Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
21
My latest love letter to Linux has been published. It's called Omarchy, and it's an opinionated setup of the Arch Linux distribution and the Hyprland tiling window manager. With everything configured out-of-the-box to give you exactly the same setup that I now run every day. My Platonic ideal of what a developer environment should look like. It's not for everyone, though. Arch has a reputation for being difficult, but while I think that's vastly overstated, I still think it's fair to say that Ubuntu is an easier landing for someone new to Linux. And that's why this exists as a sister project to Omakub — my opinionated setup for Ubuntu — and not a replacement of it. Because I do think that Hyprland deserves its reputation of being difficult! Not because the core tiling window manager is hard, but because it comes incredibly bare-boned in the box. You have to figure out everything yourself. Even how to get a lock screen or idle timing or a menu bar or bluetooth setting or... you get...
a week ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from David Heinemeier Hansson

Get in losers, we're moving to Linux!

I've never seen so many developers curious about leaving the Mac and giving Linux a go. Something has really changed in the last few years. Maybe Linux just got better? Maybe powerful mini PCs made it easier? Maybe Apple just fumbled their relationship with developers one too many times? Maybe it's all of it. But whatever the reason, the vibe shift is noticeable. This is why the future is so hard to predict! People have been joking about "The Year of Linux on the Desktop" since the late 90s. Just like self-driving cars were supposed to be a thing back in 2017. And now, in the year of our Lord 2025, it seems like we're getting both! I also wouldn't underestimate the cultural influence of a few key people. PewDiePie sharing his journey into Arch and Hyprland with his 110 million followers is important. ThePrimeagen moving to Arch and Hyprland is important. Typecraft teaching beginners how to build an Arch and Hyprland setup from scratch is important (and who I just spoke to about Omarchy). Gabe Newell's Steam Deck being built on Arch and pushing Proton to over 20,000 compatible Linux games is important. You'll notice a trend here, which is that Arch Linux, a notoriously "difficult" distribution, is at the center of much of this new engagement. Despite the fact that it's been around since 2003! There's nothing new about Arch, but there's something new about the circles of people it's engaging. I've put Arch at the center of Omarchy too. Originally just because that was what Hyprland recommended. Then, after living with the wonders of 90,000+ packages on the community-driven AUR package repository, for its own sake. It's really good! But while Arch (and Hyprland) are having a moment amongst a new crowd, it's also "just" Linux at its core. And Linux really is the star of the show. The perfect, free, and open alternative that was just sitting around waiting for developers to finally have had enough of the commercial offerings from Apple and Microsoft. Now obviously there's a taste of "new vegan sees vegans everywhere" here. You start talking about Linux, and you'll hear from folks already in the community or those considering the move too. It's easy to confuse what you'd like to be true with what is actually true. And it's definitely true that Linux is still a niche operating system on the desktop. Even among developers. Apple and Microsoft sit on the lion's share of the market share. But the mind share? They've been losing that fast. The window is open for a major shift to happen. First gradually, then suddenly. It feels like morning in Linux land!

4 days ago 7 votes
The parental dead end of consent morality

Consent morality is the idea that there are no higher values or virtues than allowing consenting adults to do whatever they please. As long as they're not hurting anyone, it's all good, and whoever might have a problem with that is by definition a bigot.  This was the overriding morality I picked up as a child of the 90s. From TV, movies, music, and popular culture. Fly your freak! Whatever feels right is right! It doesn't seem like much has changed since then. What a moral dead end. I first heard the term consent morality as part of Louise Perry's critique of the sexual revolution. That in the context of hook-up culture, situationships, and falling birthrates, we have to wrestle with the fact that the sexual revolution — and it's insistence that, say, a sky-high body count mustn't be taboo — has led society to screwy dating market in the internet age that few people are actually happy with. But the application of consent morality that I actually find even more troubling is towards parenthood. As is widely acknowledged now, we're in a bit of a birthrate crisis all over the world. And I think consent morality can help explain part of it. I was reminded of this when I posted a cute video of a young girl so over-the-moon excited for her dad getting off work to argue that you'd be crazy to trade that for some nebulous concept of "personal freedom". Predictably, consent morality immediately appeared in the comments: Some people just don't want children and that's TOTALLY OKAY and you're actually bad for suggesting they should! No. It's the role of a well-functioning culture to guide people towards The Good Life. Not force, but guide. Nobody wants to be convinced by the morality police at the pointy end of a bayonet, but giving up on the whole idea of objective higher values and virtues is a nihilistic and cowardly alternative. Humans are deeply mimetic creatures. It's imperative that we celebrate what's good, true, and beautiful, such that these ideals become collective markers for morality. Such that they guide behavior. I don't think we've done a good job at doing that with parenthood in the last thirty-plus years. In fact, I'd argue we've done just about everything to undermine the cultural appeal of the simple yet divine satisfaction of child rearing (and by extension maligned the square family unit with mom, dad, and a few kids). Partly out of a coordinated campaign against the family unit as some sort of trad (possibly fascist!) identity marker in a long-waged culture war, but perhaps just as much out of the banal denigration of how boring and limiting it must be to carry such simple burdens as being a father or a mother in modern society. It's no wonder that if you incessantly focus on how expensive it is, how little sleep you get, how terrifying the responsibility is, and how much stress is involved with parenthood that it doesn't seem all that appealing! This is where Jordan Peterson does his best work. In advocating for the deeper meaning of embracing burden and responsibility. In diagnosing that much of our modern malaise does not come from carrying too much, but from carrying too little. That a myopic focus on personal freedom — the nights out, the "me time", the money saved — is a spiritual mirage: You think you want the paradise of nothing ever being asked of you, but it turns out to be the hell of nobody ever needing you. Whatever the cause, I think part of the cure is for our culture to reembrace the virtue and the value of parenthood without reservation. To stop centering the margins and their pathologies. To start centering the overwhelming middle where most people make for good parents, and will come to see that role as the most meaningful part they've played in their time on this planet. But this requires giving up on consent morality as the only way to find our path to The Good Life. It involves taking a moral stance that some ways of living are better than other ways of living for the broad many. That parenthood is good, that we need more children both for the literal survival of civilization, but also for the collective motivation to guard against the bad, the false, and the ugly. There's more to life than what you feel like doing in the moment. The worst thing in the world is not to have others ask more of you. Giving up on the total freedom of the unmoored life is a small price to pay for finding the deeper meaning in a tethered relationship with continuing a bloodline that's been drawn for hundreds of thousands of years before it came to you. You're never going to be "ready" before you take the leap. If you keep waiting, you'll wait until the window has closed, and all you see is regret. Summon a bit of bravery, don't overthink it, and do your part for the future of the world. It's 2.1 or bust, baby!

a week ago 10 votes
Self-driving is finally happening

I still remember how the car industry got all excited back in 2017 about how steering wheels would soon be obsolete. Every concept car then was a living room on wheels, seats facing inwards. The self-driving revolution was imminent, they said. Well, it wasn't... but now it actually is! Humans have a hard time with scenarios like this. If you promise them the moon in eight months, but don't end up delivering until eight years later, most will justifiably be skeptical that it's actually here — even in the face of gushing anecdotes and video evidence. That's the problem with delayed promises. So when Jason told me Tesla's self-driving tech was finally ready and real, I was indeed skeptical. I tried FSD as late as last year, and I didn't enjoy it much. Impressive in many ways, but too jerky. Too many interventions. How much could it really have improved in nine months or so? A lot, it turns out. We started the drive from Jason's house, and I watched him not once touch the pedals or steering wheel while we drove half an hour to the other end of town. Then repeated the feat on the way back. But that wasn't even the most impressive part. What really blew my mind was how dramatically better the fluidity of driving with FSD has become. His new Model Y anticipated the red light with the manners of a drives-for-the-queen-level chauffeur. And the way it knew exactly how to slow down to prevent a jerky movement when taking an incline into an elevated parking lot? Sublime. Elon, that son of a bitch, seems to have done it again! Proven everyone wrong. Proven me wrong. The self-driving dream has flipped from vaporware to credible near-term reality. All without LiDAR. AI really delivering on this one.

a week ago 11 votes
Gender and Sexuality Alliances in primary school at CIS?!

The Copenhagen International School is a wonderful private school located in the North Harbor of the city. It's home to over 900 students from around the world. This is where ambassadors, international executives, and other expats send their kids to get a great education in English while stationed in Denmark. As a result, it's perhaps the most diverse, inclusive school in all of Copenhagen. Lovely. What's less lovely is the fact that CIS seems to have caught some of the same gender-ideology obsession that has ravaged many schools in America. We thought Copenhagen would offer a respite from the woke nonsense that's been plaguing California — where some schools in our social circle ended up with a quarter or more of the student body identifying as trans or gender nonconformative — but it seems ideological contagions travel as fast as airplanes these days. It started last week, when the primary school, which includes kindergarten, declared its intention to spend every morning meeting for the entire week focused on gender dysphoria, transgenderism, they/them pronoun protocols, and coloring pride flags. That just sounded a bit odd and a bit much at first, but after reviewing the associated material, it actually looked downright devious. Just look at this example: Draw yourself in the mirror, then adorn it with trans colors? And the guiding example is a boy who sees himself as a girl? As you can imagine, many parents at the school were mortified by the idea of their children participating in this kind of overt indoctrination activities, and some of them let the school know. That's when the revisions started rolling out.  First, the program was revised to no longer apply to kindergarten and first grade, just second through fifth. Then the "draw yourself in the mirror and use trans colors to decorate it" activity was pulled from the program. Then the schedule was reduced from all week to just a single session this Monday while the rest of the material is being "reconsidered". And that's where it stands today. But that's not all. After talking to a number of other parents, I learned that CIS has other highly objectionable programs in this sphere. Like "Gender and Sexuality Alliances" where primary school students in G3-5, meaning kids as young as eight, are invited to join in lunch and recess meetings to talk more about gender, sexuality, and how to become a good ally to the 2SLGBTQIA+ community. According to one parent I spoke to (who's considering pulling their kids out over this), CIS hasn't wanted to disclose all specifics about the staff conducting these lunch and recess meetings with the children. Because while it's billed as "student led" on their website, the sessions are actually facilitated by CIS staff on campus.  I've asked the same question of the school administration, including what qualifications these individuals might have, and have not received an answer either. But ultimately, it shouldn't even matter, because this shouldn't even be happening! There's simply no responsible explanation for having kids as young as eight, or even as old as 11, in lunch and recess meetings with CIS staff to discuss gender and sexuality on school campus. It's preposterous, if not outright creepy. The school's mission is no cover either. The commitment to an inclusive school does not offer a license to indulge in this kind of overt indoctrination or inappropriate lunch meetings where minors discuss gender and sexuality with school staff. And it has to stop. CIS, like any other school, should not be a subsidiary of any specific interest organization. We don't want our kids to get their information about climate change from either Extinction Rebellion or fossil-fuel lobbyists. We expect our school to stay politically neutral on the international conflicts, like the one in Gaza. In higher grades where these topics are appropriate, they should be discussed in a context that also includes things like the Cass Review and the recent UK Supreme Court ruling. It's the same reason Copenhagen Pride Week saw a massive loss of sponsorship after trying to cajole major companies into a position on Gaza last year. Novo, Maersk, Google, and many others rejected this organization (and they're not returning this year either) for their partisan politics. It's bizarre that those same companies now have the children of their employees programmed by this organization's agenda at school.  CIS needs to return to its high-level mission of focusing on giving kids an excellent education, teaching them objectively about the world, and upholding general standards for kindness and caring. Not coloring partisan flags during school programs, not facilitating inappropriate meeting forums about gender and sexuality between staff and children.

a month ago 15 votes

More in programming

My first year since coming back to Linux

<![CDATA[It has been a year since I set up my System76 Merkaat with Linux Mint. In July of 2024 I migrated from ChromeOS and the Merkaat has been my daily driver on the desktop. A year later I have nothing major to report, which is the point. Despite the occasional unplanned reinstallation I have been enjoying the stability of Linux and just using the PC. This stability finally enabled me to burn bridges with mainstream operating systems and fully embrace Linux and open systems. I'm ready to handle the worst and get back to work. Just a few years ago the frustration of troubleshooting a broken system would have made me seriously consider the switch to a proprietary solution. But a year of regular use, with an ordinary mix of quiet moments and glitches, gave me the confidence to stop worrying and learn to love Linux. linux a href="https://remark.as/p/journal.paoloamoroso.com/my-first-year-since-coming-back-to-linux"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

19 hours ago 3 votes
Overanalyzing a minor quirk of Espressif’s reset circuit

The mystery In the previous article, I briefly mentioned a slight difference between the ESP-Prog and the reproduced circuit, when it comes to EN: Focusing on EN, it looks like the voltage level goes back to 3.3V much faster on the ESP-Prog than on the breadboard circuit. The grid is horizontally spaced at 2ms, so … Continue reading Overanalyzing a minor quirk of Espressif’s reset circuit → The post Overanalyzing a minor quirk of Espressif’s reset circuit appeared first on Quentin Santos.

20 hours ago 2 votes
What can agents actually do?

There’s a lot of excitement about what AI (specifically the latest wave of LLM-anchored AI) can do, and how AI-first companies are different from the prior generations of companies. There are a lot of important and real opportunities at hand, but I find that many of these conversations occur at such an abstract altitude that they’re a bit too abstract. Sort of like saying that your company could be much better if you merely adopted software. That’s certainly true, but it’s not a particularly helpful claim. This post is an attempt to concisely summarize how AI agents work, apply that summary to a handful of real-world use cases for AI, and make the case that the potential of AI agents is equivalent to the potential of this generation of AI. By the end of this writeup, my hope is that you’ll be well-armed to have a concrete discussion about how LLMs and agents could change the shape of your company. How do agents work? At its core, using an LLM is an API call that includes a prompt. For example, you might call Anthropic’s /v1/message with a prompt: How should I adopt LLMs in my company? That prompt is used to fill the LLM’s context window, which conditions the model to generate certain kinds of responses. This is the first important thing that agents can do: use an LLM to evaluate a context window and get a result. Prompt engineering, or context engineering as it’s being called now, is deciding what to put into the context window to best generate the responses you’re looking for. For example, In-Context Learning (ICL) is one form of context engineering, where you supply a bunch of similar examples before asking a question. If I want to determine if a transaction is fraudulent, then I might supply a bunch of prior transactions and whether they were, or were not, fraudulent as ICL examples. Those examples make generating the correct answer more likely. However, composing the perfect context window is very time intensive, benefiting from techniques like metaprompting to improve your context. Indeed, the human (or automation) creating the initial context might not know enough to do a good job of providing relevant context. For example, if you prompt, Who is going to become the next mayor of New York City?, then you are unsuited to include the answer to that question in your prompt. To do that, you would need to already know the answer, which is why you’re asking the question to begin with! This is where we see model chat experiences from OpenAI and Anthropic use web search to pull in context that you likely don’t have. If you ask a question about the new mayor of New York, they use a tool to retrieve web search results, then add the content of those searches to your context window. This is the second important thing that agents can do: use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response. However, it’s important to clarify how “tool usage” actually works. An LLM does not actually call a tool. (You can skim OpenAI’s function calling documentation if you want to see a specific real-world example of this.) Instead there is a five-step process to calling tools that can be a bit counter-intuitive: The program designer that calls the LLM API must also define a set of tools that the LLM is allowed to suggest using. Every API call to the LLM includes that defined set of tools as options that the LLM is allowed to recommend The response from the API call with defined functions is either: Generated text as any other call to an LLM might provide A recommendation to call a specific tool with a specific set of parameters, e.g. an LLM that knows about a get_weather tool, when prompted about the weather in Paris, might return this response: [{ "type": "function_call", "name": "get_weather", "arguments": "{\"location\":\"Paris, France\"}" }] The program that calls the LLM API then decides whether and how to honor that requested tool use. The program might decide to reject the requested tool because it’s been used too frequently recently (e.g. rate limiting), it might check if the associated user has permission to use the tool (e.g. maybe it’s a premium only tool), it might check if the parameters match the user’s role-based permissions as well (e.g. the user can check weather, but only admin users are allowed to check weather in France). If the program does decide to call the tool, it invokes the tool, then calls the LLM API with the output of the tool appended to the prior call’s context window. The important thing about this loop is that the LLM itself can still only do one interesting thing: taking a context window and returning generated text. It is the broader program, which we can start to call an agent at this point, that calls tools and sends the tools’ output to the LLM to generate more context. What’s magical is that LLMs plus tools start to really improve how you can generate context windows. Instead of having to have a very well-defined initial context window, you can use tools to inject relevant context to improve the initial context. This brings us to the third important thing that agents can do: they manage flow control for tool usage. Let’s think about three different scenarios: Flow control via rules has concrete rules about how tools can be used. Some examples: it might only allow a given tool to be used once in a given workflow (or a usage limit of a tool for each user, etc) it might require that a human-in-the-loop approves parameters over a certain value (e.g. refunds more than $100 require human approval) it might run a generated Python program and return the output to analyze a dataset (or provide error messages if it fails) apply a permission system to tool use, restricting who can use which tools and which parameters a given user is able to use (e.g. you can only retrieve your own personal data) a tool to escalate to a human representative can only be called after five back and forths with the LLM agent Flow control via statistics can use statistics to identify and act on abnormal behavior: if the size of a refund is higher than 99% of other refunds for the order size, you might want to escalate to a human if a user has used a tool more than 99% of other users, then you might want to reject usage for the rest of the day it might escalate to a human representative if tool parameters are more similar to prior parameters that required escalation to a human agent LLMs themselves absolutely cannot be trusted. Anytime you rely on an LLM to enforce something important, you will fail. Using agents to manage flow control is the mechanism that makes it possible to build safe, reliable systems with LLMs. Whenever you find yourself dealing with an unreliable LLM-based system, you can always find a way to shift the complexity to a tool to avoid that issue. As an example, if you want to do algebra with an LLM, the solution is not asking the LLM to directly perform algebra, but instead providing a tool capable of algebra to the LLM, and then relying on the LLM to call that tool with the proper parameters. At this point, there is one final important thing that agents do: they are software programs. This means they can do anything software can do to build better context windows to pass on to LLMs for generation. This is an infinite category of tasks, but generally these include: Building general context to add to context window, sometimes thought of as maintaining memory Initiating a workflow based on an incoming ticket in a ticket tracker, customer support system, etc Periodically initiating workflows at a certain time, such as hourly review of incoming tickets Alright, we’ve now summarized what AI agents can do down to four general capabilities. Recapping a bit, those capabilities are: Use an LLM to evaluate a context window and get a result Use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response Manage flow control for tool usage via rules or statistical analysis Agents are software programs, and can do anything other software programs do Armed with these four capabilities, we’ll be able to think about the ways we can, and cannot, apply AI agents to a number of opportunities. Use Case 1: Customer Support Agent One of the first scenarios that people often talk about deploying AI agents is customer support, so let’s start there. A typical customer support process will have multiple tiers of agents who handle increasingly complex customer problems. So let’s set a goal of taking over the easiest tier first, with the goal of moving up tiers over time as we show impact. Our approach might be: Allow tickets (or support chats) to flow into an AI agent Provide a variety of tools to the agent to support: Retrieving information about the user: recent customer support tickets, account history, account state, and so on Escalating to next tier of customer support Refund a purchase (almost certainly implemented as “refund purchase” referencing a specific purchase by the user, rather than “refund amount” to prevent scenarios where the agent can be fooled into refunding too much) Closing the user account on request Include customer support guidelines in the context window, describe customer problems, map those problems to specific tools that should be used to solve the problems Flow control rules that ensure all calls escalate to a human if not resolved within a certain time period, number of back-and-forth exchanges, if they run into an error in the agent, and so on. These rules should be both rules-based and statistics-based, ensuring that gaps in your rules are neither exploitable nor create a terrible customer experience Review agent-customer interactions for quality control, making improvements to the support guidelines provided to AI agents. Initially you would want to review every interaction, then move to interactions that lead to unusual outcomes (e.g. escalations to human) and some degree of random sampling Review hourly, then daily, and then weekly metrics of agent performance Based on your learnings from the metric reviews, you should set baselines for alerts which require more immediate response. For example, if a new topic comes up frequently, it probably means a serious regression in your product or process, and it requires immediate review rather than periodical review. Note that even when you’ve moved “Customer Support to AI agents”, you still have: a tier of human agents dealing with the most complex calls humans reviewing the periodic performance statistics humans performing quality control on AI agent-customer interactions You absolutely can replace each of those downstream steps (reviewing performance statistics, etc) with its own AI agent, but doing that requires going through the development of an AI product for each of those flows. There is a recursive process here, where over time you can eliminate many human components of your business, in exchange for increased fragility as you have more tiers of complexity. The most interesting part of complex systems isn’t how they work, it’s how they fail, and agent-driven systems will fail occasionally, as all systems do, very much including human-driven ones. Applied with care, the above series of actions will work successfully. However, it’s important to recognize that this is building an entire software pipeline, and then learning to operate that software pipeline in production. These are both very doable things, but they are meaningful work, turning customer support leadership into product managers and requiring an engineering team building and operating the customer support agent. Use Case 2: Triaging incoming bug reports When an incident is raised within your company, or when you receive a bug report, the first problem of the day is determining how severe the issue might be. If it’s potentially quite severe, then you want on-call engineers immediately investigating; if it’s certainly not severe, then you want to triage it in a less urgent process of some sort. It’s interesting to think about how an AI agent might support this triaging workflow. The process might work as follows: Pipe all created incidents and all created tickets to this agent for review. Expose these tools to the agent: Open an incident Retrieve current incidents Retrieve recently created tickets Retrieve production metrics Retrieve deployment logs Retrieve feature flag change logs Toggle known-safe feature flags Propose merging an incident with another for human approval Propose merging a ticket with another ticket for human approval Redundant LLM providers for critical workflows. If the LLM provider’s API is unavailable, retry three times over ten seconds, then resort to using a second model provider (e.g. Anthropic first, if unavailable try OpenAI), and then finally create an incident that the triaging mechanism is unavailable. For critical workflows, we can’t simply assume the APIs will be available, because in practice all major providers seem to have monthly availability issues. Merge duplicates. When a ticket comes in, first check ongoing incidents and recently created tickets for potential duplicates. If there is a probable duplicate, suggest merging the ticket or incident with the existing issue and exit the workflow. Assess impact. If production statistics are severely impacted, or if there is a new kind of error in production, then this is likely an issue that merits quick human review. If it’s high priority, open an incident. If it’s low priority, create a ticket. Propose cause. Now that the incident has been sized, switch to analyzing the potential causes of the incident. Look at the code commits in recent deploys and suggest potential issues that might have caused the current error. In some cases this will be obvious (e.g. spiking errors with a traceback of a line of code that changed recently), and in other cases it will only be proximity in time. Apply known-safe feature flags. Establish an allow list of known safe feature flags that the system is allowed to activate itself. For example, if there are expensive features that are safe to disable, it could be allowed to disable them, e.g. restricting paginating through deeper search results when under load might be a reasonable tradeoff between stability and user experience. Defer to humans. At this point, rely on humans to drive incident, or ticket, remediation to completion. Draft initial incident report. If an incident was opened, the agent should draft an initial incident report including the timeline, related changes, and the human activities taken over the course of the incident. This report should then be finalized by the human involved in the incident. Run incident review. Your existing incident review process should take the incident review and determine how to modify your systems, including the triaging agent, to increase reliability over time. Safeguard to reenable feature flags. Since we now have an agent disabling feature flags, we also need to add a periodic check (agent-driven or otherwise) to reenable the “known safe” feature flags if there isn’t an ongoing incident to avoid accidentally disabling them for long periods of time. This is another AI agent that will absolutely work as long as you treat it as a software product. In this case, engineering is likely the product owner, but it will still require thoughtful iteration to improve its behavior over time. Some of the ongoing validation to make this flow work includes: The role of humans in incident response and review will remain significant, merely aided by this agent. This is especially true in the review process, where an agent cannot solve the review process because it’s about actively learning what to change based on the incident. You can make a reasonable argument that an agent could decide what to change and then hand that specification off to another agent to implement it. Even today, you can easily imagine low risk changes (e.g. a copy change) being automatically added to a ticket for human approval. Doing this for more complex, or riskier changes, is possible but requires an extraordinary degree of care and nuance: it is the polar opposite of the idea of “just add agents and things get easy.” Instead, enabling that sort of automation will require immense care in constraining changes to systems that cannot expose unsafe behavior. For example, one startup I know has represented their domain logic in a domain-specific language (DSL) that can be safely generated by an LLM, and are able to represent many customer-specific features solely through that DSL. Expanding the list of known-safe feature flags to make incidents remediable. To do this widely will require enforcing very specific requirements for how software is developed. Even doing this narrowly will require changes to ensure the known-safe feature flags remain safe as software is developed. Periodically reviewing incident statistics over time to ensure mean-time-to-resolution (MTTR) is decreasing. If the agent is truly working, this should decrease. If the agent isn’t driving a reduction in MTTR, then something is rotten in the details of the implementation. Even a very effective agent doesn’t relieve the responsibility of careful system design. Rather, agents are a multiplier on the quality of your system design: done well, agents can make you significantly more effective. Done poorly, they’ll only amplify your problems even more widely. Do AI Agents Represent Entirety of this Generation of AI? If you accept my definition that AI agents are any combination of LLMs and software, then I think it’s true that there’s not much this generation of AI can express that doesn’t fit this definition. I’d readily accept the argument that LLM is too narrow a term, and that perhaps foundational model would be a better term. My sense is that this is a place where frontier definitions and colloquial usage have deviated a bit. Closing thoughts LLMs and agents are powerful mechanisms. I think they will truly change how products are designed and how products work. An entire generation of software makers, and company executives, are in the midst of learning how these tools work. Software isn’t magic, it’s very logical, but what it can accomplish is magical. The same goes for agents and LLMs. The more we can accelerate that learning curve, the better for our industry.

17 hours ago 2 votes
Can tinygrad win?

This is not going to be a cakewalk like self driving cars. Most of comma’s competition is now out of business, taking billions and billions of dollars with it. Re: Tesla and FSD, we always expected Tesla to have the lead, but it’s not a winner take all market, it will look more like iOS vs Android. comma has been around for 10 years, is profitable, and is now growing rapidly. In self driving, most of the competition wasn’t even playing the right game. This isn’t how it is for ML frameworks. tinygrad’s competition is playing the right game, open source, and run by some quite smart people. But this is my second startup, so hopefully taking a bit more risk is appropriate. For comma to win, all it would take is people in 2016 being wrong about LIDAR, mapping, end to end, and hand coding, which hopefully we all agree now that they were. For tinygrad to win, it requires something much deeper to be wrong about software development in general. As it stands now, tinygrad is 14556 lines. Line count is not a perfect proxy for complexity, but when you have differences of multiple orders of magnitude, it might mean something. I asked ChatGPT to estimate the lines of code in PyTorch, JAX, and MLIR. JAX = 400k MLIR = 950k PyTorch = 3300k They range from one to two orders of magnitude off. And this isn’t even including all the libraries and drivers the other frameworks rely on, CUDA, cuBLAS, Triton, nccl, LLVM, etc…. tinygrad includes every single piece of code needed to drive an AMD RDNA3 GPU except for LLVM, and we plan to remove LLVM in a year or two as well. But so what? What does line count matter? One hypothesis is that tinygrad is only smaller because it’s not speed or feature competitive, and that if and when it becomes competitive, it will also be that many lines. But I just don’t think that’s true. tinygrad is already feature competitive, and for speed, I think the bitter lesson also applies to software. When you look at the machine learning ecosystem, you realize it’s just the same problems over and over again. The problem of multi machine, multi GPU, multi SM, multi ALU, cross machine memory scheduling, DRAM scheduling, SRAM scheduling, register scheduling, it’s all the same underlying problem at different scales. And yet, in all the current ecosystems, there are completely different codebases and libraries at each scale. I don’t think this stands. I suspect there is a simple formulation of the problem underlying all of the scheduling. Of course, this problem will be in NP and hard to optimize, but I’m betting the bitter lesson wins here. The goal of the tinygrad project is to abstract away everything except the absolute core problem in the cleanest way possible. This is why we need to replace everything. A model for the hardware is simple compared to a model for CUDA. If we succeed, tinygrad will not only be the fastest NN framework, but it will be under 25k lines all in, GPT-5 scale training job to MMIO on the PCIe bus! Here are the steps to get there: Expose the underlying search problem spanning several orders of magnitude. Due to the execution of neural networks not being data dependent, this problem is very amenable to search. Make sure your formulation is simple and complete. Fully capture all dimensions of the search space. The optimization goal is simple, run faster. Apply the state of the art in search. Burn compute. Use LLMs to guide. Use SAT solvers. Reinforcement learning. It doesn’t matter, there’s no way to cheat this goal. Just see if it runs faster. If this works, not only do we win with tinygrad, but hopefully people begin to rethink software in general. Of course, it’s a big if, this isn’t like comma where it was hard to lose. But if it wins… The main thing to watch is development speed. Our bet has to be that tinygrad’s development speed is outpacing the others. We have the AMD contract to train LLaMA 405B as fast as NVIDIA due in a year, let’s see if we succeed.

21 hours ago 2 votes
Do You Even Personalize, Bro?

There’s a video on YouTube from “Technology Connections” — who I’ve never heard of or watched until now — called Algorithms are breaking how we think. I learned of this video from Gedeon Maheux of The Iconfactory fame. Speaking in the context of why they made Tapestry, he said the ideas in this video would be their manifesto. So I gave it a watch. Generally speaking, the video asks: Does anyone care to have a self-directed experience online, or with a computer more generally? I'm not sure how infrequently we’re actually deciding for ourselves these days [how we decide what we want to see, watch, and do on the internet] Ironically we spend more time than ever on computing devices, but less time than ever curating our own experiences with them. Which — again ironically — is the inverse of many things in our lives. Generally speaking, the more time we spend with something, the more we invest in making it our own — customizing it to our own idiosyncrasies. But how much time do you spend curating, customizing, and personalizing your digital experience? (If you’re reading this in an RSS reader, high five!) I’m not talking about “I liked that post, or saved that video, so the algorithm is personalizing things for me”. Do you know what to get yourself more of? Do you know where to find it? Do you even ask yourself these questions? “That sounds like too much work” you might say. And you’re right, it is work. As the guy in the video says: I'm one of those weirdos who think the most rewarding things in life take effort Me too. Email · Mastodon · Bluesky

9 hours ago 1 votes