Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
46
Yesterday I was thinking about how long it took me to get a colorscheme in my terminal that I was mostly happy with (SO MANY YEARS), and it made me wonder what about terminal colours made it so hard. So I asked people on Mastodon what problems they’ve run into with colours in the terminal, and I got a ton of interesting responses! Let’s talk about some of the problems and a few possible ways to fix them. problem 1: blue on black One of the top complaints was “blue on black is hard to read”. Here’s an example of that: if I open Terminal.app, set the background to black, and run ls, the directories are displayed in a blue that isn’t that easy to read: To understand why we’re seeing this blue, let’s talk about ANSI colours! the 16 ANSI colours Your terminal has 16 numbered colours – black, red, green, yellow, blue, magenta, cyan, white, and “bright” version of each of those. Programs can use them by printing out an “ANSI escape code” – for example if you want to see each of the 16...
5 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Julia Evans

Standards for ANSI escape codes

Hello! Today I want to talk about ANSI escape codes. For a long time I was vaguely aware of ANSI escape codes (“that’s how you make text red in the terminal and stuff”) but I had no real understanding of where they were supposed to be defined or whether or not there were standards for them. I just had a kind of vague “there be dragons” feeling around them. While learning about the terminal this year, I’ve learned that: ANSI escape codes are responsible for a lot of usability improvements in the terminal (did you know there’s a way to copy to your system clipboard when SSHed into a remote machine?? It’s an escape code called OSC 52!) They aren’t completely standardized, and because of that they don’t always work reliably. And because they’re also invisible, it’s extremely frustrating to troubleshoot escape code issues. So I wanted to put together a list for myself of some standards that exist around escape codes, because I want to know if they have to feel unreliable and frustrating, or if there’s a future where we could all rely on them with more confidence. what’s an escape code? ECMA-48 xterm control sequences terminfo should programs use terminfo? is there a “single common set” of escape codes? some reasons to use terminfo some more documents/standards why I think this is interesting what’s an escape code? Have you ever pressed the left arrow key in your terminal and seen ^[[D? That’s an escape code! It’s called an “escape code” because the first character is the “escape” character, which is usually written as ESC, \x1b, \E, \033, or ^[. Escape codes are how your terminal emulator communicates various kinds of information (colours, mouse movement, etc) with programs running in the terminal. There are two kind of escape codes: input codes which your terminal emulator sends for keypresses or mouse movements that don’t fit into Unicode. For example “left arrow key” is ESC[D, “Ctrl+left arrow” might be ESC[1;5D, and clicking the mouse might be something like ESC[M :3. output codes which programs can print out to colour text, move the cursor around, clear the screen, hide the cursor, copy text to the clipboard, enable mouse reporting, set the window title, etc. Now let’s talk about standards! ECMA-48 The first standard I found relating to escape codes was ECMA-48, which was originally published in 1976. ECMA-48 does two things: Define some general formats for escape codes (like “CSI” codes, which are ESC[ + something and “OSC” codes, which are ESC] + something) Define some specific escape codes, like how “move the cursor to the left” is ESC[D, or “turn text red” is ESC[31m. In the spec, the “cursor left” one is called CURSOR LEFT and the one for changing colours is called SELECT GRAPHIC RENDITION. The formats are extensible, so there’s room for others to define more escape codes in the future. Lots of escape codes that are popular today aren’t defined in ECMA-48: for example it’s pretty common for terminal applications (like vim, htop, or tmux) to support using the mouse, but ECMA-48 doesn’t define escape codes for the mouse. xterm control sequences There are a bunch of escape codes that aren’t defined in ECMA-48, for example: enabling mouse reporting (where did you click in your terminal?) bracketed paste (did you paste that text or type it in?) OSC 52 (which terminal applications can use to copy text to your system clipboard) I believe (correct me if I’m wrong!) that these and some others came from xterm, are documented in XTerm Control Sequences, and have been widely implemented by other terminal emulators. This list of “what xterm supports” is not a standard exactly, but xterm is extremely influential and so it seems like an important document. terminfo In the 80s (and to some extent today, but my understanding is that it was MUCH more dramatic in the 80s) there was a huge amount of variation in what escape codes terminals actually supported. To deal with this, there’s a database of escape codes for various terminals called “terminfo”. It looks like the standard for terminfo is called X/Open Curses, though you need to create an account to view that standard for some reason. It defines the database format as well as a C library interface (“curses”) for accessing the database. For example you can run this bash snippet to see every possible escape code for “clear screen” for all of the different terminals your system knows about: for term in $(toe -a | awk '{print $1}') do echo $term infocmp -1 -T "$term" 2>/dev/null | grep 'clear=' | sed 's/clear=//g;s/,//g' done On my system (and probably every system I’ve ever used?), the terminfo database is managed by ncurses. should programs use terminfo? I think it’s interesting that there are two main approaches that applications take to handling ANSI escape codes: Use the terminfo database to figure out which escape codes to use, depending on what’s in the TERM environment variable. Fish does this, for example. Identify a “single common set” of escape codes which works in “enough” terminal emulators and just hardcode those. Some examples of programs/libraries that take approach #2 (“don’t use terminfo”) include: kakoune python-prompt-toolkit linenoise libvaxis chalk I got curious about why folks might be moving away from terminfo and I found this very interesting and extremely detailed rant about terminfo from one of the fish maintainers, which argues that: [the terminfo authors] have done a lot of work that, at the time, was extremely important and helpful. My point is that it no longer is. I’m not going to do it justice so I’m not going to summarize it, I think it’s worth reading. is there a “single common set” of escape codes? I was just talking about the idea that you can use a “common set” of escape codes that will work for most people. But what is that set? Is there any agreement? I really do not know the answer to this at all, but from doing some reading it seems like it’s some combination of: The codes that the VT100 supported (though some aren’t relevant on modern terminals) what’s in ECMA-48 (which I think also has some things that are no longer relevant) What xterm supports (though I’d guess that not everything in there is actually widely supported enough) and maybe ultimately “identify the terminal emulators you think your users are going to use most frequently and test in those”, the same way web developers do when deciding which CSS features are okay to use I don’t think there are any resources like Can I use…? or Baseline for the terminal though. (in theory terminfo is supposed to be the “caniuse” for the terminal but it seems like it often takes 10+ years to add new terminal features when people invent them which makes it very limited) some reasons to use terminfo I also asked on Mastodon why people found terminfo valuable in 2025 and got a few reasons that made sense to me: some people expect to be able to use the TERM environment variable to control how programs behave (for example with TERM=dumb), and there’s no standard for how that should work in a post-terminfo world even though there’s less variation between terminal emulators than there was in the 80s, there’s far from zero variation: there are graphical terminals, the Linux framebuffer console, the situation you’re in when connecting to a server via its serial console, Emacs shell mode, and probably more that I’m missing there is no one standard for what the “single common set” of escape codes is, and sometimes programs use escape codes which aren’t actually widely supported enough some more documents/standards A few more documents and standards related to escape codes, in no particular order: the Linux console_codes man page documents escape codes that Linux supports how the VT 100 handles escape codes & control sequences the kitty keyboard protocol OSC 8 for links in the terminal (and notes on adoption) A summary of ANSI standards from tmux this terminal features reporting specification from iTerm sixel graphics why I think this is interesting I sometimes see people saying that the unix terminal is “outdated”, and since I love the terminal so much I’m always curious about what incremental changes might make it feel less “outdated”. Maybe if we had a clearer standards landscape (like we do on the web!) it would be easier for terminal emulator developers to build new features and for authors of terminal applications to more confidently adopt those features so that we can all benefit from them and have a richer experience in the terminal. Obviously standardizing ANSI escape codes is not easy (ECMA-48 was first published almost 50 years ago and we’re still not there!). But the situation with HTML/CSS/JS used to be extremely bad too and now it’s MUCH better, so maybe there’s hope.

a week ago 6 votes
How to add a directory to your PATH

I was talking to a friend about how to add a directory to your PATH today. It’s something that feels “obvious” to me since I’ve been using the terminal for a long time, but when I searched for instructions for how to do it, I actually couldn’t find something that explained all of the steps – a lot of them just said “add this to ~/.bashrc”, but what if you’re not using bash? What if your bash config is actually in a different file? And how are you supposed to figure out which directory to add anyway? So I wanted to try to write down some more complete directions and mention some of the gotchas I’ve run into over the years. Here’s a table of contents: step 1: what shell are you using? step 2: find your shell’s config file a note on bash’s config file step 3: figure out which directory to add step 3.1: double check it’s the right directory step 4: edit your shell config step 5: restart your shell problems: problem 1: it ran the wrong program problem 2: the program isn’t being run from your shell notes: a note on source a note on fish_add_path step 1: what shell are you using? If you’re not sure what shell you’re using, here’s a way to find out. Run this: ps -p $$ -o pid,comm= if you’re using bash, it’ll print out 97295 bash if you’re using zsh, it’ll print out 97295 zsh if you’re using fish, it’ll print out an error like “In fish, please use $fish_pid” ($$ isn’t valid syntax in fish, but in any case the error message tells you that you’re using fish, which you probably already knew) Also bash is the default on Linux and zsh is the default on Mac OS (as of 2024). I’ll only cover bash, zsh, and fish in these directions. step 2: find your shell’s config file in zsh, it’s probably ~/.zshrc in bash, it might be ~/.bashrc, but it’s complicated, see the note in the next section in fish, it’s probably ~/.config/fish/config.fish (you can run echo $__fish_config_dir if you want to be 100% sure) a note on bash’s config file Bash has three possible config files: ~/.bashrc, ~/.bash_profile, and ~/.profile. If you’re not sure which one your system is set up to use, I’d recommend testing this way: add echo hi there to your ~/.bashrc Restart your terminal If you see “hi there”, that means ~/.bashrc is being used! Hooray! Otherwise remove it and try the same thing with ~/.bash_profile You can also try ~/.profile if the first two options don’t work. (there are a lot of elaborate flow charts out there that explain how bash decides which config file to use but IMO it’s not worth it and just testing is the fastest way to be sure) step 3: figure out which directory to add Let’s say that you’re trying to install and run a program called http-server and it doesn’t work, like this: $ npm install -g http-server $ http-server bash: http-server: command not found How do you find what directory http-server is in? Honestly in general this is not that easy – often the answer is something like “it depends on how npm is configured”. A few ideas: Often when setting up a new installer (like cargo, npm, homebrew, etc), when you first set it up it’ll print out some directions about how to update your PATH. So if you’re paying attention you can get the directions then. Sometimes installers will automatically update your shell’s config file to update your PATH for you Sometimes just Googling “where does npm install things?” will turn up the answer Some tools have a subcommand that tells you where they’re configured to install things, like: Homebrew: brew --prefix (and then append /bin/ and /sbin/ to what that gives you) Node/npm: npm config get prefix (then append /bin/) Go: go env | grep GOPATH (then append /bin/) asdf: asdf info | grep ASDF_DIR (then append /bin/ and /shims/) step 3.1: double check it’s the right directory Once you’ve found a directory you think might be the right one, make sure it’s actually correct! For example, I found out that on my machine, http-server is in ~/.npm-global/bin. I can make sure that it’s the right directory by trying to run the program http-server in that directory like this: $ ~/.npm-global/bin/http-server Starting up http-server, serving ./public It worked! Now that you know what directory you need to add to your PATH, let’s move to the next step! step 4: edit your shell config Now we have the 2 critical pieces of information we need: Which directory you’re trying to add to your PATH (like ~/.npm-global/bin/) Where your shell’s config is (like ~/.bashrc, ~/.zshrc, or ~/.config/fish/config.fish) Now what you need to add depends on your shell: bash and zsh instructions: Open your shell’s config file, and add a line like this: export PATH=$PATH:~/.npm-global/bin/ (obviously replace ~/.npm-global/bin with the actual directory you’re trying to add) fish instructions: In fish, the syntax is different: set PATH $PATH ~/.npm-global/bin (in fish you can also use fish_add_path, some notes on that further down) step 5: restart your shell Now, an extremely important step: updating your shell’s config won’t take effect if you don’t restart it! Two ways to do this: open a new terminal (or terminal tab), and maybe close the old one so you don’t get confused Run bash to start a new shell (or zsh if you’re using zsh, or fish if you’re using fish) I’ve found that both of these usually work fine. And you should be done! Try running the program you were trying to run and hopefully it works now. If not, here are a couple of problems that you might run into: problem 1: it ran the wrong program If the wrong version of a is program running, you might need to add the directory to the beginning of your PATH instead of the end. For example, on my system I have two versions of python3 installed, which I can see by running which -a: $ which -a python3 /usr/bin/python3 /opt/homebrew/bin/python3 The one your shell will use is the first one listed. If you want to use the Homebrew version, you need to add that directory (/opt/homebrew/bin) to the beginning of your PATH instead, by putting this in your shell’s config file (it’s /opt/homebrew/bin/:$PATH instead of the usual $PATH:/opt/homebrew/bin/) export PATH=/opt/homebrew/bin/:$PATH or in fish: set PATH ~/.cargo/bin $PATH problem 2: the program isn’t being run from your shell All of these directions only work if you’re running the program from your shell. If you’re running the program from an IDE, from a GUI, in a cron job, or some other way, you’ll need to add the directory to your PATH in a different way, and the exact details might depend on the situation. in a cron job Some options: use the full path to the program you’re running, like /home/bork/bin/my-program put the full PATH you want as the first line of your crontab (something like PATH=/bin:/usr/bin:/usr/local/bin:….). You can get the full PATH you’re using in your shell by running echo "PATH=$PATH". I’m honestly not sure how to handle it in an IDE/GUI because I haven’t run into that in a long time, will add directions here if someone points me in the right direction. a note on source When you install cargo (Rust’s installer) for the first time, it gives you these instructions for how to set up your PATH, which don’t mention a specific directory at all. This is usually done by running one of the following (note the leading DOT): . "$HOME/.cargo/env" # For sh/bash/zsh/ash/dash/pdksh source "$HOME/.cargo/env.fish" # For fish The idea is that you add that line to your shell’s config, and their script automatically sets up your PATH (and potentially other things) for you. This is pretty common (Homebrew and asdf have something similar), and there are two ways to approach this: Just do what the tool suggests (add . "$HOME/.cargo/env" to your shell’s config) Figure out which directories the script they’re telling you to run would add to your PATH, and then add those manually. Here’s how I’d do that: Run . "$HOME/.cargo/env" in my shell (or the fish version if using fish) Run echo "$PATH" | tr ':' '\n' | grep cargo to figure out which directories it added See that it says /Users/bork/.cargo/bin and shorten that to ~/.cargo/bin Add the directory ~/.cargo/bin to PATH (with the directions in this post) I don’t think there’s anything wrong with doing what the tool suggests (it might be the “best way”!), but personally I usually use the second approach because I prefer knowing exactly what configuration I’m changing. a note on fish_add_path fish has a handy function called fish_add_path that you can run to add a directory to your PATH like this: fish_add_path /some/directory This will add the directory to your PATH, and automatically update all running fish shells with the new PATH. You don’t have to update your config at all! This is EXTREMELY convenient, but one downside (and the reason I’ve personally stopped using it) is that if you ever need to remove the directory from your PATH a few weeks or months later because maybe you made a mistake, it’s kind of hard to do (there are instructions in this comments of this github issue though). that’s all Hopefully this will help some people. Let me know (on Mastodon or Bluesky) if you there are other major gotchas that have tripped you up when adding a directory to your PATH, or if you have questions about this post!

4 weeks ago 13 votes
Some terminal frustrations

A few weeks ago I ran a terminal survey (you can read the results here) and at the end I asked: What’s the most frustrating thing about using the terminal for you? 1600 people answered, and I decided to spend a few days categorizing all the responses. Along the way I learned that classifying qualitative data is not easy but I gave it my best shot. I ended up building a custom tool to make it faster to categorize everything. As with all of my surveys the methodology isn’t particularly scientific. I just posted the survey to Mastodon and Twitter, ran it for a couple of days, and got answers from whoever happened to see it and felt like responding. Here are the top categories of frustrations! I think it’s worth keeping in mind while reading these comments that 40% of people answering this survey have been using the terminal for 21+ years 95% of people answering the survey have been using the terminal for at least 4 years These comments aren’t coming from total beginners. Here are the categories of frustrations! The number in brackets is the number of people with that frustration. Honestly I don’t how how interesting this is to other people – I’m just writing this up for myself because I’m trying to write a zine about the terminal and I wanted to get a sense for what people are having trouble with. remembering syntax (115) People talked about struggles remembering: the syntax for CLI tools like awk, jq, sed, etc the syntax for redirects keyboard shortcuts for tmux, text editing, etc One example comment: There are just so many little “trivia” details to remember for full functionality. Even after all these years I’ll sometimes forget where it’s 2 or 1 for stderr, or forget which is which for > and >>. switching terminals is hard (91) People talked about struggling with switching systems (for example home/work computer or when SSHing) and running into: OS differences in keyboard shortcuts (like Linux vs Mac) systems which don’t have their preferred text editor (“no vim” or “only vim”) different versions of the same command (like Mac OS grep vs GNU grep) no tab completion a shell they aren’t used to (“the subtle differences between zsh and bash”) as well as differences inside the same system like pagers being not consistent with each other (git diff pagers, other pagers). One example comment: I got used to fish and vi mode which are not available when I ssh into servers, containers. color (85) Lots of problems with color, like: programs setting colors that are unreadable with a light background color finding a colorscheme they like (and getting it to work consistently across different apps) color not working inside several layers of SSH/tmux/etc not liking the defaults not wanting color at all and struggling to turn it off This comment felt relatable to me: Getting my terminal theme configured in a reasonable way between the terminal emulator and fish (I did this years ago and remember it being tedious and fiddly and now feel like I’m locked into my current theme because it works and I dread touching any of that configuration ever again). keyboard shortcuts (84) Half of the comments on keyboard shortcuts were about how on Linux/Windows, the keyboard shortcut to copy/paste in the terminal is different from in the rest of the OS. Some other issues with keyboard shortcuts other than copy/paste: using Ctrl-W in a browser-based terminal and closing the window the terminal only supports a limited set of keyboard shortcuts (no Ctrl-Shift-, no Super, no Hyper, lots of ctrl- shortcuts aren’t possible like Ctrl-,) the OS stopping you from using a terminal keyboard shortcut (like by default Mac OS uses Ctrl+left arrow for something else) issues using emacs in the terminal backspace not working (2) other copy and paste issues (75) Aside from “the keyboard shortcut for copy and paste is different”, there were a lot of OTHER issues with copy and paste, like: copying over SSH how tmux and the terminal emulator both do copy/paste in different ways dealing with many different clipboards (system clipboard, vim clipboard, the “middle click” keyboard on Linux, tmux’s clipboard, etc) and potentially synchronizing them random spaces added when copying from the terminal pasting multiline commands which automatically get run in a terrifying way wanting a way to copy text without using the mouse discoverability (55) There were lots of comments about this, which all came down to the same basic complaint – it’s hard to discover useful tools or features! This comment kind of summed it all up: How difficult it is to learn independently. Most of what I know is an assorted collection of stuff I’ve been told by random people over the years. steep learning curve (44) A lot of comments about it generally having a steep learning curve. A couple of example comments: After 15 years of using it, I’m not much faster than using it than I was 5 or maybe even 10 years ago. and That I know I could make my life easier by learning more about the shortcuts and commands and configuring the terminal but I don’t spend the time because it feels overwhelming. history (42) Some issues with shell history: history not being shared between terminal tabs (16) limits that are too short (4) history not being restored when terminal tabs are restored losing history because the terminal crashed not knowing how to search history One example comment: It wasted a lot of time until I figured it out and still annoys me that “history” on zsh has such a small buffer; I have to type “history 0” to get any useful length of history. bad documentation (37) People talked about: documentation being generally opaque lack of examples in man pages programs which don’t have man pages Here’s a representative comment: Finding good examples and docs. Man pages often not enough, have to wade through stack overflow scrollback (36) A few issues with scrollback: programs printing out too much data making you lose scrollback history resizing the terminal messes up the scrollback lack of timestamps GUI programs that you start in the background printing stuff out that gets in the way of other programs’ outputs One example comment: When resizing the terminal (in particular: making it narrower) leads to broken rewrapping of the scrollback content because the commands formatted their output based on the terminal window width. “it feels outdated” (33) Lots of comments about how the terminal feels hampered by legacy decisions and how users often end up needing to learn implementation details that feel very esoteric. One example comment: Most of the legacy cruft, it would be great to have a green field implementation of the CLI interface. shell scripting (32) Lots of complaints about POSIX shell scripting. There’s a general feeling that shell scripting is difficult but also that switching to a different less standard scripting language (fish, nushell, etc) brings its own problems. Shell scripting. My tolerance to ditch a shell script and go to a scripting language is pretty low. It’s just too messy and powerful. Screwing up can be costly so I don’t even bother. more issues Some more issues that were mentioned at least 10 times: (31) inconsistent command line arguments: is it -h or help or –help? (24) keeping dotfiles in sync across different systems (23) performance (e.g. “my shell takes too long to start”) (20) window management (potentially with some combination of tmux tabs, terminal tabs, and multiple terminal windows. Where did that shell session go?) (17) generally feeling scared/uneasy (“The debilitating fear that I’m going to do some mysterious Bad Thing with a command and I will have absolutely no idea how to fix or undo it or even really figure out what happened”) (16) terminfo issues (“Having to learn about terminfo if/when I try a new terminal emulator and ssh elsewhere.”) (16) lack of image support (sixel etc) (15) SSH issues (like having to start over when you lose the SSH connection) (15) various tmux/screen issues (for example lack of integration between tmux and the terminal emulator) (15) typos & slow typing (13) the terminal getting messed up for various reasons (pressing Ctrl-S, cating a binary, etc) that’s all! I’m not going to make a lot of commentary on these results, but here are a couple of categories that feel related to me: remembering syntax & history (often the thing you need to remember is something you’ve run before!) discoverability & the learning curve (the lack of discoverability is definitely a big part of what makes it hard to learn)

a month ago 15 votes
What's involved in getting a "modern" terminal setup?

Hello! Recently I ran a terminal survey and I asked people what frustrated them. One person commented: There are so many pieces to having a modern terminal experience. I wish it all came out of the box. My immediate reaction was “oh, getting a modern terminal experience isn’t that hard, you just need to….”, but the more I thought about it, the longer the “you just need to…” list got, and I kept thinking about more and more caveats. So I thought I would write down some notes about what it means to me personally to have a “modern” terminal experience and what I think can make it hard for people to get there. what is a “modern terminal experience”? Here are a few things that are important to me, with which part of the system is responsible for them: multiline support for copy and paste: if you paste 3 commands in your shell, it should not immediatly run them all! That’s scary! (shell, terminal emulator) infinite shell history: if I run a command in my shell, it should be saved forever, not deleted after 500 history entries or whatever. Also I want commands to be saved to the history immediately when I run them, not only when I exit the shell session (shell) a useful prompt: I can’t live without having my current directory and current git branch in my prompt (shell) 24-bit colour: this is important to me because I find it MUCH easier to theme neovim with 24-bit colour support than in a terminal with only 256 colours (terminal emulator) clipboard integration between vim and my operating system so that when I copy in Firefox, I can just press p in vim to paste (text editor, maybe the OS/terminal emulator too) good autocomplete: for example commands like git should have command-specific autocomplete (shell) having colours in ls (shell config) a terminal theme I like: I spend a lot of time in my terminal, I want it to look nice and I want its theme to match my terminal editor’s theme. (terminal emulator, text editor) automatic terminal fixing: If a programs prints out some weird escape codes that mess up my terminal, I want that to automatically get reset so that my terminal doesn’t get messed up (shell) keybindings: I want Ctrl+left arrow to work (shell or application) being able to use the scroll wheel in programs like less: (terminal emulator and applications) There are a million other terminal conveniences out there and different people value different things, but those are the ones that I would be really unhappy without. how I achieve a “modern experience” My basic approach is: use the fish shell. Mostly don’t configure it, except to: set the EDITOR environment variable to my favourite terminal editor alias ls to ls --color=auto use any terminal emulator with 24-bit colour support. In the past I’ve used GNOME Terminal, Terminator, and iTerm, but I’m not picky about this. I don’t really configure it other than to choose a font. use neovim, with a configuration that I’ve been very slowly building over the last 9 years or so (the last time I deleted my vim config and started from scratch was 9 years ago) use the base16 framework to theme everything some “out of the box” options for a “modern” experience What if you want a nice experience, but don’t want to spend a lot of time on configuration? Figuring out how to configure vim in a way that I was satisfied with really did take me like ten years, which is a long time! My best ideas for how to get a reasonable terminal experience with minimal config are: shell: either fish or zsh with oh-my-zsh terminal emulator: almost anything with 24-bit colour support, for example all of these are popular: linux: GNOME Terminal, Konsole, Terminator, xfce4-terminal mac: iTerm (Terminal.app doesn’t have 256-colour support) cross-platform: kitty, alacritty, wezterm, or ghostty shell config: set the EDITOR environment variable to your favourite terminal text editor maybe alias ls to ls --color=auto text editor: this is a tough one, maybe micro or helix? I haven’t used either of them seriously but they both seem like very cool projects and I think it’s amazing that you can just use all the usual GUI editor commands (Ctrl-C to copy, Ctrl-V to paste, Ctrl-A to select all) in micro and they do what you’d expect. I would probably try switching to helix except that retraining my vim muscle memory seems way too hard and I have a working vim config already. Personally I wouldn’t use xterm, rxvt, or Terminal.app as a terminal emulator, because I’ve found in the past that they’re missing core features (like 24-bit colour in Terminal.app’s case) that make the terminal harder to use for me. I don’t want to pretend that getting a “modern” terminal experience is easier than it is though – I think there are two issues that make it hard. Let’s talk about them! issue 1 with getting to a “modern” experience: the shell bash and zsh are by far the two most popular shells, and neither of them provide a default experience that I would be happy using out of the box, for example: you need to customize your prompt they don’t come with git completions by default, you have to set them up by default, bash only stores 500 (!) lines of history and (at least on Mac OS) zsh is only configured to store 2000 lines, which is still not a lot I find bash’s tab completion very frustrating, if there’s more than one match then you can’t tab through them And even though I love fish, the fact that it isn’t POSIX does make it hard for a lot of folks to make the switch. Of course it’s totally possible to learn how to customize your prompt in bash or whatever, and it doesn’t even need to be that complicated (in bash I’d probably start with something like export PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ ', or maybe use starship). But each of these “not complicated” things really does add up and it’s especially tough if you need to keep your config in sync across several systems. An extremely popular solution to getting a “modern” shell experience is oh-my-zsh. It seems like a great project and I know a lot of people use it very happily, but I’ve struggled with configuration systems like that in the past – it looks like right now the base oh-my-zsh adds about 3000 lines of config, and often I find that having an extra configuration system makes it harder to debug what’s happening when things go wrong. I personally have a tendency to use the system to add a lot of extra plugins, make my system slow, get frustrated that it’s slow, and then delete it completely and write a new config from scratch. issue 2 with getting to a “modern” experience: the text editor In the terminal survey I ran recently, the most popular terminal text editors by far were vim, emacs, and nano. I think the main options for terminal text editors are: use vim or emacs and configure it to your liking, you can probably have any feature you want if you put in the work use nano and accept that you’re going to have a pretty limited experience (for example as far as I can tell if you want to copy some text from nano and put it in your system clipboard you just… can’t?) use micro or helix which seem to offer a pretty good out-of-the-box experience, potentially occasionally run into issues with using a less mainstream text editor just avoid using a terminal text editor as much as possible, maybe use VSCode, use VSCode’s terminal for all your terminal needs, and mostly never edit files in the terminal issue 3: individual applications The last issue is that sometimes individual programs that I use are kind of annoying. For example on my Mac OS machine, /usr/bin/sqlite3 doesn’t support the Ctrl+Left Arrow keyboard shortcut. Fixing this to get a reasonable terminal experience in SQLite was a little complicated, I had to: realize why this is happening (Mac OS won’t ship GNU tools, and “Ctrl-Left arrow” support comes from GNU readline) find a workaround (install sqlite from homebrew, which does have readline support) adjust my environment (put Homebrew’s sqlite3 in my PATH) I find that debugging application-specific issues like this is really not easy and often it doesn’t feel “worth it” – often I’ll end up just dealing with various minor inconveniences because I don’t want to spend hours investigating them. The only reason I was even able to figure this one out at all is that I’ve been spending a huge amount of time thinking about the terminal recently. A big part of having a “modern” experience using terminal programs is just using newer terminal programs, for example I can’t be bothered to learn a keyboard shortcut to sort the columns in top, but in htop I can just click on a column heading with my mouse to sort it. So I use htop instead! But discovering new more “modern” command line tools isn’t easy (though I made a list here), finding ones that I actually like using in practice takes time, and if you’re SSHed into another machine, they won’t always be there. everything affects everything else Something I find tricky about configuring my terminal to make everything “nice” is that changing one seemingly small thing about my workflow can really affect everything else. For example right now I don’t use tmux. But if I needed to use tmux again (for example because I was doing a lot of work SSHed into another machine), I’d need to think about a few things, like: if I wanted tmux’s copy to synchronize with my system clipboard over SSH, I’d need to make sure that my terminal emulator has OSC 52 support if I wanted to use iTerm’s tmux integration (which makes tmux tabs into iTerm tabs), I’d need to change how I configure colours – right now I set them with a shell script that I run when my shell starts, but that means the colours get lost when restoring a tmux session. and probably more things I haven’t thought of. “Using tmux means that I have to change how I manage my colours” sounds unlikely, but that really did happen to me and I decided “well, I don’t want to change how I manage colours right now, so I guess I’m not using that feature!”. It’s also hard to remember which features I’m relying on – for example maybe my current terminal does have OSC 52 support and because copying from tmux over SSH has always Just Worked I don’t even realize that that’s something I need, and then it mysteriously stops working when I switch terminals. change things slowly Personally even though I think my setup is not that complicated, it’s taken me 20 years to get to this point! Because terminal config changes are so likely to have unexpected and hard-to-understand consequences, I’ve found that if I change a lot of terminal configuration all at once it makes it much harder to understand what went wrong if there’s a problem, which can be really disorienting. So I prefer to make pretty small changes, and accept that changes can might take me a REALLY long time to get used to. For example I switched from using ls to eza a year or two ago and while I think I like it I’m still not quite sure about it. getting a “modern” terminal is not that easy Trying to explain how “easy” it is to configure your terminal really just made me think that it’s kind of hard and that I still sometimes get confused. I’ve found that there’s never one perfect way to configure things in the terminal that will be compatible with every single other thing. I just need to try stuff, figure out some kind of locally stable state that works for me, and accept that if I start using a new tool it might disrupt the system and I might need to rethink things.

2 months ago 46 votes
"Rules" that terminal programs follow

Recently I’ve been thinking about how everything that happens in the terminal is some combination of: Your operating system’s job Your shell’s job Your terminal emulator’s job The job of whatever program you happen to be running (like top or vim or cat) The first three (your operating system, shell, and terminal emulator) are all kind of known quantities – if you’re using bash in GNOME Terminal on Linux, you can more or less reason about how how all of those things interact, and some of their behaviour is standardized by POSIX. But the fourth one (“whatever program you happen to be running”) feels like it could do ANYTHING. How are you supposed to know how a program is going to behave? This post is kind of long so here’s a quick table of contents: programs behave surprisingly consistently these are meant to be descriptive, not prescriptive it’s not always obvious which “rules” are the program’s responsibility to implement rule 1: noninteractive programs should quit when you press Ctrl-C rule 2: TUIs should quit when you press q rule 3: REPLs should quit when you press Ctrl-D on an empty line rule 4: don’t use more than 16 colours rule 5: vaguely support readline keybindings rule 5.1: Ctrl-W should delete the last word rule 6: disable colours when writing to a pipe rule 7: - means stdin/stdout these “rules” take a long time to learn programs behave surprisingly consistently As far as I know, there are no real standards for how programs in the terminal should behave – the closest things I know of are: POSIX, which mostly dictates how your terminal emulator / OS / shell should work together. It does specify a few things about how core utilities like cp should work but AFAIK it doesn’t have anything to say about how for example htop should behave. these command line interface guidelines But even though there are no standards, in my experience programs in the terminal behave in a pretty consistent way. So I wanted to write down a list of “rules” that in my experience programs mostly follow. these are meant to be descriptive, not prescriptive My goal here isn’t to convince authors of terminal programs that they should follow any of these rules. There are lots of exceptions to these and often there’s a good reason for those exceptions. But it’s very useful for me to know what behaviour to expect from a random new terminal program that I’m using. Instead of “uh, programs could do literally anything”, it’s “ok, here are the basic rules I expect, and then I can keep a short mental list of exceptions”. So I’m just writing down what I’ve observed about how programs behave in my 20 years of using the terminal, why I think they behave that way, and some examples of cases where that rule is “broken”. it’s not always obvious which “rules” are the program’s responsibility to implement There are a bunch of common conventions that I think are pretty clearly the program’s responsibility to implement, like: config files should go in ~/.BLAHrc or ~/.config/BLAH/FILE or /etc/BLAH/ or something --help should print help text programs should print “regular” output to stdout and errors to stderr But in this post I’m going to focus on things that it’s not 100% obvious are the program’s responsibility. For example it feels to me like a “law of nature” that pressing Ctrl-D should quit a REPL (“rule 3” below), but there’s no reason that that has to be always be true. The reason that Ctrl-D almost always works is that interactive REPLs almost all implement that keyboard shortcut. rule 1: noninteractive programs should quit when you press Ctrl-C The main reason for this rule is that noninteractive programs will quit by default on Ctrl-C if they don’t set up a SIGINT signal handler, so this is kind of a “you should act like the default” rule. Something that trips a lot of people up is that this doesn’t apply to interactive programs like python3 or bc or less. This is because in an interactive program, Ctrl-C has a different job – if the program is running an operation (like for example a search in less or some Python code in python3), then Ctrl-C will interrupt that operation but not stop the program. As an example of how this works in an interactive program: here’s the code in prompt-toolkit (the library that iPython uses for handling input) that aborts a search when you press Ctrl-C. rule 2: TUIs should quit when you press q TUI programs (like less or htop) will usually quit when you press q. This rule doesn’t apply to any program where pressing q to quit wouldn’t make sense, like tmux or text editors. rule 3: REPLs should quit when you press Ctrl-D on an empty line REPLs (like python3 or ed) will usually quit when you press Ctrl-D on an empty line. This rule is similar to the Ctrl-C rule – the reason for this is that by default if you’re running a program (like cat) in “cooked mode”, then the operating system will return an EOF when you press Ctrl-D on an empty line. Most of the REPLs I use (sqlite3, python3, fish, bash, etc) don’t actually use cooked mode, but they all implement this keyboard shortcut anyway to mimic the default behaviour. For example, here’s the code in prompt-toolkit that quits when you press Ctrl-D, and here’s the same code in readline. I actually thought that this one was a “Law of Terminal Physics” until very recently because I’ve basically never seen it broken, but you can see that it’s just something that each individual input library has to implement in the links above. Someone pointed out that the Erlang REPL does not quit when you press Ctrl-D, so I guess not every REPL follows this “rule”. rule 4: don’t use more than 16 colours Terminal programs rarely use colours other than the base 16 ANSI colours. This is because if you specify colours with a hex code, it’s very likely to clash with some users’ background colour. For example if I print out some text as #EEEEEE, it would be almost invisible on a white background, though it would look fine on a dark background. But if you stick to the default 16 base colours, you have a much better chance that the user has configured those colours in their terminal emulator so that they work reasonably well with their background color. Another reason to stick to the default base 16 colours is that it makes less assumptions about what colours the terminal emulator supports. The only programs I usually see breaking this “rule” are text editors, for example Helix by default will use a custom colorscheme with this very nice purple background which is not a default ANSI colour. It seems fine for Helix to break this rule since Helix isn’t a “core” program and I assume any Helix user who doesn’t like that colorscheme will just change the theme. rule 5: vaguely support readline keybindings Almost every program I use supports readline keybindings if it would make sense to do so. For example, here are a bunch of different programs and a link to where they define Ctrl-E to go to the end of the line: ipython (Ctrl-E defined here) atuin (Ctrl-E defined here) fzf (Ctrl-E defined here) zsh (Ctrl-E defined here) fish (Ctrl-E defined here) tmux’s command prompt (Ctrl-E defined here) None of those programs actually uses readline directly, they just sort of mimic emacs/readline keybindings. They don’t always mimic them exactly: for example atuin seems to use Ctrl-A as a prefix, so Ctrl-A doesn’t go to the beginning of the line. The exceptions to this are: some programs (like git, cat, and nc) don’t have any line editing support at all (except for backspace, Ctrl-W, and Ctrl-U) as usual text editors are an exception, every text editor has its own approach to editing text I wrote more about this “what keybindings does a program support?” question in entering text in the terminal is complicated. rule 5.1: Ctrl-W should delete the last word I’ve never seen a program (other than a text editor) where Ctrl-W doesn’t delete the last word. This is similar to the Ctrl-C rule – by default if a program is in “cooked mode”, the OS will delete the last word if you press Ctrl-W, and delete the whole line if you press Ctrl-U. So usually programs will imitate that behaviour. I can’t think of any exceptions to this other than text editors but if there are I’d love to hear about them! rule 6: disable colours when writing to a pipe Most programs will disable colours when writing to a pipe. For example: rg blah will highlight all occurrences of blah in the output, but if the output is to a pipe or a file, it’ll turn off the highlighting. ls --color=auto will use colour when writing to a terminal, but not when writing to a pipe Both of those programs will also format their output differently when writing to the terminal: ls will organize files into columns, and ripgrep will group matches with headings. If you want to force the program to use colour (for example because you want to look at the colour), you can use unbuffer to force the program’s output to be a tty like this: unbuffer rg blah | less -R I’m sure that there are some programs that “break” this rule but I can’t think of any examples right now. Some programs have an --color flag that you can use to force colour to be on. rule 7: - means stdin/stdout Usually if you pass - to a program instead of a filename, it’ll read from stdin or write to stdout (whichever is appropriate). For example, if you want to format the Python code that’s on your clipboard with black and then copy it, you could run: pbpaste | black - | pbcopy (pbpaste is a Mac program, you can do something similar on Linux with xclip) My impression is that most programs implement this if it would make sense and I can’t think of any exceptions right now, but I’m sure there are many exceptions. these “rules” take a long time to learn These rules took me a long time for me to learn because I had to: learn that the rule applied anywhere at all ("Ctrl-C will exit programs") notice some exceptions (“okay, Ctrl-C will exit find but not less”) subconsciously figure out what the pattern is ("Ctrl-C will generally quit noninteractive programs, but in interactive programs it might interrupt the current operation instead of quitting the program") eventually maybe formulate it into an explicit rule that I know A lot of my understanding of the terminal is honestly still in the “subconscious pattern recognition” stage. The only reason I’ve been taking the time to make things explicit at all is because I’ve been trying to explain how it works to others. Hopefully writing down these “rules” explicitly will make learning some of this stuff a little bit faster for others.

3 months ago 64 votes

More in programming

ChatGPT Would be a Decent Policy Advisor

Revealed: How the UK tech secretary uses ChatGPT for policy advice by Chris Stokel-Walker for the New Scientist

11 hours ago 3 votes
Setting policy for strategy.

This book’s introduction started by defining strategy as “making decisions.” Then we dug into exploration, diagnosis, and refinement: three chapters where you could argue that we didn’t decide anything at all. Clarifying the problem to be solved is the prerequisite of effective decision making, but eventually decisions do have to be made. Here in this chapter on policy, and the following chapter on operations, we finally start to actually make some decisions. In this chapter, we’ll dig into: How we define policy, and how setting policy differs from operating policy as discussed in the next chapter The structured steps for setting policy How many policies should you set? Is it preferable to have one policy, many policies, or does it not matter much either way? Recurring kinds of policies that appear frequently in strategies Why it’s valuable to be intentional about your strategy’s altitude, and how engineers and executives generally maintain different altitudes in their strategies Criteria to use for evaluating whether your policies are likely to be impactful How to develop novel policies, and why it’s rare Why having multiple bundles of alternative policies is generally a phase in strategy development that indicates a gap in your diagnosis How policies that ignore constraints sound inspirational, but accomplish little Dealing with ambiguity and uncertainty created by missing strategies from cross-functional stakeholders By the end, you’ll be ready to evaluate why an existing strategy’s policies are struggling to make an impact, and to start iterating on policies for strategy of your own. This is an exploratory, draft chapter for a book on engineering strategy that I’m brainstorming in #eng-strategy-book. As such, some of the links go to other draft chapters, both published drafts and very early, unpublished drafts. What is policy? Policy is interpreting your diagnosis into a concrete plan. That plan will be a collection of decisions, tradeoffs, and approaches. They’ll range from coding practices, to hiring mandates, to architectural decisions, to guidance about how choices are made within your organization. An effective policy solves the entirety of the strategy’s diagnosis, although the diagnosis itself is encouraged to specify which aspects can be ignored. For example, the strategy for working with private equity ownership acknowledges in its diagnosis that they don’t have clear guidance on what kind of reduction to expect: Based on general practice, it seems likely that our new Private Equity ownership will expect us to reduce R&D headcount costs through a reduction. However, we don’t have any concrete details to make a structured decision on this, and our approach would vary significantly depending on the size of the reduction. Faced with that uncertainty, the policy simply acknowledges the ambiguity and commits to reconsider when more information becomes available: We believe our new ownership will provide a specific target for Research and Development (R&D) operating expenses during the upcoming financial year planning. We will revise these policies again once we have explicit targets, and will delay planning around reductions until we have those numbers to avoid running two overlapping processes. There are two frequent points of confusion when creating policies that are worth addressing directly: Policy is a subset of strategy, rather than the entirety of strategy, because policy is only meaningful in the context of the strategy’s diagnosis. For example, the “N-1 backfill policy” makes sense in the context of new, private equity ownership. The policy wouldn’t work well in a rapidly expanding organization. Any strategy without a policy is useless, but you’ll also find policies without context aren’t worth much either. This is particularly unfortunate, because so often strategies are communicated without those critical sections. Policy describes how tradeoffs should be made, but it doesn’t verify how the tradeoffs are actually being made in practice. The next chapter on operations covers how to inspect an organization’s behavior to ensure policies are followed. When reworking a strategy to be more readable, it often makes sense to merge policy and operation sections together. However, when drafting strategy it’s valuable to keep them separate. Yes, you might use a weekly meeting to review whether the policy is being followed, but whether it’s an effective policy is independent of having such a meeting, and what operational mechanisms you use will vary depending on the number of policies you intend to implement. With this definition in mind, now we can move onto the more interesting discussion of how to set policy. How to set policy Every part of writing a strategy feels hard when you’re doing it, but I personally find that writing policy either feels uncomfortably easy or painfully challenging. It’s never a happy medium. Fortunately, the exploration and diagnosis usually come together to make writing your policy simple: although sometimes that simple conclusion may be a difficult one to swallow. The steps I follow to write a strategy’s policy are: Review diagnosis to ensure it captures the most important themes. It doesn’t need to be perfect, but it shouldn’t have omissions so obvious that you can immediately identify them. Select policies that address the diagnosis. Explicitly match each policy to one or more diagnoses that it addresses. Continue adding policies until every diagnosis is covered. This is a broad instruction, but it’s simpler than it sounds because you’ll typically select from policies identified during your exploration phase. However, there certainly is space to tweak those policies, and to reapply familiar policies to new circumstances. If you do find yourself developing a novel policy, there’s a later section in this chapter, Developing novel policies, that addresses that topic in more detail. Consolidate policies in cases where they overlap or adjoin. For example, two policies about specific teams might be generalized into a policy about all teams in the engineering organization. Backtest policy against recent decisions you’ve made. This is particularly effective if you maintain a decision log in your organization. Mine for conflict once again, much as you did in developing your diagnosis. Emphasize feedback from teams and individuals with a different perspective than your own, but don’t wholly eliminate those that you agree with. Just as it’s easy to crowd out opposing views in diagnosis if you don’t solicit their input, it’s possible to accidentally crowd out your own perspective if you anchor too much on others’ perspectives. Consider refinement if you finish writing, and you just aren’t sure your approach works – that’s fine! Return to the refinement phase by deploying one of the refinement techniques to increase your conviction. Remember that we talk about strategy like it’s done in one pass, but almost all real strategy takes many refinement passes. The steps of writing policy are relatively pedestrian, largely because you’ve done so much of the work already in the exploration, diagnosis, and refinement steps. If you skip those phases, you’d likely follow the above steps for writing policy, but the expected quality of the policy itself would be far lower. How many policies? Addressing the entirety of the diagnosis is often complex, which is why most strategies feature a set of policies rather than just one. The strategy for decomposing a monolithic application is not one policy deciding not to decompose, but a series of four policies: Business units should always operate in their own code repository and monolith. New integrations across business unit monoliths should be done using gRPC. Except for new business unit monoliths, we don’t allow new services. Merge existing services into business-unit monoliths where you can. Four isn’t universally the right number either. It’s simply the number that was required to solve that strategy’s diagnosis. With an excellent diagnosis, your policies will often feel inevitable, and perhaps even boring. That’s great: what makes a policy good is that it’s effective, not that it’s novel or inspiring. Kinds of policies While there are so many policies you can write, I’ve found they generally fall into one of four major categories: approvals, allocations, direction, and guidance. This section introduces those categories. Approvals define the process for making a recurring decision. This might require invoking an architecture advice process, or it might require involving an authority figure like an executive. In the Index post-acquisition integration strategy, there were a number of complex decisions to be made, and the approval mechanism was: Escalations come to paired leads: given our limited shared context across teams, all escalations must come to both Stripe’s Head of Traffic Engineering and Index’s Head of Engineering. This allowed the acquired and acquiring teams to start building trust between each other by ensuring both were consulted before any decision was finalized. On the other hand, the user data access strategy’s approval strategy was more focused on managing corporate risk: Exceptions must be granted in writing by CISO. While our overarching Engineering Strategy states that we follow an advisory architecture process as described in Facilitating Software Architecture, the customer data access policy is an exception and must be explicitly approved, with documentation, by the CISO. Start that process in the #ciso channel. These two different approval processes had different goals, so they made tradeoffs differently. There are so many ways to tweak approval, allowing for many different tradeoffs between safety, productivity, and trust. Allocations describe how resources are split across multiple potential investments. Allocations are the most concrete statement of organizational priority, and also articulate the organization’s belief about how productivity happens in teams. Some companies believe you go fast by swarming more people onto critical problems. Other companies believe you go fast by forcing teams to solve problems without additional headcount. Both can work, and teach you something important about the company’s beliefs. The strategy on Uber’s service migration has two concrete examples of allocation policies. The first describes the Infrastructure engineering team’s allocation between manual provision tasks and investing into creating a self-service provisioning platform: Constrain manual provisioning allocation to maximize investment in self-service provisioning. The service provisioning team will maintain a fixed allocation of one full time engineer on manual service provisioning tasks. We will move the remaining engineers to work on automation to speed up future service provisioning. This will degrade manual provisioning in the short term, but the alternative is permanently degrading provisioning by the influx of new service requests from newly hired product engineers. The second allocation policy is implicitly noted in this strategy’s diagnosis, where it describes the allocation policy in the Engineering organization’s higher altitude strategy: Within infrastructure engineering, there is a team of four engineers responsible for service provisioning today. While our organization is growing at a similar rate as product engineering, none of that additional headcount is being allocated directly to the team working on service provisioning. We do not anticipate this changing. Allocation policies often create a surprising amount of clarity for the team, and I include them in almost every policy I write either explicitly, or implicitly in a higher altitude strategy. Direction provides explicit instruction on how a decision must be made. This is the right tool when you know where you want to go, and exactly the way that you want to get there. Direction is appropriate for problems you understand clearly, and you value consistency more than empowering individual judgment. Direction works well when you need an unambiguous policy that doesn’t leave room for interpretation. For example, Calm’s policy for working in the monolith: We write all code in the monolith. It has been ambiguous if new code (especially new application code) should be written in our JavaScript monolith, or if all new code must be written in a new service outside of the monolith. This is no longer ambiguous: all new code must be written in the monolith. In the rare case that there is a functional requirement that makes writing in the monolith implausible, then you should seek an exception as described below. In that case, the team couldn’t agree on what should go into the monolith. Individuals would often make incompatible decisions, so creating consistency required removing personal judgment from the equation. Sometimes judgment is the issue, and sometimes consistency is difficult due to misaligned incentives. A good example of this comes in strategy on working with new Private Equity ownership: We will move to an “N-1” backfill policy, where departures are backfilled with a less senior level. We will also institute a strict maximum of one Principal Engineer per business unit. It’s likely that hiring managers would simply ignore this backfill policy if it was stated more softly, although sometimes less forceful policies are useful. Guidance provides a recommendation about how a decision should be made. Guidance is useful when there’s enough nuance, ambiguity, or complexity that you can explain the desired destination, but you can’t mandate the path to reaching it. One example of guidance comes from the Index acquisition integration strategy: Minimize changes to tokenization environment: because point-of-sale devices directly work with customer payment details, the API that directly supports the point-of-sale device must live within our secured environment where payment details are stored. However, any other functionality must not be added to our tokenization environment. This might read like direction, but it’s clarifying the desired outcome of avoiding unnecessary complexity in the tokenization environment. However, it’s not able to articulate what complexity is necessary, so ultimately it’s guidance because it requires significant judgment to interpret. A second example of guidance comes in the strategy on decomposing a monolithic codebase: Merge existing services into business-unit monoliths where you can. We believe that each choice to move existing services back into a monolith should be made “in the details” rather than from a top-down strategy perspective. Consequently, we generally encourage teams to wind down their existing services outside of their business unit’s monolith, but defer to teams to make the right decision for their local context. This is another case of knowing the desired outcome, but encountering too much uncertainty to direct the team on how to get there. If you ask five engineers about whether it’s possible to merge a given service back into a monolithic codebase, they’ll probably disagree. That’s fine, and highlights the value of guidance: it makes it possible to make incremental progress in areas where more concrete direction would cause confusion. When you’re working on a strategy’s policy section, it’s important to consider all of these categories. Which feel most natural to use will vary depending on your team and role, but they’re all usable: If you’re a developer productivity team, you might have to lean heavily on guidance in your policies and increased support for that guidance within the details of your platform. If you’re an executive, you might lean heavily on direction. Indeed, you might lean too heavily on direction, where guidance often works better for areas where you understand the direction but not the path. If you’re a product engineering organization, you might have to narrow the scope of your direction to the engineers within that organization to deal with the realities of complex cross-organization dynamics. Finally, if you have a clear approach you want to take that doesn’t fit cleanly into any of these categories, then don’t let this framework dissuade you. Give it a try, and adapt if it doesn’t initially work out. Maintaining strategy altitude The chapter on when to write engineering strategy introduced the concept of strategy altitude, which is being deliberate about where certain kinds of policies are created within your organization. Without repeating that section in its entirety, it’s particularly relevant when you set policy to consider how your new policies eliminate flexibility within your organization. Consider these two somewhat opposing strategies: Stripe’s Sorbet strategy only worked in an organization that enforced the use of a single programming language across (essentially) all teams Uber’s service migration strategy worked well in an organization that was unwilling to enforce consistent programming language adoption across teams Stripe’s organization-altitude policy took away the freedom of individual teams to select their preferred technology stack. In return, they unlocked the ability to centralize investment in a powerful way. Uber went the opposite way, unlocking the ability of teams to pick their preferred technology stack, while significantly reducing their centralized teams’ leverage. Both altitudes make sense. Both have consequences. Criteria for effective policies In The Engineering Executive’s Primer’s chapter on engineering strategy, I introduced three criteria for evaluating policies. They ought to be applicable, enforced, and create leverage. Defining those a bit: Applicable: it can be used to navigate complex, real scenarios, particularly when making tradeoffs. Enforced: teams will be held accountable for following the guiding policy. Create Leverage: create compounding or multiplicative impact. The last of these three, create leverage, made sense in the context of a book about engineering executives, but probably doesn’t make as much sense here. Some policies certainly should create leverage (e.g. empower developer experience team by restricting new services), but others might not (e.g. moving to an N-1 backfill policy). Outside the executive context, what’s important isn’t necessarily creating leverage, but that a policy solves for part of the diagnosis. That leaves the other two–being applicable and enforced–both of which are necessary for a policy to actually address the diagnosis. Any policy which you can’t determine how to apply, or aren’t willing to enforce, simply won’t be useful. Let’s apply these criteria to a handful of potential policies. First let’s think about policies we might write to improve the talent density of our engineering team: “We only hire world-class engineers.” This isn’t applicable, because it’s unclear what a world-class engineer means. Because there’s no mutually agreeable definition in this policy, it’s also not consistently enforceable. “We only hire engineers that get at least one ‘strong yes’ in scorecards.” This is applicable, because there’s a clear definition. This is enforceable, depending on the willingness of the organization to reject seemingly good candidates who don’t happen to get a strong yes. Next, let’s think about a policy regarding code reuse within a codebase: “We follow a strict Don’t Repeat Yourself policy in our codebase.” There’s room for debate within a team about whether two pieces of code are truly duplicative, but this is generally applicable. Because there’s room for debate, it’s a very context specific determination to decide how to enforce a decision. “Code authors are responsible for determining if their contributions violate Don’t Repeat Yourself, and rewriting them if they do.” This is much more applicable, because now there’s only a single person’s judgment to assess the potential repetition. In some ways, this policy is also more enforceable, because there’s no longer any ambiguity around who is deciding whether a piece of code is a repetition. The challenge is that enforceability now depends on one individual, and making this policy effective will require holding individuals accountable for the quality of their judgement. An organization that’s unwilling to distinguish between good and bad judgment won’t get any value out of the policy. This is a good example of how a good policy in one organization might become a poor policy in another. If you ever find yourself wanting to include a policy that for some reason either can’t be applied or can’t be enforced, stop to ask yourself what you’re trying to accomplish and ponder if there’s a different policy that might be better suited to that goal. Developing novel policies My experience is that there are vanishingly few truly novel policies to write. There’s almost always someone else has already done something similar to your intended approach. Calm’s engineering strategy is such a case: the details are particular to the company, but the general approach is common across the industry. The most likely place to find truly novel policies is during the adoption phase of a new widespread technology, such as the rise of ubiquitous mobile phones, cloud computing, or large language models. Even then, as explored in the strategy for adopting large-language models, the new technology can be engaged with as a generic technology: Develop an LLM-backed process for reactivating departed and suspended drivers in mature markets. Through modeling our driver lifecycle, we determined that improving onboarding time will have little impact on the total number of active drivers. Instead, we are focusing on mechanisms to reactivate departed and suspended drivers, which is the only opportunity to meaningfully impact active drivers. You could simply replace “LLM” with “data-driven” and it would be equally readable. In this way, policy can generally sidestep areas of uncertainty by being a bit abstract. This avoids being overly specific about topics you simply don’t know much about. However, even if your policy isn’t novel to the industry, it might still be novel to you or your organization. The steps that I’ve found useful to debug novel policies are the same steps as running a condensed version of the strategy process, with a focus on exploration and refinement: Collect a number of similar policies, with a focus on how those policies differ from the policy you are creating Create a systems model to articulate how this policy will work, and also how it will differ from the similar policies you’re considering Run a strategy testing cycle for your proto-policy to discover any unknown-unknowns about how it works in practice Whether you run into this scenario is largely a function of the extent of your, and your organization’s, experience. Early in my career, I found myself doing novel (for me) strategy work very frequently, and these days I rarely find myself doing novel work, instead focusing on adaptation of well-known policies to new circumstances. Are competing policy proposals an anti-pattern? When creating policy, you’ll often have to engage with the question of whether you should develop one preferred policy or a series of potential strategies to pick from. Developing these is a useful stage of setting policy, but rather than helping you refine your policy, I’d encourage you to think of this as exposing gaps in your diagnosis. For example, when Stripe developed the Sorbet ruby-typing tooling, there was debate between two policies: Should we build a ruby-typing tool to allow a centralized team to gradually migrate the company to a typed codebase? Should we migrate the codebase to a preexisting strongly typed language like Golang or Java? These were, initially, equally valid hypotheses. It was only by clarifying our diagnosis around resourcing that it became clear that incurring the bulk of costs in a centralized team was clearly preferable to spreading the costs across many teams. Specifically, recognizing that we wanted to prioritize short-term product engineering velocity, even if it led to a longer migration overall. If you do develop multiple policy options, I encourage you to move the alternatives into an appendix rather than including them in the core of your strategy document. This will make it easier for readers of your final version to understand how to follow your policies, and they are the most important long-term user of your written strategy. Recognizing constraints A similar problem to competing solutions is developing a policy that you cannot possibly fund. It’s easy to get enamored with policies that you can’t meaningfully enforce, but that’s bad policy, even if it would work in an alternate universe where it was possible to enforce or resource it. To consider a few examples: The strategy for controlling access to user data might have proposed requiring manual approval by a second party of every access to customer data. However, that would have gone nowhere. Our approach to Uber’s service migration might have required more staffing for the infrastructure engineering team, but we knew that wasn’t going to happen, so it was a meaningless policy proposal to make. The strategy for navigating private equity ownership might have argued that new ownership should not hold engineering accountable to a new standard on spending. But they would have just invalidated that strategy in the next financial planning period. If you find a policy that contemplates an impractical approach, it doesn’t only indicate that the policy is a poor one, it also suggests your policy is missing an important pillar. Rather than debating the policy options, the fastest path to resolution is to align on the diagnosis that would invalidate potential paths forward. In cases where aligning on the diagnosis isn’t possible, for example because you simply don’t understand the possibilities of a new technology as encountered in the strategy for adopting LLMs, then you’ve typically found a valuable opportunity to use strategy refinement to build alignment. Dealing with missing strategies At a recent company offsite, we were debating which policies we might adopt to deal with annual plans that kept getting derailed after less than a month. Someone remarked that this would be much easier if we could get the executive team to commit to a clearer, written strategy about which business units we were prioritizing. They were, of course, right. It would be much easier. Unfortunately, it goes back to the problem we discussed in the diagnosis chapter about reframing blockers into diagnosis. If a strategy from the company or a peer function is missing, the empowering thing to do is to include the absence in your diagnosis and move forward. Sometimes, even when you do this, it’s easy to fall back into the belief that you cannot set a policy because a peer function might set a conflicting policy in the future. Whether you’re an executive or an engineer, you’ll never have the details you want to make the ideal policy. Meaningful leadership requires taking meaningful risks, which is never something that gets comfortable. Summary After working through this chapter, you know how to develop policy, how to assemble policies to solve your diagnosis, and how to avoid a number of the frequent challenges that policy writers encounter. At this point, there’s only one phase of strategy left to dig into, operating the policies you’ve created.

16 hours ago 3 votes
Fast and random sampling in SQLite

I was building a small feature for the Flickr Commons Explorer today: show a random selection of photos from the entire collection. I wanted a fast and varied set of photos. This meant getting a random sample of rows from a SQLite table (because the Explorer stores all its data in SQLite). I’m happy with the code I settled on, but it took several attempts to get right. Approach #1: ORDER BY RANDOM() My first attempt was pretty naïve – I used an ORDER BY RANDOM() clause to sort the table, then limit the results: SELECT * FROM photos ORDER BY random() LIMIT 10 This query works, but it was slow – about half a second to sample a table with 2 million photos (which is very small by SQLite standards). This query would run on every request for the homepage, so that latency is unacceptable. It’s slow because it forces SQLite to generate a value for every row, then sort all the rows, and only then does it apply the limit. SQLite is fast, but there’s only so fast you can sort millions of values. I found a suggestion from Stack Overflow user Ali to do a random sort on the id column first, pick my IDs from that, and only fetch the whole row for the photos I’m selecting: SELECT * FROM photos WHERE id IN ( SELECT id FROM photos ORDER BY RANDOM() LIMIT 10 ) This means SQLite only has to load the rows it’s returning, not every row in the database. This query was over three times faster – about 0.15s – but that’s still slower than I wanted. Approach #2: WHERE rowid > (…) Scrolling down the Stack Overflow page, I found an answer by Max Shenfield with a different approach: SELECT * FROM photos WHERE rowid > ( ABS(RANDOM()) % (SELECT max(rowid) FROM photos) ) LIMIT 10 The rowid is a unique identifier that’s used as a primary key in most SQLite tables, and it can be looked up very quickly. SQLite automatically assigns a unique rowid unless you explicitly tell it not to, or create your own integer primary key. This query works by picking a point between the biggest and smallest rowid values used in the table, then getting the rows with rowids which are higher than that point. If you want to know more, Max’s answer has a more detailed explanation. This query is much faster – around 0.0008s – but I didn’t go this route. The result is more like a random slice than a random sample. In my testing, it always returned contiguous rows – 101, 102, 103, … – which isn’t what I want. The photos in the Commons Explorer database were inserted in upload order, so photos with adjacent row IDs were uploaded at around the same time and are probably quite similar. I’d get one photo of an old plane, then nine more photos of other planes. I want more variety! (This behaviour isn’t guaranteed – if you don’t add an ORDER BY clause to a SELECT query, then the order of results is undefined. SQLite is returning rows in rowid order in my table, and a quick Google suggests that’s pretty common, but that may not be true in all cases. It doesn’t affect whether I want to use this approach, but I mention it here because I was confused about the ordering when I read this code.) Approach #3: Select random rowid values outside SQLite Max’s answer was the first time I’d heard of rowid, and it gave me an idea – what if I chose random rowid values outside SQLite? This is a less “pure” approach because I’m not doing everything in the database, but I’m happy with that if it gets the result I want. Here’s the procedure I came up with: Create an empty list to store our sample. Find the highest rowid that’s currently in use: sqlite> SELECT MAX(rowid) FROM photos; 1913389 Use a random number generator to pick a rowid between 1 and the highest rowid: >>> import random >>> random.randint(1, max_rowid) 196476 If we’ve already got this rowid, discard it and generate a new one. (The rowid is a signed, 64-bit integer, so the minimum possible value is always 1.) Look for a row with that rowid: SELECT * FROM photos WHERE rowid = 196476 If such a row exists, add it to our sample. If we have enough items in our sample, we’re done. Otherwise, return to step 3 and generate another rowid. If such a row doesn’t exist, return to step 3 and generate another rowid. This requires a bit more code, but it returns a diverse sample of photos, which is what I really care about. It’s a bit slower, but still plenty fast enough (about 0.001s). This approach is best for tables where the rowid values are mostly contiguous – it would be slower if there are lots of rowids between 1 and the max that don’t exist. If there are large gaps in rowid values, you might try multiple missing entries before finding a valid row, slowing down the query. You might want to try something different, like tracking valid rowid values separately. This is a good fit for my use case, because photos don’t get removed from Flickr Commons very often. Once a row is written, it sticks around, and over 97% of the possible rowid values do exist. Summary Here are the four approaches I tried: Approach Performance (for 2M rows) Notes ORDER BY RANDOM() ~0.5s Slowest, easiest to read WHERE id IN (SELECT id …) ~0.15s Faster, still fairly easy to understand WHERE rowid > ... ~0.0008s Returns clustered results Random rowid in Python ~0.001s Fast and returns varied results, requires code outside SQL I’m using the random rowid in Python in the Commons Explorer, trading code complexity for speed. I’m using this random sample to render a web page, so it’s important that it returns quickly – when I was testing ORDER BY RANDOM(), I could feel myself waiting for the page to load. But I’ve used ORDER BY RANDOM() in the past, especially for asynchronous data pipelines where I don’t care about absolute performance. It’s simpler to read and easier to see what’s going on. Now it’s your turn – visit the Commons Explorer and see what random gems you can find. Let me know if you spot anything cool! [If the formatting of this post looks odd in your feed reader, visit the original article]

7 hours ago 1 votes
Choosing Languages
yesterday 2 votes
05 · Syncing Keyhive

How we sync Keyhive and Automerge

yesterday 1 votes