truthsocial.com (48) nypost.com (47) dailywire.com (36) From the links, here’s a word cloud of the most commonly recurring words in the link headlines: “trump” (343) “president” (145) “us” (134) “big” (131) “bill” (127) “beautiful” (113) “trumps” (92) “one” (72) “million” (57) “house” (56) The data and these graphs are all in my spreadsheet, so I can open it up whenever I want to see the latest data and re-run my script to pull the latest from val.town. In response to the new data that comes in, the spreadsheet automatically parses it, turn it into links, and updates the graphs. Cool! If you want to check out the spreadsheet — sorry! My API key for val.town is in it (“secrets management” is on the roadmap). But I created a duplicate where I inlined the data from the API (rather than the code which dynamically pulls it) which you can check out here at your convenience. Email · Mastodon · Bluesky

2 days ago 2 votes
AmigaGuide Reference Library

As I slowly but surely work towards the next release of my setcmd project for the Amiga (see the 68k branch for the gory details and my total noob-like C flailing around), I’ve made heavy use of documentation in the AmigaGuide format. Despite it’s age, it’s a great Amiga-native format and there’s a wealth of great information out there for things like the C API, as well as language guides and tutorials for tools like the Installer utility - and the AmigaGuide markup syntax itself. The only snag is, I had to have access to an Amiga (real or emulated), or install one of the various viewer programs on my laptops. Because like many, I spend a lot of time in a web browser and occasionally want to check something on my mobile phone, this is less than convenient. Fortunately, there’s a great AmigaGuideJS online viewer which renders AmigaGuide format documents using Javascript. I’ve started building up a collection of useful developer guides and other files in my own reference library so that I can access this documentation whenever I’m not at my Amiga or am coding in my “modern” dev environment. It’s really just for my own personal use, but I’ll be adding to it whenever I come across a useful piece of documentation so I hope it’s of some use to others as well! And on a related note, I now have a “unified” code-base so that SetCmd now builds and runs on 68k-based OS 3.x systems as well as OS 4.x PPC systems like my X5000. I need to: Tidy up my code and fix all the “TODO” stuff Update the Installer to run on OS 3.x systems Update the documentation Build a new package and upload to Aminet/OS4Depot Hopefully I’ll get that done in the next month or so. With the pressures of work and family life (and my other hobbies), progress has been a lot slower these last few years but I’m still really enjoying working on Amiga code and it’s great to have a fun personal project that’s there for me whenever I want to hack away at something for the sheer hell of it. I’ve learned a lot along the way and the AmigaOS is still an absolute joy to develop for. I even brought my X5000 to the most recent Kickstart Amiga User Group BBQ/meetup and had a fun day working on the code with fellow Amigans and enjoying some classic gaming & demos - there was also a MorphOS machine there, which I think will be my next target as the codebase is slowly becoming more portable. Just got to find some room in the “retro cave” now… This stuff is addictive :)

2 days ago 4 votes