Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
15
A couple of weeks ago, I started working with a personal trainer to improve my fitness. I've long been an endurance athlete, and it's time to lean into my overall fitness and strength. Part of this is to be healthy and live a long life. But honestly? More of it is a desire to come back stronger and beat my old personal records. As part of the training, I'm building skills I've not worked on before and I'm confronted with being back at the beginning of something. My workouts include work on strength and flexibility, but the hardest is everything around stability. An exercise that my trainer has me do is palm side planks. There are a few variations on this, but the position I end up in has me on my side with one foot and one hand touching the floor, my feet and hips stacked, my back straight, and both arms fully extended. One hand touches the floor, the other extends toward the ceiling. This is an exercise in strength and balance, and it is so hard for me. At first, I tried to just swing...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from ntietz.com blog

Licensing can be joyful (and legally dubious)

Software licenses are a reflection of our values. How you choose to license a piece of software says a lot about what you want to achieve with it. Do you want to reach the maximum amount of users? Do you want to ensure future versions remain free and open source? Do you want to preserve your opportunity to make a profit? They can also be used to reflect other values. For example, there is the infamous JSON license written by Doug Crockford. It's essentially the MIT license with this additional clause: The Software shall be used for Good, not Evil. This has caused quite some consternation. It is a legally dubious addition, because "Good" and "Evil" are not defined here. Many people disagree on what these are. This is really not enforceable, and it's going to make many corporate lawyers wary of using software under this license1. I don't think that enforcing this clause was the point. The point is more signaling values and just having fun with it. I don't think anyone seriously believes that this license will be enforceable, or that it will truly curb the amount of evil in the world. But will it start conversations? * * * There are a lot of other small, playful licenses. None of these are going to change the world, but they inject a little joy and play into an area of software that is usually serious and somber. When I had to pick a license for my exceptional language (Hurl), I went down that serious spiral at first. What license will give the project the best adoption, or help it achieve its goals? What are its goals? Well, one its goals was definitely to be funny. Another was to make sure that people can use the software for educational purposes. If I make a language as a joke, I do want people to be able to learn from it and do their own related projects! This is where we enter one of the sheerly joyous parts of licensing: the ability to apply multiple licenses to software so that the user can decide which one to use the software under. You see a lot of Rust projects dual-licensed under Apache and MIT licenses, because the core language is dual-licensed for very good reasons. We can apply similar rationale to Hurl's license, and we end up with triple-licensing. It's currently available under three licenses, each for a separate purpose. Licensing it under the AGPL enables users to create derivative works for their own purposes (probably to learn) as long as it remains licensed the same way. And then we have a commercial license option, which is there so that if you want to commercialize it, I can get a cut of that2. The final option is to license it under the Gay Agenda License, which was created originally for this project. This option basically requires you to not be a bigot, and then you can use the software under the MIT license terms. It seems fair to me. When I got through that license slide at SIGBOVIK 2024, I knew that the mission was accomplished: bigotry was defeated the audience laughed. * * * The Gay Agenda License is a modified MIT license which requires you do a few things: You must provide attribution (typical MIT manner) You have to stand up for LGBTQ rights You have to say "be gay, do crime" during use of the software Oh, and if you support restricting LGBTQ rights, then you lose that license right away. No bigots allowed here. This is all, of course, written in more complete sentences in the license itself. The best thing is that you can use this license today! There is a website for the Gay Agenda License, the very fitting gal.gay3. The website has all the features you'd expect, like showing the license text, using appropriate flags, and copying the text to the clipboard for ease of putting this in your project. Frequently Anticipated Questions Inspired by Hannah's brilliant post's FAQ, here are answers to your questions that you must have by now. Is this enforceable? We don't really know until it's tested in court, but if that happens, everyone has already lost. So, who knows, I hope we don't find out! Isn't it somewhat ambiguous? What defines what is standing up for LGBTQ rights? Ah, yes, good catch. This is a big problem for this totally serious license. Definitely a problem. Can I use it in my project? Yeah! Let me know if you do so I can add it into a showcase on the website. But keep in mind, this is a joke totally serious license, so only use it on silly things highly serious commercial projects! How do I get a commercial license of Hurl? This is supposed to be about the Gay Agenda License, not Hurl. But since you asked, contact me for pricing. When exactly do I have to say "be gay, do crime"? To be safe, it's probably best that you mutter it continuously while using all software. You never know when it's going to be licensed under the Gay Agenda License, so repeat the mantra to ensure compliance. Thank you to Anya for the feedback on a draft of this post. Thank you to Chris for building the first version of gal.gay for me. 1 Not for nothing, because most of those corporations would probably be using the software for evil. So, mission accomplished, I guess? 2 For some reason, no one has contacted me for this option yet. I suspect widespread theft of my software, since surely people want to use Hurl. They're not using the third option, since we still see rampant transphobia. 3 This is my most expensive domain yet at $130 for the first year. I'm hoping that the price doesn't raise dramatically over time, but I'm not optimistic, since it's a three-letter domain. That said, anything short of extortion will likely be worth keeping for the wonderful email addresses I get out of this, being a gay gal myself. It's easier to spell on the phone than this domain is, anyway.

7 months ago 70 votes
Asheville

Asheville is in crisis right now. They're without drinking water, faucets run dry, and it's difficult to flush toilets. As of yesterday, the hospital has water (via tanker trucks), but 80% of the public water system is still without running water. Things are really bad. Lots of infrastructure has been washed away. Even when water is back, there has been tremendous damage done that will take a long time to recover from and rebuild. * * * Here's the only national news story my friend from Asheville had seen which covered the water situation specifically. It's hard for me to understand why this is not covered more broadly. And my heart aches for those in and around the Asheville area. As I'm far away, I can't do a lot to help. But I can donate money, which my friend said is the only donation that would help right now if you aren't in the area. She specifically pointed me to these two ways to donate: Beloved Asheville: a respected community organization in Asheville, this is a great place to send money to help. (If you're closer to that area, it does look like they have specific things they're asking for as well, but this feels like an "if you can help this way, you'd already know" situation.) Mutual Aid Disaster Relief: there's a local Asheville chapter which is doing work to help. Also an organization to support for broad disaster recovery in general. I've donated money. I hope you will, too, for this and for the many other crises that affect us. Let's help each other.

7 months ago 63 votes
Teleportation

teleportation does exist from OR to recovery room I left something behind not quite a part of myself —unwelcome guests poisoning me from the inside no longer welcome

7 months ago 55 votes
Rust needs a web framework for lazy developers

I like to make silly things, and I also like to put in minimal effort for those silly things. I also like to make things in Rust, mostly for the web, and this is where we run into a problem. See, if I want to make something for the web, I could use Django but I don't want that. I mean, Django is for building serious businesses, not for building silly non-commercial things! But using Rust, we have to do a lot more work than if we build it with Django or friends. See, so far, there's no equivalent, and the Rust community leans heavily into the "wire it up yourself" approach. As Are We Web Yet? says, "[...] you generally have to wire everything up yourself. Expect to put in a little bit of extra set up work to get started." This undersells it, though. It's more than a little bit of extra work to get started! I know because I made a list of things to do to get started. Rust needs something that does bundle this up for you, so that we can serve all web developers. Having it would make it a lot easier to make the case to use Rust. The benefits are there: you get wonderful type system, wonderful performance, and build times that give you back those coffee breaks you used to get while your code compiled. What do we need? There is a big pile of stuff that nearly every web app needs, no matter if it's big or small. Here's a rough list of what seems pretty necessary to me: Routing/handlers: this is pretty obvious, but we have to be able to get an incoming request to some handler for it. Additionally, this routing needs to handle path parameters, ideally with type information, and we'll give bonus points for query parameters, forms, etc. Templates: we'll need to generate, you know, HTML (and sometimes other content, like JSON or, if you're in the bad times still, XML). Usually I want these to have basic logic, like conditionals, match/switch, and loops. Static file serving: we'll need to serve some assets, like CSS files. This can be done separately, but having it as part of the same web server is extremely handy for both local development and for small-time deployments that won't handle much traffic. Logins: You almost always need some way to log in, since apps are usually multi-user or deployed on a public network. This is just annoying to wire up every time! It should be customizable and something you can opt out of, but it should be trivial to have logins from the start. Permissions: You also need this for systems that have multiple users, since people will have different data they're allowed to access or different roles in the system. Permissions can be complicated but you can make something relatively simple that follows the check(user, object, action) pattern and get really far with it. Database interface: You're probably going to have to store data for your app, so you want a way to do that. Something that's ORM-like is often nice, but something light is fine. Whatever you do here isn't the only way to interact with the database, but it'll be used for things like logins, permissions, and admin tools, so it's going to be a fundamental piece. Admin tooling: This is arguably a quality-of-life issue, not a necessity, except that every time you setup your application in a local environment or in production you're going to have to bootstrap it with at least one user or some data. And you'll have to do admin actions sometimes! So I think having this built-in for at least some of the common actions is a necessity for a seamless experience. WebSockets: I use WebSockets in a lot of my projects. They just let you do really fun things with pushing data out to connected users in a more real-time fashion! Hot reloading: This is a huge one for developer experience, because you want to have the ability to see changes really quickly. When code or a template change, you need to see that reflected as soon as humanly possible (or as soon as the Rust compiler allows). Then we have a pile of things that are quality-of-life improvements, and I think are necessary for long-term projects but might not be as necessary upfront, so users are less annoyed at implementing it themselves because the cost is spread out. Background tasks: There needs to be a story for these! You're going to have features that have to happen on a schedule, and having a consistent way to do that is a big benefit and makes development easier. Monitoring/observability: Only the smallest, least-critical systems should skip this. It's really important to have and it will make your life so much easier when you have it in that moment that you desperately need it. Caching: There are a lot of ways to do this, and all of them make things more complicated and maybe faster? So this is nice to have a story for, but users can also handle it themselves. Emails and other notifications: It's neat to be able to have password resets and things built-in, and this is probably a necessity if you're going to have logins, so you can have password resets. But other than that feature, it feels like it won't get used that much and isn't a big deal to add in when you need it. Deployment tooling: Some consistent way to deploy somewhere is really nice, even if it's just an autogenerated Dockerfile that you can use with a host of choice. CSS/JS bundling: In the time it is, we use JS and CSS everywhere, so you probably want a web tool to be aware of them so they can be included seamlessly. But does it really have to be integrated in? Probably not... So those are the things I'd target in a framework if I were building one! I might be doing that... The existing ecosystem There's quite a bit out there already for building web things in Rust. None of them quite hit what I want, which is intentional on their part: none of them aspire to be what I'm looking for here. I love what exists, and I think we're sorely missing what I want here (I don't think I'm alone). Web frameworks There are really two main groups of web frameworks/libraries right now: the minimalist ones, and the single-page app ones. The minimalist ones are reminiscent of Flask, Sinatra, and other small web frameworks. These include the excellent actix-web and axum, as well as myriad others. There are so many of these, and they all bring a nice flavor to web development by leveraging Rust's type system! But they don't give you much besides handlers; none of the extra functionality we want in a full for-lazy-developers framework. Then there are the single-page app frameworks. These fill a niche where you can build things with Rust on the backend and frontend, using WebAssembly for the frontend rendering. These tend to be less mature, but good examples include Dioxus, Leptos, and Yew. I used Yew to build a digital vigil last year, and it was enjoyable but I'm not sure I'd want to do it in a "real" production setting. Each of these is excellent for what it is—but what it is requires a lot of wiring up still. Most of my projects would work well with the minimalist frameworks, but those require so much wiring up! So it ends up being a chore to set that up each time that I want to do something. Piles of libraries! The rest of the ecosystem is piles of libraries. There are lots of template libraries! There are some libraries for logins, and for permissions. There are WebSocket libraries! Often you'll find some projects and examples which integrate a couple of the things you're using, but you won't find something that integrates all the pieces you're using. I've run into some of the examples being out of date, which is to be expected in a fast-moving ecosystem. The pile of libraries leaves a lot of friction, though. It makes getting started, the "just wiring it up" part, very difficult and often an exercise in researching how things work, to understand them in depth enough to do the integration. What I've done before The way I've handled this before is basically to pick a base framework (typically actix-web or axum) and then search out all the pieces I want on top of it. Then I'd wire them up, either all at the beginning or as I need them. There are starter templates that could help me avoid some of this pain. They can definitely help you skip some of the initial pain, but you still get all the maintenance burden. You have to make sure your libraries stay up to date, even when there are breaking changes. And you will drift from the template, so it's not really feasible to merge changes to it into your project. For the projects I'm working on, this means that instead of keeping one framework up to date, I have to keep n bespoke frameworks up to date across all my projects! Eep! I'd much rather have a single web framework that handles it all, with clean upgrade instructions between versions. There will be breaking changes sometimes, but this way they can be documented instead of coming about due to changes in the interactions between two components which don't even know they're going to be integrated together. Imagining the future I want In an ideal world, there would be a framework for Rust that gives me all the features I listed above. And it would also come with excellent documentation, changelogs, thoughtful versioning and handling of breaking changes, and maybe even a great community. All the things I love about Django, could we have those for a Rust web framework so that we can reap the benefits of Rust without having to go needlessly slowly? This doesn't exist right now, and I'm not sure if anyone else is working on it. All paths seem to lead me toward "whoops I guess I'm building a web framework." I hope someone else builds one, too, so we can have multiple options. To be honest, "web framework" sounds way too grandiose for what I'm doing, which is simply wiring things together in an opinionated way, using (mostly) existing building blocks1. Instead of calling it a framework, I'm thinking of it as a web toolkit: a bundle of tools tastefully chosen and arranged to make the artisan highly effective. My toolkit is called nicole's web toolkit, or newt. It's available in a public repository, but it's really not usable (the latest changes aren't even pushed yet). It's not even usable for me yet—this isn't a launch post, more shipping my design doc (and hoping someone will do my work for me so I don't have to finish newt :D). The goal for newt is to be able to create a new small web app and start on the actual project in minutes instead of days, bypassing the entire process of wiring things up. I think the list of must-haves and quality-of-life features above will be a start, but by no means everything we need. I'm not ready to accept contributions, but I hope to be there at some point. I think that Rust really needs this, and the whole ecosystem will benefit from it. A healthy ecosystem will have multiple such toolkits, and I hope to see others develop as well. * * * If you want to follow along with mine, though, feel free to subscribe to my RSS feed or newsletter, or follow me on Mastodon. I'll try to let people know in all those places when the toolkit is ready for people to try out. Or I'll do a post-mortem on it, if it ends up that I don't get far with it! Either way, this will be fun. 1 I do plan to build a few pieces from scratch for this, as the need arises. Some things will be easier that way, or fit more cohesively. Can't I have a little greenfield, as a treat?

7 months ago 64 votes
What I tell people new to on-call

The first time I went on call as a software engineer, it was exciting—and ultimately traumatic. Since then, I've had on-call experiences at multiple other jobs and have grown to really appreciate it as part of the role. As I've progressed through my career, I've gotten to help establish on-call processes and run some related trainings. Here is some of what I wish I'd known when I started my first on-call shift, and what I try to tell each engineer before theirs. Heroism isn't your job, triage is It's natural to feel a lot of pressure with on-call responsibilities. You have a production application that real people need to use! When that pager goes off, you want to go in and fix the problem yourself. That's the job, right? But it's not. It's not your job to fix every issue by yourself. It is your job to see that issues get addressed. The difference can be subtle, but important. When you get that page, your job is to assess what's going on. A few questions I like to ask are: What systems are affected? How badly are they impacted? Does this affect users? With answers to those questions, you can figure out what a good course of action is. For simple things, you might just fix it yourself! If it's a big outage, you're putting on your incident commander hat and paging other engineers to help out. And if it's a false alarm, then you're putting in a fix for the noisy alert! (You're going to fix it, not just ignore that, right?) Just remember not to be a hero. You don't need to fix it alone, you just need to figure out what's going on and get a plan. Call for backup Related to the previous one, you aren't going this alone. Your main job in holding the pager is to assess and make sure things get addressed. Sometimes you can do that alone, but often you can't! Don't be afraid to call for backup. People want to be helpful to their teammates, and they want that support available to them, too. And it's better to be wake me up a little too much than to let me sleep through times when I was truly needed. If people are getting woken up a lot, the issue isn't calling for backup, it's that you're having too many true emergencies. It's best to figure out that you need backup early, like 10 minutes in, to limit the damage of the incident. The faster you figure out other people are needed, the faster you can get the situation under control. Communicate a lot In any incident, adrenaline runs and people are stressed out. The key to good incident response is communication in spite of the adrenaline. Communicating under pressure is a skill, and it's one you can learn. Here are a few of the times and ways of communicating that I think are critical: When you get on and respond to an alert, say that you're there and that you're assessing the situation Once you've assessed it, post an update; if the assessment is taking a while, post updates every 15 minutes while you do so (and call for backup) After the situation is being handled, update key stakeholders at least every 30 minutes for the first few hours, and then after that slow down to hourly You are also going to have to communicate within the response team! There might be a dedicated incident channel or one for each incident. Either way, try to over communicate about what you're working on and what you've learned. Keep detailed notes, with timestamps When you're debugging weird production stuff at 3am, that's the time you really need to externalize your memory and thought processes into a notes document. This helps you keep track of what you're doing, so you know which experiments you've run and which things you've ruled out as possibilities or determined as contributing factors. It also helps when someone else comes up to speed! That person will be able to use your notes to figure out what has happened, instead of you having to repeat it every time someone gets on. Plus, the notes doc won't forget things, but you will. You will also need these notes later to do a post-mortem. What was tried, what was found, and how it was fixed are all crucial for the discussion. Timestamps are critical also for understanding the timeline of the incident and the response! This document should be in a shared place, since people will use it when they join the response. It doesn't need to be shared outside of the engineering organization, though, and likely should not be. It may contain details that lead to more questions than they answer; sometimes, normal engineering things can seem really scary to external stakeholders! You will learn a lot! When you're on call, you get to see things break in weird and unexpected ways. And you get to see how other people handle those things! Both of these are great ways to learn a lot. You'll also just get exposure to things you're not used to seeing. Some of this will be areas that you don't usually work in, like ops if you're a developer, or application code if you're on the ops side. Some more of it will be business side things for the impact of incidents. And some will be about the psychology of humans, as you see the logs of a user clicking a button fifteen hundred times (get that person an esports sponsorship, geez). My time on call has led to a lot of my professional growth as a software engineer. It has dramatically changed how I worked on systems. I don't want to wake up at 3am to fix my bad code, and I don't want it to wake you up, either. Having to respond to pages and fix things will teach you all the ways they can break, so you'll write more resilient software that doesn't break. And it will teach you a lot about the structure of your engineering team, good or bad, in how it's structured and who's responding to which things. Learn by shadowing No one is born skilled at handling production alerts. You gain these skills by doing, so get out there and do it—but first, watch someone else do it. No matter how much experience you have writing code (or responding to incidents), you'll learn a lot by watching a skilled coworker handle incoming issues. Before you're the primary for an on-call shift, you should shadow someone for theirs. This will let you see how they handle things and what the general vibe is. This isn't easy to do! It means that they'll have to make sure to loop you in even when blood is pumping, so you may have to remind them periodically. You'll probably miss out on some things, but you'll see a lot, too. Some things can (and should) wait for Monday morning When we get paged, it usually feels like a crisis. If not to us, it sure does to the person who's clicking that button in frustration, generating a ton of errors, and somehow causing my pager to go off. But not all alerts are created equal. If you assess something and figure out that it's only affecting one or two customers in something that's not time sensitive, and it's currently 4am on a Saturday? Let people know your assessment (and how to reach you if you're wrong, which you could be) and go back to bed. Real critical incidents have to be fixed right away, but some things really need to wait. You want to let them go until later for two reasons. First is just the quality of the fix. You're going to fix things more completely if you're rested when you're doing so! Second, and more important, is your health. It's wrong to sacrifice your health (by being up at 4am fixing things) for something non-critical. Don't sacrifice your health Many of us have had bad on-call experiences. I sure have. One regret is that I didn't quit that on-call experience sooner. I don't even necessarily mean quitting the job, but pushing back on it. If I'd stood up for myself and said "hey, we have five engineers, it should be more than just me on call," and held firm, maybe I'd have gotten that! Or maybe I'd have gotten a new job. What I wouldn't have gotten is the knowledge that you can develop a rash from being too stressed. If you're in a bad on-call situation, please try to get out of it! And if you can't get out of it, try to be kind to yourself and protect yourself however you can (you deserve better). Be methodical and reproduce before you fix Along with taking great notes, you should make sure that you test hypotheses. What could be causing this issue? And before that, what even is the problem? And how do we make it happen? Write down your answers to these! Then go ahead and try to reproduce the issue. After reproducing it, you can try to go through your hypotheses and test them out to see what's actually contributing to the issue. This way, you can bisect problem spaces instead of just eliminating one thing at a time. And since you know how to reproduce the issue now, you can be confident that you do have a fix at the end of it all! Have fun Above all, the thing I want people new to on-call to do? Just have fun. I know this might sound odd, because being on call is a big job responsibility! But I really do think it can be fun. There's a certain kind of joy in going through the on-call response together. And there's a fun exhilaration to it all. And the joy of fixing things and really being the competent engineer who handled it with grace under pressure. Try to make some jokes (at an appropriate moment!) and remember that whatever happens, it's going to be okay. Probably.

7 months ago 79 votes

More in programming

Stress And Programming

Having spent four decades as a programmer in various industries and situations, I know that modern software development processes are far more stressful than when I started. It's not simply that developing software today is more complex than it was back in 1981. In that early decade, none

10 hours ago 2 votes
Espressif’s Automatic Reset

In previous articles, we saw how to use “real” UART, and looked into the trick used by Arduino to automatically reset boards when uploading firmware. Today, we’ll look into how Espressif does something similar, using even more tricks. “Real” UART on the Saola As usual, let’s first simply connect the UART adapter. Again, we connect … Continue reading Espressif’s Automatic Reset → The post Espressif’s Automatic Reset appeared first on Quentin Santos.

11 hours ago 2 votes
How I built a chatbot with my dog

Lessons for AI prompting and retrieval

14 hours ago 2 votes
a whippet waypoint

Hey peoples! Tonight, some meta-words. As you know I am fascinated by compilers and language implementations, and I just want to know all the things and implement all the fun stuff: intermediate representations, flow-sensitive source-to-source optimization passes, register allocation, instruction selection, garbage collection, all of that. It started long ago with a combination of curiosity and a hubris to satisfy that curiosity. The usual way to slake such a thirst is structured higher education followed by industry apprenticeship, but for whatever reason my path sent me through a nuclear engineering bachelor’s program instead of computer science, and continuing that path was so distasteful that I noped out all the way to rural Namibia for a couple years. Fast-forward, after 20 years in the programming industry, and having picked up some language implementation experience, a few years ago I returned to garbage collection. I have a good level of language implementation chops but never wrote a memory manager, and Guile’s performance was limited by its use of the Boehm collector. I had been on the lookout for something that could help, and when I learned of it seemed to me that the only thing missing was an appropriate implementation for Guile, and hey I could do that!Immix I started with the idea of an -style interface to a memory manager that was abstract enough to be implemented by a variety of different collection algorithms. This kind of abstraction is important, because in this domain it’s easy to convince oneself that a given algorithm is amazing, just based on vibes; to stay grounded, I find I always need to compare what I am doing to some fixed point of reference. This GC implementation effort grew into , but as it did so a funny thing happened: the as a direct replacement for the Boehm collector maintained mark bits in a side table, which I realized was a suitable substrate for Immix-inspired bump-pointer allocation into holes. I ended up building on that to develop an Immix collector, but without lines: instead each granule of allocation (16 bytes for a 64-bit system) is its own line.MMTkWhippetmark-sweep collector that I prototyped The is funny, because it defines itself as a new class of collector, fundamentally different from the three other fundamental algorithms (mark-sweep, mark-compact, and evacuation). Immix’s are blocks (64kB coarse-grained heap divisions) and lines (128B “fine-grained” divisions); the innovation (for me) is the discipline by which one can potentially defragment a block without a second pass over the heap, while also allowing for bump-pointer allocation. See the papers for the deets!Immix papermark-regionregionsoptimistic evacuation However what, really, are the regions referred to by ? If they are blocks, then the concept is trivial: everyone has a block-structured heap these days. If they are spans of lines, well, how does one choose a line size? As I understand it, Immix’s choice of 128 bytes was to be fine-grained enough to not lose too much space to fragmentation, while also being coarse enough to be eagerly swept during the GC pause.mark-region This constraint was odd, to me; all of the mark-sweep systems I have ever dealt with have had lazy or concurrent sweeping, so the lower bound on the line size to me had little meaning. Indeed, as one reads papers in this domain, it is hard to know the real from the rhetorical; the review process prizes novelty over nuance. Anyway. What if we cranked the precision dial to 16 instead, and had a line per granule? That was the process that led me to Nofl. It is a space in a collector that came from mark-sweep with a side table, but instead uses the side table for bump-pointer allocation. Or you could see it as an Immix whose line size is 16 bytes; it’s certainly easier to explain it that way, and that’s the tack I took in a .recent paper submission to ISMM’25 Wait what! I have a fine job in industry and a blog, why write a paper? Gosh I have meditated on this for a long time and the answers are very silly. Firstly, one of my language communities is Scheme, which was a research hotbed some 20-25 years ago, which means many practitioners—people I would be pleased to call peers—came up through the PhD factories and published many interesting results in academic venues. These are the folks I like to hang out with! This is also what academic conferences are, chances to shoot the shit with far-flung fellows. In Scheme this is fine, my work on Guile is enough to pay the intellectual cover charge, but I need more, and in the field of GC I am not a proven player. So I did an atypical thing, which is to cosplay at being an independent researcher without having first been a dependent researcher, and just solo-submit a paper. Kids: if you see yourself here, just go get a doctorate. It is not easy but I can only think it is a much more direct path to goal. And the result? Well, friends, it is this blog post :) I got the usual assortment of review feedback, from the very sympathetic to the less so, but ultimately people were confused by leading with a comparison to Immix but ending without an evaluation against Immix. This is fair and the paper does not mention that, you know, I don’t have an Immix lying around. To my eyes it was a good paper, an , but, you know, just a try. I’ll try again sometime.80% paper In the meantime, I am driving towards getting Whippet into Guile. I am hoping that sometime next week I will have excised all the uses of the BDW (Boehm GC) API in Guile, which will finally allow for testing Nofl in more than a laboratory environment. Onwards and upwards! whippet regions? paper??!?

7 hours ago 2 votes
Write the most clever code you possibly can

I started writing this early last week but Real Life Stuff happened and now you're getting the first-draft late this week. Warning, unedited thoughts ahead! New Logic for Programmers release! v0.9 is out! This is a big release, with a new cover design, several rewritten chapters, online code samples and much more. See the full release notes at the changelog page, and get the book here! Write the cleverest code you possibly can There are millions of articles online about how programmers should not write "clever" code, and instead write simple, maintainable code that everybody understands. Sometimes the example of "clever" code looks like this (src): # Python p=n=1 exec("p*=n*n;n+=1;"*~-int(input())) print(p%n) This is code-golfing, the sport of writing the most concise code possible. Obviously you shouldn't run this in production for the same reason you shouldn't eat dinner off a Rembrandt. Other times the example looks like this: def is_prime(x): if x == 1: return True return all([x%n != 0 for n in range(2, x)] This is "clever" because it uses a single list comprehension, as opposed to a "simple" for loop. Yes, "list comprehensions are too clever" is something I've read in one of these articles. I've also talked to people who think that datatypes besides lists and hashmaps are too clever to use, that most optimizations are too clever to bother with, and even that functions and classes are too clever and code should be a linear script.1. Clever code is anything using features or domain concepts we don't understand. Something that seems unbearably clever to me might be utterly mundane for you, and vice versa. How do we make something utterly mundane? By using it and working at the boundaries of our skills. Almost everything I'm "good at" comes from banging my head against it more than is healthy. That suggests a really good reason to write clever code: it's an excellent form of purposeful practice. Writing clever code forces us to code outside of our comfort zone, developing our skills as software engineers. Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you [will get excellent debugging practice at exactly the right level required to push your skills as a software engineer] — Brian Kernighan, probably There are other benefits, too, but first let's kill the elephant in the room:2 Don't commit clever code I am proposing writing clever code as a means of practice. Being at work is a job with coworkers who will not appreciate if your code is too clever. Similarly, don't use too many innovative technologies. Don't put anything in production you are uncomfortable with. We can still responsibly write clever code at work, though: Solve a problem in both a simple and a clever way, and then only commit the simple way. This works well for small scale problems where trying the "clever way" only takes a few minutes. Write our personal tools cleverly. I'm a big believer of the idea that most programmers would benefit from writing more scripts and support code customized to their particular work environment. This is a great place to practice new techniques, languages, etc. If clever code is absolutely the best way to solve a problem, then commit it with extensive documentation explaining how it works and why it's preferable to simpler solutions. Bonus: this potentially helps the whole team upskill. Writing clever code... ...teaches simple solutions Usually, code that's called too clever composes several powerful features together — the "not a single list comprehension or function" people are the exception. Josh Comeau's "don't write clever code" article gives this example of "too clever": const extractDataFromResponse = (response) => { const [Component, props] = response; const resultsEntries = Object.entries({ Component, props }); const assignIfValueTruthy = (o, [k, v]) => (v ? { ...o, [k]: v } : o ); return resultsEntries.reduce(assignIfValueTruthy, {}); } What makes this "clever"? I count eight language features composed together: entries, argument unpacking, implicit objects, splats, ternaries, higher-order functions, and reductions. Would code that used only one or two of these features still be "clever"? I don't think so. These features exist for a reason, and oftentimes they make code simpler than not using them. We can, of course, learn these features one at a time. Writing the clever version (but not committing it) gives us practice with all eight at once and also with how they compose together. That knowledge comes in handy when we want to apply a single one of the ideas. I've recently had to do a bit of pandas for a project. Whenever I have to do a new analysis, I try to write it as a single chain of transformations, and then as a more balanced set of updates. ...helps us master concepts Even if the composite parts of a "clever" solution aren't by themselves useful, it still makes us better at the overall language, and that's inherently valuable. A few years ago I wrote Crimes with Python's Pattern Matching. It involves writing horrible code like this: from abc import ABC class NotIterable(ABC): @classmethod def __subclasshook__(cls, C): return not hasattr(C, "__iter__") def f(x): match x: case NotIterable(): print(f"{x} is not iterable") case _: print(f"{x} is iterable") if __name__ == "__main__": f(10) f("string") f([1, 2, 3]) This composes Python match statements, which are broadly useful, and abstract base classes, which are incredibly niche. But even if I never use ABCs in real production code, it helped me understand Python's match semantics and Method Resolution Order better. ...prepares us for necessity Sometimes the clever way is the only way. Maybe we need something faster than the simplest solution. Maybe we are working with constrained tools or frameworks that demand cleverness. Peter Norvig argued that design patterns compensate for missing language features. I'd argue that cleverness is another means of compensating: if our tools don't have an easy way to do something, we need to find a clever way. You see this a lot in formal methods like TLA+. Need to check a hyperproperty? Cast your state space to a directed graph. Need to compose ten specifications together? Combine refinements with state machines. Most difficult problems have a "clever" solution. The real problem is that clever solutions have a skill floor. If normal use of the tool is at difficult 3 out of 10, then basic clever solutions are at 5 out of 10, and it's hard to jump those two steps in the moment you need the cleverness. But if you've practiced with writing overly clever code, you're used to working at a 7 out of 10 level in short bursts, and then you can "drop down" to 5/10. I don't know if that makes too much sense, but I see it happen a lot in practice. ...builds comradery On a few occasions, after getting a pull request merged, I pulled the reviewer over and said "check out this horrible way of doing the same thing". I find that as long as people know they're not going to be subjected to a clever solution in production, they enjoy seeing it! Next week's newsletter will probably also be late, after that we should be back to a regular schedule for the rest of the summer. Mostly grad students outside of CS who have to write scripts to do research. And in more than one data scientist. I think it's correlated with using Jupyter. ↩ If I don't put this at the beginning, I'll get a bajillion responses like "your team will hate you" ↩

2 days ago 3 votes