Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
28
You might have noticed the last time you were doing chores or tackling a tricky problem at work, that when something is hard it's not always hard in the same way. The hard you experience when doing chores, that mindnumbing , I-can't-be-bothered hard, is different to the hard you might experience when debugging an elusive bug in a distributed system. Why? › The 2 axes of difficulty There are many things that determine whether a task is difficult or not, but you can make a start on getting more granular by splitting difficulty into two axes: simple-complex and easy-hard. What's the difference? A sudoku puzzle is complex. It depends on your skill at sudoku puzzles, and you're able to do more complex sudoku puzzles the more you practice and hone this skill. A task is complex when the number of people that could do it tends toward zero. If a lot of people could do it, that would make it simple. The other scale measures how much effort must be expended to complete the task. If you're put off...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from samwho.dev

Turing Machines

body { text-wrap: pretty; } @media (prefers-reduced-motion: reduce) { * { transition: none; animation: none; } } turing-machine { width: 100%; display: block; position: relative; padding-bottom: 1em; } turing-machine .program-container { position: relative; display: flex; justify-content: center; } turing-machine table { border: none; font-family: Fira Code; border-collapse: collapse; border-spacing: 0; margin: 1px; margin-top: 0.5em; width: auto; } turing-machine thead td { text-align: center; } turing-machine td { text-align: left; padding-left: 3vw; padding-right: 3vw; padding-top: 0.2em; padding-bottom: 0.2em; border: 1px dashed #bbbbbb; } turing-machine thead td { border: 0; } turing-machine .container { z-index: 1; background-color: white; } turing-machine .svg-container { padding-bottom: 1px; padding-top: 0.5em; line-height: 0; overflow-x: scroll; overflow-y: hidden; position: relative; scrollbar-width: none; cursor: grab; cursor: -webkit-grab; } turing-machine .svg-container::-webkit-scrollbar { display: none; } turing-machine .controls-container { line-height: 1.5; display: flex; align-items: center; justify-content: center; gap: 0.3em; margin-top: 0.2em; padding-bottom: 0.2em; } turing-machine .controls-container button { color: black; background-color: #aaaaaa; border-radius: 30%/50%; padding: 0.3em; height: 2em; min-width: 3em; text-align: center; border: none; cursor: pointer; } turing-machine .controls-container select { color: black; border: 2px solid #aaaaaa; background-color: #ffffff; border-radius: 30%/50%; padding: 0.15em; height: 2em; min-width: 3em; text-align: center; cursor: pointer; font-family: "Fira Code"; } turing-machine .controls-container button:disabled { background-color: #eeeeee; color: #aaaaaa; cursor: auto; } turing-machine .controls-container button:disabled:hover { background-color: #eeeeee; } turing-machine .controls-container button:hover { background-color: #999999; } turing-machine .controls-container button:active { background-color: #888888; } turing-machine .error { width: 80%; margin-top: 0.5em; margin-bottom: 0.5em; border-radius: 10px; background-color: #ffdddd; color: red; font-family: "Fira Code"; font-size: 1.5em; font-weight: bold; text-align: center; margin: auto; } .dragging { cursor: grabbing !important; cursor: -webkit-grabbing !important; } .sticky { position: sticky !important; top: 0; } turing-machine .gradient { content: ""; z-index: 2; position: sticky; top: 0; left: 0; pointer-events: none; background-image: linear-gradient(90deg, rgba(255,255,255,1) 0%, rgba(255,255,255,0) 20%, rgba(255,255,255,0) 80%, rgba(255,255,255,1) 100%); width: 100%; margin-top: -62px; height: 64px; } turing-machine svg { user-select: none; /*touch-action: none;*/ } turing-machine svg text { font-family: "Fira Code"; } turing-machine tr { padding-top: 0.5em; padding-bottom: 0.5em; } turing-machine .instruction { color: black; display: inline-block; border-radius: 0.5em; padding: 0.1em; min-width: 4.5ch; height: 100%; text-align: center; } turing-machine .pointer { display: inline-block; border-radius: 0.5em; position: absolute; z-index: -1; } turing-machine program { display: none; } turing-machine controls { display: none; } turing-machine.heading svg text { font-family: "Lora"; font-weight: bold; } figure.hero { font-family: "Lora"; text-align: center; padding-top: 1em; padding-bottom: 2em; margin-top: 1em; width: 100%; max-width: 100%; } figure.hero turing-machine { padding: 0; margin: 0; } figure.hero turing-machine .svg-container { margin: 0; padding-top: 0; } figure.hero turing-machine .gradient { top: 0; } figure.hero .signature { margin-top: 0.5rem; max-width: 200px; } figure.hero .portrait { margin-top: 1em; width: 250px; max-width: 250px; } figure.hero p { padding: 0; font-size: 0.9em; } figure.hero figcaption { font-family: "Lora"; font-style: small-caps; font-size: 0.8em; } @keyframes pulse { 0% { transform: scale(1); } 50% { transform: scale(1.1); } 100% { transform: scale(1); } } .symbol { display: inline-block; border: 1px solid black; width: 1.5em; height: 1.5em; font-family: "Fira Code"; text-align: center; } .inline-instruction { display: inline-block; font-family: "Fira Code"; background-color: rgba(0, 158, 115, 0.7); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-instruction) { margin-top: 0.35em; margin-bottom: 0.35em; } .inline-state { display: inline-block; font-family: "Fira Code"; background-color: rgb(86, 180, 233); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-state) { margin-top: 0.35em; margin-bottom: 0.35em; } .inline-value { display: inline-block; font-family: "Fira Code"; background-color: rgb(230, 159, 0); color: black; border-radius: 0.5em; padding: 0.1em; min-width: 3ch; padding-left: 0.2em; padding-right: 0.2em; text-align: center; } li:has(.inline-value) { margin-top: 0.35em; margin-bottom: 0.35em; } figure { margin: auto; margin-top: 2em; margin-bottom: 2em; } figure img { max-width: 400px; } figure figcaption { max-width: 500px; color: #666; font-size: 0.8em; font-style: italic; text-align: center; font-family: "Lora"; text-wrap: pretty; margin: auto; } ALAN M. TURING 23 June 1912 – 7 June 1954 B B | | L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) L P( ) -> F In 1928, David Hilbert, one of the most influential mathematicians of his time, asked whether it is possible to create an algorithm that could determine the correctness of a mathematical statement. This was called the "decision problem," or "Entscheidungsproblem" in Hilbert's native German. In 1936 both Alan Turing and Alonzo Church independently reached the conclusion, using different methods, that the answer is "no." The way Turing did it was to imagine a "universal machine", a machine that could compute anything that could be computed. This idea, the "Turing machine" as Alonzo Church christened it in 1937, laid the foundations for the device you are using to read this post. If we look hard enough we can see Turing's legacy in today's CPUs. By the end of this post, you will know: What a Turing machine is. What can and cannot be computed. What it means to be Turing complete. How modern computers relate to Turing machines. How to write and run your own programs for a Turing machine. # What is a Turing machine? You might expect a universal machine, capable of computing anything that can be computed, to be a complex device. Nothing could be further from the truth. The machine has just 4 parts, and the language used to program it has just 5 instructions. theoretical machine. It was created as a thought experiment to explore the limits of what can be computed. Some have of course been built, but in 1936 they existed only in the heads of Turing and those who read his paper. The parts are: a !tape, a !head, a !program, and a !state. When you're ready, go ahead and press !play. start What you're seeing here is a program that executes P(0) to print 0 to the tape, moves the head right with the R instruction, then !jumps back to the start. It will go on printing 0s forever. At any point, feel free to !pause, step the machine !forwards or !backwards one instruction at a time, or !restart the program from the beginning. There is also a speed selector on the far right of the controls if you want to speed up the machine. Notice that !state and !value never change. Every time the machine performs a !jump, the current state and value are used to pick the correct next row of instructions to execute. This program only has a single state, start, and every time it jumps, the symbol under the !head is !blank. Let's take a look at a program with multiple states. one one | | P(1) R -> zero This program prints alternating 0s and 1s to the tape. It has 2 states, zero and one, to illustrate what happens when you !jump to a different state. Things moving too fast? The slider below can be used to adjust the speed of all the Turing machines on this page. 100% You can also achieve this same result by using a single !state and alternating the !value. Here's an example of that: start start | 1 | R P(0) -> start start | 0 | R P(1) -> start The !value column always stays up to date with what the current symbol is under the !head, then when we !jump that value is used to know which row of instructions to execute. Combining state and value gives us a surprising amount of control over what our !program does. We've so far seen 3 instructions: P prints a given symbol to the tape. R moves the tape head right. ↪︎ jumps to a given state. There are 2 more: L moves the tape head left. H halts the machine. 1 1 | | P(a) L -> 2 2 | | P(l) L -> 3 3 | | P(A) H This program prints the word "Alan" from right to left then halts. If you can't see the full word, you can drag the !tape left and right. If the machine has halted, you can use !restart to start it again from the beginning. All of it! You're probably not going to get Crysis running at 60fps on a simulated Turing machine, but all of the calculations required to render each frame can be done with just these 5 instructions. Everything you have ever seen a computer do can be done with a Turing machine. We'll see a glimpse of how that can work in practice a little later. The last example I want to show you before we move on is the very first program Alan Turing showed the world. It's the first program featured in his 1936 paper: "On Computable Numbers, with an application to the Entsheidungsproblem." c c | | R -> e e | | P(1) R -> k k | | R -> b Turing liked to leave spaces between symbols, going as far as to even define them as "F-squares" and "E-squares". F for figure, and E for erasable. His algorithms would often make use of E-squares to help the machine remember the location of specific !tape squares. # What does it mean to compute? Something is said to be "computable" if there exists an algorithm that can get from the given input to the expected output. For example, adding together 2 integers is computable. Here I'm giving the machine a !tape that starts out with the values 2 and 6 in binary separated by a !blank. b1 b1 | 1 | R -> b1 b1 | | R -> b2 b2 | 0 | R -> b2 b2 | 1 | R -> b2 b2 | | L -> dec dec | 0 | P(1) L -> dec dec | 1 | P(0) L -> b3 dec | | H b3 | 0 | L -> b3 b3 | 1 | L -> b3 b3 | | L -> inc inc | 0 | P(1) R -> b1 inc | 1 | P(0) L -> inc inc | | P(1) R -> b1 This program adds the two numbers together, arriving at the answer 8. It does this by decrementing from the right number and incrementing the left number until the right number is 0. Here's the purpose of each state: b1 Move right until the first !blank square is found. This is to navigate past the first number. b2 Move right until the second !blank square is found. This is to navigate past the second number. dec Decrement the current number by 1. In practice this will always be the right number. It decrements by flipping bits until it either reaches a 1, where it will navigate back to the left number, or a !blank, which it will interpret as the number having hit 0. b3 Move left until the first !blank square again. This is only ever used after we've decremented the rightmost number. We can't reuse the b1 state here because when we reach the !blank, we want to jump to inc. inc Increment the current number by 1. Similar to decrementing, this will only ever happen on the leftmost number in practice. This is done by flipping bits until we reach a 0, at which point we navigate back to the right number. That we can write this program at all is proof that addition is computable, but it also implies that all integers are computable. If we can add any 2 integers, we can compute any other integer. 1 is 0+1, 2 is 1+1, 3 is 2+1, and so on. # Binary vs Decimal You may have wondered why I'm choosing to work with binary numbers rather than decimal. It's not just because that's how modern computers work. I'm going to show you 2 examples, and from those examples you'll be able to see why modern computers choose to work in binary. The first example is a program that increments a binary number in an endless loop. move move | 0 | R -> move move | | L -> flip flip | 0 | P(1) R -> move flip | 1 | P(0) L -> flip flip | | P(1) R -> move The second example is a program that increments a decimal number in an endless loop. back inc | 1 | P(2) -> back inc | 2 | P(3) -> back inc | 3 | P(4) -> back inc | 4 | P(5) -> back inc | 5 | P(6) -> back inc | 6 | P(7) -> back inc | 7 | P(8) -> back inc | 8 | P(9) -> back inc | 9 | P(0) L -> inc inc | | P(1) -> back back | | L -> inc back | * | R -> back These two programs are doing the same thing, but the program for manipulating decimal numbers is much longer. We've even introduced some new syntax, the * symbol, to handle a !value under the !head that does not match any of the other values for that !state. It's for this reason when programming Turing machines we prefer binary numbers: the programs end up being shorter and easier to reason about. This benefit also translates to the physical world. Components that switch between 2 states are cheaper, smaller, and more reliable than components that switch between 10. It was more practical to build computers that worked in binary than ones that work in decimal, though attempts to build decimal computers were made. # What can't be computed? To approach this question we need to explain the "Halting problem." It goes like this: The answer is no, and this is what Turing essentially proved. The proof is complicated and I'm not ashamed to admit I don't understand it, but there is an example I can give you that can be intuitively understood to be "undecidable." Imagine you write a program that takes as its input the program being used to decide whether it will halt or not. What it then does is run the decider program on itself, and then do the opposite of what the decider program says. function undecidable(willHalt) { if (willHalt(undecidable)) { while (true); } else { return true; } } This program intentionally enters an infinite loop if it is told it will halt, and halts if it is told it will run forever. It seems like a silly example, the kind of answer a cheeky high school student might try to get away with, but it is a legitimate counterexample to the idea that the halting problem can be solved. If you were to imagine encoding the program and input into something that could be represented on the !tape, there would be no !program that could determine whether the program would halt or not. Imagining this encoding becomes quite natural when you realise that modern programs are encoded as binary data to be saved to disk. # What does it mean to be Turing complete? If you've been involved in the world of programming for more than a few years, there's a good chance you've come across the term "Turing complete." Most likely in the context of things that really ought not to be Turing complete, like C++ templates, TypeScript's type system or Microsoft Excel. But what does it mean? Like the Halting problem, the proof is complicated but there's a straightforward test you can apply to something to judge it Turing complete: I've written this post, with the Turing machine simulations, in JavaScript. Therefore JavaScript is Turing complete. The C++ template example given above simulates a Turing machine in C++'s template system. The TypeScript example takes the route of writing an interpreter for a different Turing complete language. You're right, and everyone tends to cheat a bit with the definition. When someone says something is Turing complete, what they mean is it would be Turing complete if it had an infinite amount of memory. The infinite tape limitation means no Turing machine could ever exist in our physical reality, so that requirement tends to get waived. # How does this all relate to modern computers? If you read around the topic of Turing machines outside of this post, you might see it said that modern computers are effectively Turing machines. You would be forgiven for finding it difficult to imagine how you go from adding 2 integers in binary on a !tape to running a web browser, but the line is there. A key difference between our Turing machine and the device you're reading this on is that your device's CPU has "registers." These are small pieces of memory that live directly on the CPU and are used to store values temporarily while they're being operated on. Values are being constantly loaded from memory into registers and saved back again. You can think of registers as variables for your CPU, but they can only store fixed-size numbers. We can create registers in our Turing machine. We can do this by creating a "format" for our tape. Here we define 3 registers: A, B, and C. Each register contains a 3 bits and can store numbers between 0 and 7. Then at the far left we have an H, which stands for "home", which will help us navigate. To increment register C, we can write a program like this: goto_c goto_c | C | R R R -> inc inc | 0 | P(1) -> goto_h goto_h | * | L -> goto_h goto_h | H | H We're making a lot more liberal use of the * symbol here to help us navigate to specific parts of the !tape without having to enumerate all possible values that could be under the !head on the way there. This program is effectively equivalent to the following x86 assembly code, if x86 had a register named c: mov c, 0 ; Load 0 into c inc c ; Increment c by 1 If we wanted to add values in A and B, storing the result in C, we need to do more work. Here's the assembly code we're trying to replicate: mov a, 2 ; Load 2 into a mov b, 3 ; Load 3 into b add c, a ; Add a to c add c, b ; Add b to c Before you scroll down I will warn you that the program is long and complex. It is the last program we will see in this post, and I don't expect you to understand it in full to continue to the end. Its main purpose is to show you that we can implement operations seen in modern assembly code on a Turing machine. initb initb | * | R P(0) R P(1) R P(1) R -> start start | * | L -> start start | H | R -> go_a go_a | * | R -> go_a go_a | A | R R R -> dec_a dec_a | 0 | P(1) L -> cry_a dec_a | 1 | P(0) -> go_c1 cry_a | 0 | P(1) L -> cry_a cry_a | 1 | P(0) -> go_c1 cry_a | * | R P(0) R P(0) R P(0) -> goto_b go_c1 | * | R -> go_c1 go_c1 | C | R R R -> inc_c1 inc_c1 | 0 | P(1) -> h2a inc_c1 | 1 | P(0) L -> cry_ca cry_ca | 0 | P(1) -> h2a cry_ca | 1 | P(0) L -> cry_ca cry_ca | * | R -> h2a h2a | * | L -> h2a h2a | H | R -> go_a goto_b | * | R -> goto_b goto_b | B | R R R -> dec_b dec_b | 0 | P(1) L -> dec_bc dec_b | 1 | P(0) -> go_c2 dec_bc | 0 | P(1) L -> dec_bc dec_bc | 1 | P(0) -> go_c2 dec_bc | * | R P(0) R P(0) R P(0) -> end go_c2 | * | R -> go_c2 go_c2 | C | R R R -> inc_c2 inc_c2 | 0 | P(1) -> go_hb inc_c2 | 1 | P(0) L -> cry_cb cry_cb | 0 | P(1) -> go_hb cry_cb | 1 | P(0) L -> cry_cb cry_cb | * | R -> go_hb go_hb | * | L -> go_hb go_hb | H | R -> goto_b end | * | L -> end end | H | H This is painfully laborious, and it doesn't even precisely match the assembly code. It destroys the values in A and B as it adds them together, and it doesn't handle overflow. But it's a start, and I hope it gives you a glimpse of how this theoretical machine can be built up to operate like a modern CPU. If you watch the program run to completion, something that might strike you is just how much work is required to do something as simple as adding 2 numbers. Turing machines were not designed to be practical, Turing never intended anyone to go out and build one of these machines in the hope it will be useful. Modern machines have circuits within them that can add 2 numbers together by passing 2 electrical signals in and getting the sum as a single signal out. This happens in less than a nanosecond. Modern machines have memory where any byte can be accessed at any time, no tape manipulation required. This memory access takes a few dozen nanoseconds. # Writing and running your own programs I've built a web-based development environment for writing programs that will run on the Turing machine visualisations you've seen throughout the post. You can access the editor here. I encourage you to play around with it. Set a simple goal, like adding together 2 numbers without going back to look at the way I did it in the post. It's a great way to get a feel for how the machine works. # Conclusion To recap, we've covered: What a Turing machine is. What can and cannot be computed. What it means to be Turing complete. How modern computers relate to Turing machines. And you now have access to an environment for writing and running your own Turing machine programs. If you use it to make something neat, please do reach out to me and show me! My email address is hello@samwho.dev. # Further reading Turing's original paper on computable numbers. The Annotated Turing I referenced this throughout the making of this post. It is a fabulous read, strongly recommend. Alan Turing: The Enigma by Andrew Hodges. An excellent biography of Turing, I read this during the writing of this post. Calculating a Mandelbrot Set using a Turing Machine. This was exceptionally useful for me to understand how to get from Turing machines to modern computers. # Acknowledgements These posts are never a solo effort, and this one is no exception. Sincere thanks go to the following people: To my wife, Sophie, who drew the biographical sketches you're seeing at the end here, and for putting up with my incessant talking about this post the last 2 weeks. Everyone who let me watch them read this post in real-time over a video call and gave me feedback: Jaga Santagostino, Robert Aboukhalil, Tarun Verghis, Tyler Sparks. Everyone who came to hang out and help out in the Twitch streams when I was building out the early versions of the Turing machine visualisations. Everyone who supports my work on Patreon. Everyone who works on the tools used to build this post: TypeScript, Bun, Two.js, Tween.js, Monaco, Peggy, Zed, and many other indirect dependencies. We really do stand upon the shoulders of giants. Hut 8, Bletchley Park, where Turing worked during World War II. It was in this hut that Alan worked with his team to break the German Naval Enigma code.

2 months ago 78 votes
A Commitment to Art and Dogs

.dog-line { display: flex; flex-wrap: nowrap; flex-direction: row; width: 100%; height: 10rem; margin-top: 2rem; margin-bottom: 2rem; } .dog-line img { flex-grow: 1; height: auto; margin: 0; padding: 0; object-fit: contain; } .dog-grid { display: grid; grid-template-columns: repeat(4, 1fr); grid-gap: 1rem; margin-top: 2rem; margin-bottom: 2rem; } Back in Memory Allocation, I introduced Haskie. The idea behind Haskie was to create a character that could ask questions the reader might have, and to "soften" the posts to make them feel less intimidating. I got some feedback from people that Haskie was a bit too childish, and didn't feel like he belonged in posts about serious topics. This feedback was in the minority, though, and most people liked him. So I kept him and used him again in Hashing. Having a proxy to the reader was useful. I could anticipate areas of confusion and clear them up without creating enormous walls of text. I don't like it when the entire screen is filled with text, I like to break it up with images and interactive elements. And now dogs. Then in Bloom Filters, I found myself needing a character to represent the "adult in the room." If Haskie was my proxy to the reader, this new character would serve as a proxy to all of the material I learned from in the writing of the post. This is Sage. I liked the idea of having a cast of characters, each with their own personality and purpose. But I had a few problems. # Problems Both Haskie and Sage, because I have no artistic ability, were generated by AI. Back when I made them I was making no money from this blog, and I had no idea if I was going to keep them around. I didn't want to invest money in an idea that could flop, so I didn't feel bad about using AI to try it out. Since then, however, I have been paid twice to write posts for companies, and I know that I'm keeping the dogs. It wasn't ethical to continue piggybacking on AI. While ethics were the primary motivation, there were some other smaller problems with the dogs: The visual style of them, while I did like it, never felt like it fit with the rest of my personal brand. It was difficult to get AI to generate consistent dogs. You'll notice differences in coat colouration and features between variants of the same dog. The AI generated images look bad at small sizes. So I worked with the wonderful Andy Carolan to create a new design for my dogs. A design that would be consistent, fit with my brand, and look good at any size. # Haskie, Sage, and Doe The redesigned dogs are consistent, use simple colours and shapes, and use the SVGs file format to look good at any size. Each variant clocks in at around 20kb, which is slightly larger than the small AI-generated images, but I'll be able to use them at any size. Together the dogs represent a family unit: Sage as the dad, Haskie as the youngest child, and Doe as his older sister. They also come in a variety of poses, so I can use them to represent different emotions or actions. We were careful to make the dogs recognisable apart. They differ in colour, ear shape, tail shape, and collar tag. Sage and Doe have further distinguishing features: Sage with his glasses, and Doe with her bandana. Doe's bandana uses the same colours as the transgender flag, to show my support for the trans community and as a nod to her identity. # Going forward I'm so happy with the new dogs, and plan to use them in my posts going forward. I suspect I will, at some point, replace the dogs in my old posts as well. I don't plan to add any more characters, and I want to be careful to avoid overusing them. I don't want them to become a crutch, or to distract from the content of the posts. I also haven't forgotten the many people that pointed out to me that you can't pet the dogs. I'm working on it.

9 months ago 84 votes
Bloom Filters

.bf { width: 100%; height: 150px; } @media only screen and (min-width: 320px) and (max-width: 479px) { .bf { height: 200px; } } @media only screen and (min-width: 480px) and (max-width: 676px) { .bf { height: 200px; } } @media only screen and (min-width: 677px) and (max-width: 991px) { .bf { height: 150px; } } form { display: flex; flex-direction: column; align-items: center; justify-content: stretch; } input { border: 1px solid rgb(119, 119, 119); padding: 0.25rem; border-radius: 0.25rem; height: 2em; line-height: 2em; } .aside { padding: 2rem; width: 100vw; position: relative; margin-left: -50vw; left: 50%; background-color: #eeeeee; display: flex; align-items: center; flex-direction: column; } .aside > * { flex-grow: 1; } .aside p { padding-left: 1rem; padding-right: 1rem; max-width: 780px; font-style: italic; font-family: Lora, serif; text-align: center; } Everyone has a set of tools they use to solve problems. Growing this set helps you to solve ever more difficult problems. In this post, I'm going to teach you about a tool you may not have heard of before. It's a niche tool that won't apply to many problems, but when it does you'll find it invaluable. It's called a "bloom filter." Before you continue! This post assumes you know what a hash function is, and if you don't it's going to be tricky to understand. Sam has written a post about hash functions, and recommendeds that you read this first. # What bloom filters can do Bloom filters are similar to the Set data structure. You can add items to them, and check if an item is present. Here's what it might look like to use a bloom filter in JavaScript, using a made-up BloomFilter class: let bf = new BloomFilter(); bf.add("Ant"); bf.add("Rhino"); bf.contains("Ant"); // true bf.contains("Rhino"); // true While this looks almost identical to a Set, there are some key differences. Bloom filters are what's called a probabalistic data structure. Where a Set can give you a concrete "yes" or "no" answer when you call contains, a bloom filter can't. Bloom filters can give definite "no"s, but they can't be certain about "yes." In the example above, when we ask bf if it contains "Ant" and "Rhino", the true that it returns isn't a guarantee that they're present. We know that they're present because we added them just a couple of lines before, but it would be possible for this to happen: let bf = new BloomFilter(); bf.add("Ant"); bf.add("Rhino"); bf.contains("Fox"); // true We'll demonstrate why over the course of this post. For now, we'll say that when bloom filters return true it doesn't mean "yes", it means "maybe". When this happens and the item has never been added before, it's called a false-positive. The opposite, claiming "no" when the answer is "yes," is called a false-negative. A bloom filter will never give a false-negative, and this is what makes them useful. It's not strictly lying, it's just not giving you a definite answer. Let's look at an example where we can use this property to our advantage. # When bloom filters are useful Imagine you're building a web browser, and you want to protect users from malicious links. You could build and maintain a list of all known malicious links and check the list every time a user navigates the browser. If the link they're trying to visit is in the list, you warn the user that they might be about to visit a malicious website. If we assume there are, say, 1,000,000 malicious links on the Internet, and each link is 20 characters long, then the list of malicious links would be 20MB in size. This isn't a huge amount of data, but it's not small either. If you have lots of users and want to keep this list up to date, the bandwidth could add up. However, if you're happy to accept being wrong 0.0001% of the time (1 in a million), you could use a bloom filter which can store the same data in 3.59MB. That's an 82% reduction in size, and all it costs you is showing the user an incorrect warning 1 in every million links visited. If you wanted to take it even further, and you were happy to accept being wrong 0.1% of the time (1 in 1000), the bloom filter would only be 1.8MB. This use-case isn't hypothetical, either. Google Chrome used a bloom filter for this exact purpose until 2012. If you were worried about showing a warning when it wasn't needed, you could always make an API that has the full list of malicious links in a database. When the bloom filter says "maybe," you would then make an API call to check the full list to be sure. No more spurious warnings, and the bloom filter would save you from having to call the API for every link visited. # How bloom filters work At its core, a bloom filter is an array of bits. When it is created, all of the bits are set to 0. We're going to represent this as a grid of circles, with each circle representing 1 bit. Our bloom filters in this post are all going to have 32 bits in total. this one and let me know what you think. Click here to go back to normal. To add an item to the bloom filter, we're going to hash it with 3 different hash functions, then use the 3 resulting values to set 3 bits. If you're not familiar with hashing, I recommend reading my post about it before continuing. For this post I'm choosing to use 3 of the SHA family of hash functions: sha1, sha256, and sha512. Here's what our bloom filter looks like if we add the value "foo" to it: The bits in positions 15, 16 and 27 have been set. Other bits, e.g. 1 have not been set. You can hover or tap the bits in this paragraph to highlight them in the visualisation. We get to this state by taking the hash value of "foo" for each of our 3 hash functions and modulo it by the number of bits in our bloom filter. Modulo gets us the remainder when dividing by 32, so we get 27 with sha1, 15 with sha256 and 16 with sha512. The table below shows what's happening, and you can try inputting your own values to see what bits they would set if added. Go ahead and add a few of your own values to our bloom filter below and see what happens. There's also a check button that will tell you if a value is present within the bloom filter. A value is only considered present if all of the bits checked are set. You can start again by hitting the clear button. You might occasionally notice that only 2, or even 1, bits get set. This happens when 2 or more of our hash functions produce the same value, or we attempt to set a bit that has already been set. Taking that a bit further, have a think about the implications of a bloom filter that has every bit set. bit is set, then won't the bloom filter claim it contains every item you check? That's a false-positive every time! Exactly right. A bloom filter with every bit set is equivalent to a Set that always returns true for contains. It will claim to contain everything you ask it about, even if that thing was never added. # False-positive rates The rate of false-positives in our bloom filter will grow as the percentage of set bits increases. Drag the slider below the graph to see how the false-positive rate changes as the number of set bits increases. It grows slowly at first, but as we get closer to having all bits set the rate increases. This is because we calculate the false-positive rate as x^3, where x is the percentage of set bits and 3 is the number of hash functions used. To give an example of why we calculate it with this formula, imagine we have a bloom filter with half of its bits set, x = 0.5. If we assume that our hash function has an equal chance of setting any of the bits, then the chance that all 3 hash functions set a bit that is already set is 0.5 * 0.5 * 0.5, or x^3. Let's have a look at the false-positive rate of bloom filters that use different numbers of hash functions. The problem that using lots of hash functions introduces is that it makes the bloom filter fill up faster. The more hash functions you use, the more bits get set for each item you add. There's also the cost of hashing itself. Hash functions aren't free, and while the hash functions you'd use in a bloom filter try to be as fast as possible, it's still more expensive to run 100 of them than it is to run 3. It's possible to calculate how full a bloom filter will be after inserting a number of items, based on the number of hash functions used. The graph below assumes a bloom filter with 1000 bits. The more hash functions we use, the faster we set all of the bits. You'll notice that the curve tails off as more items are added. This is because the more bits that are set, the more likely it is that we'all attempt to set a bit that has already been set. In practice, 1000 bits is a very small bloom filter, occupying only 125 bytes of memory. Modern computers have a lot of memory, so let's crank this up to 100,000 bits (12.5kB) and see what happens. The lines barely leave the bottom of the graph, meaning the bloom filter will be very empty and the false-positive rate will be low. All this cost us was 12.5kB of memory, which is still a very small amount by 2024 standards. # Tuning a bloom filter Picking the correct number of hash functions and bits for a bloom filter is a fine balance. Fortunately for us, if we know up-front how many unique items we want to store, and what our desired false-positive rate is, we can calculate the optimal number of hash functions, and the required number of bits. The bloom filter page on Wikipedia covers the mathematics involved, which I'm going to translate into JavaScript functions for us to use. I want to stress that you don't need to understand the maths to use a bloom filter or read this post. I'm including the link to it only for completeness. # Optimal number of bits The following JavaScript function, which might look a bit scary but bear with me, takes the number of items you want to store (items) and the desired false-positive rate (fpr, where 1% == 0.01), and returns how many bits you will need to achieve that false-positive rate. function bits(items, fpr) { const n = -items * Math.log(fpr); const d = Math.log(2) ** 2; return Math.ceil(n / d); } We can see how this grows for a variety of fpr values in the graph below. # Optimal number of hash functions After we've used the JavaScript above to calculate how many bits we need, we can use the following function to calculate the optimal number of hash functions to use: function hashFunctions(bits, items) { return Math.ceil((bits / items) * Math.log(2)); } Pause for a second here and have a think about how the number of hash functions might grow based on the size of the bloom filter and the number of items you expect to add. Do you think you'll use more hash functions, or fewer, as the bloom filter gets larger? What about as the number of items increases? The more items you plan to add, the fewer hash functions you should use. Yet, a larger bloom filter means you can use more hash functions. More hash functions keep the false-positive rate lower for longer, but more items fills up the bloom filter faster. It's a complex balancing act, and I am thankful that mathematicians have done the hard work of figuring it out for us. # Caution While we can stand on the shoulders of giants and pick the optimal number of bits and hash functions for our bloom filter, it's important to remember that these rely on you giving good estimates of the number of items you expect to add, and choosing a false-positive rate that's acceptable for your use-case. These numbers might be difficult to come up with, and I recommend erring on the side of caution. If you're not sure, it's likely better to use a larger bloom filter than you think you need. # Removing items from a bloom filter We've spent the whole post talking about adding things to a bloom filter, and the optimal parameters to use. We haven't spoken at all about removing items. And that's because you can't! In a bloom filter, we're using bits, individual 1s and 0s, to track the presence of items. If we were to remove an item by setting its bits to 0, we might also be removing other items by accident. There's no way of knowing. Click the buttons of the bloom filter below to see this in action. First we will add "foo", then "baz", and then we will remove "baz". Hit "clear" if you want to start again. The end result of this sequence is a bloom filter that doesn't contain "baz", but doesn't contain "foo" either. Because both "foo" and "baz" set bit 27, we accidentally clobber the presence of "foo" while removing "baz". Something else you might have noticed playing with the above example is that if you add "foo" and then attempt to remove "baz" before having added it, nothing happens. Even though 27 is set, bits 18 and 23 are not, so the bloom filter cannot contain "baz". Because of this, it won't unset 27. # Counting bloom filters While you can't remove items from a standard bloom filter, there are variants that allow you to do so. One of these variants is called a "counting bloom filter," which uses an array of counters instead of bits to keep track of items. Now when you go through the sequence, the end result is that the bloom filter still contains "foo." It solves the problem. The trade-off, though, is that counters are bigger than bits. With 4 bits per counter you can increment up to 15. With 8 bits per counter you can increment up to 255. You'll need to pick a counter size sufficient to never reach the maximum value, otherwise you risk corrupting the bloom filter. Using 8x more memory than a standard bloom filter could be a big deal, especially if you're using a bloom filter to save memory in the first place. Think hard about whether you really need to be able to remove items from your bloom filter. Counting bloom filters also introduce the possibility of false-negatives, which are impossible in standard bloom filters. Consider the following example. Because "loved" and "response" both hash to the bits 5, 22, and 26, when we remove "response" we also remove "loved". If we write this as JavaScript the problem becomes more clear: let bf = new CountingBloomFilter(); bf.add("loved"); bf.add("your"); bf.remove("response"); bf.contains("loved"); // false Even though we know for sure we've added "loved" in this snippet, the call to contains will return false. This sort of false-negative can't happen in a standard bloom filter, and it removes one of the key benefits of using a bloom filter in the first place: the guarantee of no false-negatives. # Bloom filters in the real-world Real-world users of bloom filters include Akamai, who use them to avoid caching web pages that are accessed once and never again. They do this by storing all page accesses in a bloom filter, and only writing them into cache if the bloom filter says they've been seen before. This does result in some pages being cached on the first access, but that's fine because it's still an improvement. It would be impractical for them to store all page accesses in a Set, so they accept the small false-positive rate in favour of the significantly smaller bloom filter. Akamai released a paper about this that goes into the full details if you're interested. Google's BigTable is a distributed key-value store, and uses bloom filters internally to know what keys are stored within. When a read request for a key comes in, a bloom filter in memory is first checked to see if the key is in the database. If not, BigTable can respond with "not found" without ever needing to read from disk. Sometimes the bloom filter will claim a key is in the database when it isn't, but this is fine because when that happens a disk access will confirm the key in fact isn't in the database. # Conclusion Bloom filters, while niche, can be a huge optimisation in the right situation. They're a wonderful application of hash functions, and a great example of making a deliberate trade-off to achieve a specific goal. Trade-offs, and combining simpler building blocks to create more complex, purpose-built data structures, are present everywhere in software engineering. Being able to spot where a data structure could net a big win can separate you from the pack, and take your career to the next level. I hope you've enjoyed this post, and that you find a way to apply bloom filters to a problem you're working on. # Acknowledgements Enormous thank you to my reviewers, without whom this post would be a shadow of what you read today. In no particular order: rylon, Indy, Aaron, Sophie, Davis, ed, Michael Drury, Anton Zhiyanov, Christoph Berger.

a year ago 42 votes
Hashing

form { padding-top: 0.5em; padding-left: 0.5em; padding-right: 0.5em; display: flex; justify-content: center; gap: 0.3em; } form input[type=text] { flex: 4 1 auto; min-width: 0; border-radius: 0.3em; border: 1px solid #aaaaaa; padding: 0.3em; } form button { flex: 1 1 auto; max-width: 140px; } form button:disabled { opacity: 0.5 !important; } form button.add { background-color: #009E73; color: white; border: 0; border-radius: 0.3em; cursor: pointer; } form button.check { background-color: #56B4E9; color: white; border: 0; border-radius: 0.3em; cursor: pointer; } form button.clear { background-color: #D55E00; color: white; border: 0; border-radius: 0.3em; cursor: pointer; } .grid-2x2 { display: "grid"; } .grid { user-select: none; cursor: pointer; margin-top: 1rem; margin-bottom: 1rem; border: 1px solid #009E73; width: 100%; display: grid; grid-template-columns: repeat(8, 1fr); grid-template-rows: repeat(2, 1fr); } .grid-item { display: flex; align-items: center; justify-content: center; aspect-ratio: 1/1; } .grid-active { background-color: #009E73; color: white; } .above-grid { display: flex; justify-content: center; } .hash-examples { padding-top: 0.5rem; padding-bottom: 0.5rem; margin: auto; display: flex; flex-direction: column; align-items: center; } .hash-examples div { margin: auto; } .hash-examples code { display: block; white-space: pre; font-weight: bold; } .hash-examples p { font-size: 0.75rem; font-style: italic; text-align: center; font-family: Lora, serif; width: 75%; } .blob { cursor: pointer; background: #CC79A7; display: flex; justify-content: center; align-items: center; font-size: 1.5rem; color: white; border-radius: 50%; margin: 10px; height: 3rem; width: 3rem; min-width: 3rem; max-width: 3rem; box-shadow: 0 0 0 0 #CC79A7FF; transform: scale(1); animation: pulse 2s infinite; } @keyframes pulse { 0% { transform: scale(0.85); box-shadow: 0 0 0 0 #CC79A77F; } 70% { transform: scale(1); box-shadow: 0 0 0 1rem rgba(0, 0, 0, 0); } 100% { transform: scale(0.85); box-shadow: 0 0 0 0 rgba(0, 0, 0, 0); } } .blob-click { cursor: default; animation: tick 1s linear; background: #009E73FF; } @keyframes tick { 0% { transform: scale(1); box-shadow: 0 0 0 0 #009E73FF; } 50% { box-shadow: 0 0 0 1rem #009E737F; } 100% { box-shadow: 0 0 0 2rem #009E7300; } } .aside { padding: 2rem; width: 100vw; position: relative; margin-left: -50vw; left: 50%; background-color: #eeeeee; display: flex; align-items: center; flex-direction: column; } .aside > * { flex-grow: 1; } .aside p { padding-left: 1rem; padding-right: 1rem; max-width: 780px; font-style: italic; font-family: Lora, serif; text-align: center; } .pct25 { width: 100%; height: 200px; } .datasets th { text-align: left; } .datasets { table-layout: fixed; } As a programmer, you use hash functions every day. They're used in databases to optimise queries, they're used in data structures to make things faster, they're used in security to keep data safe. Almost every interaction you have with technology will involve hash functions in one way or another. Hash functions are foundational, and they are everywhere. But what is a hash function, and how do they work? In this post, we're going to demystify hash functions. We're going to start by looking at a simple hash function, then we're going to learn how to test if a hash function is good or not, and then we're going to look at a real-world use of hash functions: the hash map. clicked. # What is a hash function? Hash functions are functions that take an input, usually a string, and produce a number. If you were to call a hash function multiple times with the same input, it will always return the same number, and that number returned will always be within a promised range. What that range is will depend on the hash function, some use 32-bit integers (so 0 to 4 billion), others go much larger. If we were to write a dummy hash function in JavaScript, it might look like this: function hash(input) { return 0; } Even without knowing how hash functions are used, it's probably no surprise that this hash function is useless. Let's see how we can measure how good a hash function is, and after that we'll do a deep dive on how they're used within hash maps. # What makes a hash function good? Because input can be any string, but the number returned is within some promised range, it's possible that two different inputs can return the same number. This is called a "collision," and good hash functions try to minimise how many collisions they produce. It's not possible to completely eliminate collisions, though. If we wrote a hash function that returned a number in the range 0 to 7, and we gave it 9 unique inputs, we're guaranteed at least 1 collision. hash("to") == 3 hash("the") == 2 hash("café") == 0 hash("de") == 6 hash("versailles") == 4 hash("for") == 5 hash("coffee") == 0 hash("we") == 7 hash("had") == 1 To visualise collisions, I'm going to use a grid. Each square of the grid is going to represent a number output by a hash function. Here's an example 8x2 grid. Click on the grid to increment the example hash output value and see how we map it to a grid square. See what happens when you get a number larger than the number of grid squares. { let grid = document.getElementById("first-grid"); let hash = document.getElementById("grid-hash"); let modulo = document.getElementById("grid-modulo"); grid.addEventListener("click", (e) => { e.preventDefault(); let number = parseInt(hash.innerText) + 1; hash.innerText = number.toString(); modulo.innerText = (number % 16).toString(); grid.querySelector(".grid-active").classList.remove("grid-active"); grid.children[number % 16].classList.add("grid-active"); return false; }); }); 13 % 16 == 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Every time we hash a value, we're going to make its corresponding square on the grid a bit darker. The idea is to create an easy way to see how well a hash function avoids collisions. What we're looking for is a nice, even distribution. We'll know that the hash function isn't good if we have clumps or patterns of dark squares. This is a great observation. You're absolutely right, we're going to be creating "pseudo-collisions" on our grid. It's okay, though, because if the hash function is good we will still see an even distribution. Incrementing every square by 100 is just as good a distribution as incrementing every square by 1. If we have a bad hash function that collides a lot, that will still stand out. We'll see this shortly. Let's take a larger grid and hash 1,000 randomly-generated strings. You can click on the grid to hash a new set of random inputs, and the grid will animate to show you each input being hashed and placed on the grid. The values are nice and evenly distributed because we're using a good, well-known hash function called murmur3. This hash is widely used in the real-world because it has great distribution while also being really, really fast. What would our grid look like if we used a bad hash function? function hash(input) { let hash = 0; for (let c of input) { hash += c.charCodeAt(0); } return hash % 1000000; } This hash function loops through the string that we're given and sums the numeric values of each character. It then makes sure that the value is between 0 and 1000000 by using the modulus operator (%). Let's call this hash function stringSum. Here it is on the grid. Reminder, this is 1,000 randomly generated strings that we're hashing. This doesn't look all that different from murmur3. What gives? The problem is that the strings we're giving to be hashed are random. Let's see how each function performs when given input that is not random: the numbers from 1 to 1000 converted to strings. Now the problem is more clear. When the input isn't random, the output of stringSum forms a pattern. Our murmur3 grid, however, looks the same as how it looked with random values. How about if we hash the top 1,000 most common English words: It's more subtle, but we do see a pattern on the stringSum grid. As usual, murmur3 looks the same as it always does. This is the power of a good hash function: no matter the input, the output is evenly distributed. Let's talk about one more way to visualise this and then talk about why it matters. # The avalanche effect Another way hash functions get evaluated is on something called the "avalanche effect." This refers to how many bits in the output value change when just a single bit of the input changes. To say that a hash function has a good avalanche effect, a single bit flip in the input should result in an average of 50% the output bits flipping. It's this property that helps hash functions avoid forming patterns in the grid. If small changes in the input result in small changes in the output, you get patterns. Patterns indicate poor distribution, and a higher rate of collisions. Below, we are visualising the avalanche effect by showing two 8-bit binary numbers. The top number is the input value, and the bottom number is the murmur3 output value. Click on it to flip a single bit in the input. Bits that change in the output will be green, bits that stay the same will be red. murmur3 does well, though you will notice that sometimes fewer than 50% of the bits flip and sometimes more. This is okay, provided that it is 50% on average. Let's see how stringSum performs. Well this is embarassing. The output is equal to the input, and so only a single bit flips each time. This does make sense, because stringSum just sums the numeric value of each character in the string. This example only hashes the equivalent of a single character, which means the output will always be the same as the input. # Why all of this matters We've taken the time to understand some of the ways to determine if a hash function is good, but we've not spent any time talking about why it matters. Let's fix that by talking about hash maps. To understand hash maps, we first must understand what a map is. A map is a data structure that allows you to store key-value pairs. Here's an example in JavaScript: let map = new Map(); map.set("hello", "world"); console.log(map.get("hello")); Here we take a key-value pair ("hello" → "world") and store it in the map. Then we print out the value associated with the key "hello", which will be "world". A more fun real-world use-case would be to find anagrams. An anagram is when two different words contain the same letters, for example "antlers" and "rentals" or "article" and "recital." If you have a list of words and you want to find all of the anagrams, you can sort the letters in each word alphabetically and use that as a key in a map. let words = [ "antlers", "rentals", "sternal", "article", "recital", "flamboyant", ] let map = new Map(); for (let word of words) { let key = word .split('') .sort() .join(''); if (!map.has(key)) { map.set(key, []); } map.get(key).push(word); } This code results in a map with the following structure: { "aelnrst": [ "antlers", "rentals", "sternal" ], "aceilrt": [ "article", "recital" ], "aabflmnoty": [ "flamboyant" ] } # Implementing our own simple hash map Hash maps are one of many map implementations, and there are many ways to implement hash maps. The simplest way, and the way we're going to demonstrate, is to use a list of lists. The inner lists are often referred to as "buckets" in the real-world, so that's what we'll call them here. A hash function is used on the key to determine which bucket to store the key-value pair in, then the key-value pair is added to that bucket. Let's walk through a simple hash map implementation in JavaScript. We're going to go through it bottom-up, so we'll see some utility methods before getting to the set and get implementations. class HashMap { constructor() { this.bs = [[], [], []]; } } We start off by creating a HashMap class with a constructor that sets up 3 buckets. We use 3 buckets and the short variable name bs so that this code displays nicely on devices with smaller screens. In reality, you could have however many buckets you want (and better variable names). class HashMap { // ... bucket(key) { let h = murmur3(key); return this.bs[ h % this.bs.length ]; } } The bucket method uses murmur3 on the key passed in to find a bucket to use. This is the only place in our hash map code that a hash function is used. class HashMap { // ... entry(bucket, key) { for (let e of bucket) { if (e.key === key) { return e; } } return null; } } The entry method takes a bucket and a key and scans the bucket until it finds an entry with the given key. If no entry is found, null is returned. class HashMap { // ... set(key, value) { let b = this.bucket(key); let e = this.entry(b, key); if (e) { e.value = value; return; } b.push({ key, value }); } } The set method is the first one we should recognise from our earlier JavaScript Map examples. It takes a key-value pair and stores it in our hash map. It does this by using the bucket and entry methods we created earlier. If an entry is found, its value is overwritten. If no entry is found, the key-value pair is added to the map. In JavaScript, { key, value } is shorthand for { key: key, value: value }. class HashMap { // ... get(key) { let b = this.bucket(key); let e = this.entry(b, key); if (e) { return e.value; } return null; } } The get method is very similar to set. It uses bucket and entry to find the entry related to the key passed in, just like set does. If an entry is found, its value is returned. If one isn't found, null is returned. That was quite a lot of code. What you should take away from it is that our hash map is a list of lists, and a hash function is used to know which of the lists to store and retrieve a given key from. Here's a visual representation of this hash map in action. Click anywhere on the buckets to add a new key-value pair using our set method. To keep the visualisation simple, if a bucket were to "overflow", the buckets are all reset. Because we're using murmur3 as our hash function, you should see good distribution between the buckets. It's expected you'll see some imbalance, but it should generally be quite even. To get a value out of the hash map, we first hash the key to figure out which bucket the value will be in. Then we have to compare the key we're searching for against all of the keys in the bucket. It's this search step that we minimise through hashing, and why murmur3 is optimised for speed. The faster the hash function, the faster we find the right bucket to search, the faster our hash map is overall. This is also why reducing collisions is so crucial. If we did decide to use that dummy hash function from all the way at the start of this article, the one that returns 0 all the time, we'll put all of our key-value pairs into the first bucket. Finding anything could mean we have to check all of the values in the hash map. With a good hash function, with good distribution, we reduce the amount of searching we have to do to 1/N, where N is the number of buckets. Let's see how stringSum does. Interestingly, stringSum seems to distribute values quite well. You notice a pattern, but the overall distribution looks good. stringSum. I knew it would be good for something. Not so fast, Haskie. We need to talk about a serious problem. The distribution looks okay on these sequential numbers, but we've seen that stringSum doesn't have a good avalanche effect. This doesn't end well. # Real-world collisions Let's look at 2 real-world data sets: IP addresses and English words. What I'm going to do is take 100,000,000 random IP addresses and 466,550 English words, hash all of them with both murmur3 and stringSum, and see how many collisions we get. IP Addresses murmur3 stringSum Collisions 1,156,959 99,999,566 1.157% 99.999% English words murmur3 stringSum Collisions 25 464,220 0.005% 99.5% When we use hash maps for real, we aren't usually storing random values in them. We can imagine counting the number of times we've seen an IP address in rate limiting code for a server. Or code that counts the occurrences of words in books throughout history to track their origin and popularity. stringSum sucks for these applications because of it's extremely high collision rate. # Manufactured collisions Now it's murmur3's turn for some bad news. It's not just collisions caused by similarity in the input we have to worry about. Check this out. What's happening here? Why do all of these jibberish strings hash to the same number? I hashed 141 trillion random strings to find values that hash to the number 1228476406 when using murmur3. Hash functions have to always return the same output for a specific input, so it's possible to find collisions by brute force. trillion? Like... 141 and then 12 zeroes? Yes, and it only took me 25 minutes. Computers are fast. Bad actors having easy access to collisions can be devastating if your software builds hash maps out of user input. Take HTTP headers, for example. An HTTP request looks like this: GET / HTTP/1.1 Accept: */* Accept-Encoding: gzip, deflate Connection: keep-alive Host: google.com You don't have to understand all of the words, just that the first line is the path being requested and all of the other lines are headers. Headers are Key: Value pairs, so HTTP servers tend to use maps to store them. Nothing stops us from passing any headers we want, so we can be really mean and pass headers we know will cause collisions. This can significantly slow down the server. This isn't theoretical, either. If you search "HashDoS" you'll find a lot more examples of this. It was a really big deal in the mid-2000s. There are a few ways to mitigate this specific to HTTP servers: ignoring jibberish header keys and limiting the number of headers you store, for example. But modern hash functions like murmur3 offer a more generalised solution: randomisation. Earlier in this post we showed some examples of hash function implementations. Those implementations took a single argument: input. Lots of modern hash functions take a 2nd parameter: seed (sometimes called salt). In the case of murmur3, this seed is a number. So far, we've been using 0 as the seed. Let's see what happens with the collisions I've collected when we use a seed of 1. Just like that, 0 to 1, the collisions are gone. This is the purpose of the seed: it randomises the output of the hash function in an unpredictable way. How it achieves this is beyond the scope of this article, all hash functions do this in their own way. The hash function still returns the same output for the same input, it's just that the input is a combination of input and seed. Things that collide with one seed shouldn't collide when using another. Programming languages often generate a random number to use as the seed when the process starts, so that every time you run your program the seed is different. As a bad guy, not knowing the seed, it is now impossible for me to reliably cause harm. If you look closely in the above visualisation and the one before it, they're the same values being hashed but they produce different hash values. The implication of this is that if you hash a value with one seed, and want to be able to compare against it in the future, you need to make sure you use the same seed. Having different values for different seeds doesn't affect the hash map use-case, because hash maps only live for the duration the program is running. Provided you use the same seed for the lifetime of the program, your hash maps will continue to work just fine. If you ever store hash values outside of your program, in a file for example, you need to be careful you know what seed has been used. # Playground As is tradition, I've made a playground for you to write your own hash functions and see them visualised with the grids seen in this article. Click here to try it! # Conclusion We've covered what a hash function is, some ways to measure how good it is, what happens when it's not good, and some of the ways they can be broken by bad actors. The universe of hash functions is a large one, and we've really only scratched the surface in this post. We haven't spoken about cryptographic vs non-cryptographic hashing, we've touched on only 1 of the thousands of use-cases for hash functions, and we haven't talked about how exactly modern hash functions actually work. Some further reading I recommend if you're really enthusiastic about this topic and want to learn more: https://github.com/rurban/smhasher this repository is the gold standard for testing how good hash functions are. They run a tonne of tests against a wide number of hash functions and present the results in a big table. It will be difficult to understand what all of the tests are for, but this is where the state of the art of hash testing lives. https://djhworld.github.io/hyperloglog/ this is an interactive piece on a data structure called HyperLogLog. It's used to efficiently count the number of unique elements in very, very large sets. It uses hashing to do it in a really clever way. https://www.gnu.org/software/gperf/ is a piece of software that, when given the expected set of things you want to hash, can generate a "perfect" hash function automatically. Feel free to join the discussion on Hacker News! # Acknowledgements Thanks to everyone who read early drafts and provided invaluable feedback. delroth, Manon, Aaron, Charlie And everyone who helped me find murmur3 hash collisions: Indy, Aaron, Max # Patreon After the success of Load Balancing and Memory Allocation, I have decided to set up a Patreon page: https://patreon.com/samwho. For all of these articles going forward, I am going to post a Patreon-exclusive behind-the-scenes post talking about decisions, difficulties, and lessons learned from each post. It will give you a deep look in to how these articles evolve, and I'm really stoked about the one I've written for this one. If you enjoy my writing, and want to support it going forward, I'd really appreciate you becoming a Patreon. ❤️

a year ago 26 votes
Memory Allocation

.memory { width: 100%; margin-bottom: 1.5em; margin-top: 0.5em; } input[type=range]:focus { outline: none; } a[simulation] { cursor: pointer; } .size { color: #0072B2 !important; font-weight: bold; } .free { color: #009E73 !important; font-weight: bold; } .allocated { color: #D55E00 !important; font-weight: bold; } .usable-memory { color: #E69F00 !important; font-weight: bold; } One thing that all programs on your computer have in common is a need for memory. Programs need to be loaded from your hard drive into memory before they can be run. While running, the majority of what programs do is load values from memory, do some computation on them, and then store the result back in memory. In this post I'm going to introduce you to the basics of memory allocation. Allocators exist because it's not enough to have memory available, you need to use it effectively. We will visually explore how simple allocators work. We'll see some of the problems that they try to solve, and some of the techniques used to solve them. At the end of this post, you should know everything you need to know to write your own allocator. › malloc and free To understand the job of a memory allocator, it's essential to understand how programs request and return memory. malloc and free are functions that were first introduced in a recognisable form in UNIX v7 in 1979(!). Let's take a look at a short C program demonstrating their use. If you have beginner-level familiarity with another language, e.g. JavaScript, Python, or C#, you should have no problem following along. You don't need to understand every word, as long as you get the overall idea. This is the only C code in the article, I promise. #include <stdlib.h> int main() { void *ptr = malloc(4); free(ptr); return 0; } In the above program we ask for 4 bytes of memory by calling malloc(4), we store the value returned in a variable called ptr, then we indicate that we're done with the memory by calling free(ptr). These two functions are how almost all programs manage the memory they use. Even when you're not writing C, the code that is executing your Java, Python, Ruby, JavaScript, and so on make use of malloc and free. › What is memory? The smallest unit of memory that allocators work with is called a "byte." A byte can store any number between 0 and 255. You can think of memory as being a long sequence of bytes. We're going to represent this sequence as a grid of squares, with each square representing a byte of memory. In the C code from before, malloc(4) allocates 4 bytes of memory. We're going to represent memory that has been allocated as darker squares. Then free(ptr) tells the allocator we're done with that memory. It is returned back to the pool of available memory. Here's what 4 malloc calls followed by 4 free calls looks like. You'll notice there's now a slider. Dragging the slider to the right advances time forward, and dragging it left rewinds. You can also click anywhere on the grid and then use the arrow keys on your keyboard, or you can use the left and right buttons. The ticks along the slider represent calls to malloc and free. Wait a sec... What is malloc actually returning as a value? What does it mean to "give" memory to a program? What malloc returns is called a "pointer" or a "memory address." It's a number that identifies a byte in memory. We typically write addresses in a form called "hexadecimal." Hexadecimal numbers are written with a 0x prefix to distinguish them from decimal numbers. Move the slider below to see a comparison between decimal numbers and hexadecimal numbers. 0 == 0x0 Here's our familiar grid of memory. Each byte is annotated with its address in hexadecimal form. For space reasons, I've omitted the 0x prefix. The examples we use in this article pretend that your computer only has a very small amount of memory, but in real life you have billions of bytes to work with. Real addresses are much larger than what we're using here, but the idea is exactly the same. Memory addresses are numbers that refer to a specific byte in memory. › The simplest malloc The "hello world" of malloc implementations would hand out blocks of memory by keeping track of where the previous block ended and starting the next block right after. Below we represent where the next block should start with a grey square. You'll notice no memory is freed. If we're only keeping track of where the next block should start, and we don't know where previous blocks start or end, free doesn't have enough information to do anything. So it doesn't. This is called a "memory leak" because, once allocated, the memory can never be used again. Believe it or not, this isn't a completely useless implementation. For programs that use a known amount of memory, this can be a very efficient strategy. It's extremely fast and extremely simple. As a general-purpose memory allocator, though, we can't get away with having no free implementation. › The simplest general-purpose malloc In order to free memory, we need to keep better track of memory. We can do this by saving the address and size of all allocations, and the address and size of blocks of free memory. We'll call these an "allocation list" and a "free list" respectively. We're representing free list entries as 2 grey squares linked together with a line. You can imagine this entry being represented in code as address=0 and size=32. When our program starts, all of memory is marked as free. When malloc is called, we loop through our free list until we find a block large enough to accommodate it. When we find one, we save the address and size of the allocation in our allocation list, and shrink the free list entry accordingly. Where do we save allocations and free list entries? Aren't we pretending our computer only has 32 bytes of memory? You caught me. One of the benefits of being a memory allocator is that you're in charge of memory. You could store your allocation/free list in a reserved area that's just for you. Or you could store it inline, in a few bytes immediately preceding each allocation. For now, assume we have reserved some unseen memory for ourselves and we're using it to store our allocation and free lists. So what about free? Because we've saved the address and size of the allocation in our allocation list, we can search that list and move the allocation back in to the free list. Without the size information, we wouldn't be able to do this. Our free list now has 2 entries. This might look harmless, but actually represents a significant problem. Let's see that problem in action. We allocated 8 blocks of memory, each 4 bytes in size. Then we freed them all, resulting in 8 free list entries. The problem we have now is that if we tried to do a malloc(8), there are no items in our free list that can hold 8 bytes and the malloc(8) will fail. To solve this, we need to do a bit more work. When we free memory, we should make sure that if the block we return to the free list is next to any other free blocks, we combine them together. This is called "coalescing." Much better. › Fragmentation A perfectly coalesced free list doesn't solve all of our problems. The following example shows a longer sequence of allocations. Have a look at the state memory is in at the end. We end this sequence with 6 of our 32 bytes free, but they're split into 2 blocks of 3 bytes. If we had to service a malloc(6), while we have enough free memory in theory, we wouldn't be able to. This is called "fragmentation." Sadly not. Remember earlier we talked about how the return value of malloc is the address of a byte in memory? Moving allocations won't change the pointers we have already returned from malloc. We would change the value those pointers are pointed at, effectively breaking them. This is one of the downsides of the malloc/free API. If we can't move allocations after creating them, we need to be more careful about where we put them to begin with. One way to combat fragmentation is, confusingly, to overallocate. If we always allocate a minimum of 4 bytes, even when the request is for 1 byte, watch what happens. This is the exact same sequence of allocations as above. Now we can service a malloc(6). It's worth keeping in mind that this is just one example. Programs will call malloc and free in very different patterns depending on what they do, which makes it challenging to design an allocator that always performs well. malloc, the start of the free list seems to fall out of sync with allocated memory. Is that a bug in the visualisation? No, that's a side-effect of overallocating. The visualisation shows "true" memory use, whereas the free list is updated from the allocator's perspective. So when the first malloc happens, 1 byte of memory is allocated but the free list entry is moved forward 4 bytes. We trade some wasted space in return for less fragmentation. It's worth noting that this unused space that results from overallocation is another form of fragmentation. It's memory that cannot be used until the allocation that created it is freed. As a result, we wouldn't want to go too wild with overallocation. If our program only ever allocated 1 byte at a time, for example, we'd be wasting 75% of all memory. Another way to combat fragmentation is to segment memory into a space for small allocations and a space for big ones. In this next visualisation we start with two free lists. The lighter grey one is for allocations 3 bytes or smaller, and the darker grey one is for allocations 4 bytes or larger. Again, this is the exact same sequence of allocations as before. Nice! This also reduces fragmentation. If we're strictly only allowing allocations of 3 bytes or less in the first segment, though, then we can't service that malloc(6). The trade-off here is that reserving a segment of memory for smaller allocations gives you less memory to work with for bigger ones. the first allocation in the dark grey free list is 3 bytes! You said this was for allocations 4 bytes and up. What gives? Got me again. This implementation I've written will put small allocations in the dark grey space when the light grey space is full. It will overallocate when it does this, otherwise we'd end up with avoidable fragmentation in the dark grey space thanks to small allocations. Allocators that split memory up based on the size of allocation are called "buddy allocators." In practice they have many more size classes than the 2 in our example. › A quick malloc puzzle What happens if you malloc(0)? Have a think about this before playing with the slider below. This is using our free list implementation that mandates a minimum size of 4 bytes for allocations. All memory gets allocated, but none is actually used. Do you think this is correct behaviour? It turns out that what happens when you malloc(0) differs between implementations. Some of them behave as above, allocating space they probably didn't have to. Others will return what's called a "null pointer", a special pointer that will crash your program if you try to read or write the memory it points to. Others pick one specific location in memory and return that same location for all calls to malloc(0), regardless how many times it is called. Moral of the story? Don't malloc(0). › Inline bookkeeping Remember earlier on when you asked about where allocation list and free list information gets stored, and I gave an unsatisfying answer about how it's stored in some other area of memory we've reserved for ourselves? This isn't the only way to do it. Lots of allocators store information right next to the blocks of memory they relate to. Have a look at this. What we have here is memory with no allocations, but free list information stored inline in that memory. Each block of memory, free or used, gets 3 additional bytes of bookkeeping information. If address is the address of the first byte of the allocation, here's the layout of a block: address + 0 is the size of the block address + 1 is whether the block is free (1) or used (2) address + 2 is where the usable memory starts address + 2 + size -- the size of the block again So in this above example, the byte at 0x0 is storing the value 29. This means it's a block containing 29 bytes of memory. The value 1 at 0x1 indicates that the block is free memory. size twice? Isn't that wasteful? It seems wasteful at first, but it is necessary if we want to do any form of coalescing. Let's take a look at an example. Here we've allocated 4 bytes of memory. To do this, our malloc implementation starts at the beginning of memory and checks to see if the block there is used. It knows that at address + 1 it will find either a 1 or a 2. If it finds a 1, it can check the value at address for how big the block is. If it is big enough, it can allocate into it. If it's not big enough, it knows it can add the value it finds in address to address to get to the start of the next block of memory. This has resulted in the creation of a used block (notice the 2 stored in the 2nd byte), and it has pushed start of the free block forward by 7 bytes. Let's do the same again and allocate another 4 bytes. Next, let's free our first malloc(4). The implementation of free is where storing information inline starts to shine. In our previous allocators, we had to search the allocation list to know the size of the block being freed. Now we know we'll find it at address. What's better than that is that for this free, we don't even need to know how big the allocation is. We can just set address + 1 to 1! How great is that? Simple, fast. What if we wanted to free the 2nd block of used memory? We know that we want to coalesce to avoid fragmentation, but how do we do that? This is where the seemingly wasteful bookkeeping comes into play. When we coalesce, we check to see the state of the blocks immediately before and immediately after the block we're freeing. We know that we can get to the next block by adding the value at address to address, but how do we get to the previous block? We take the value at address - 1 and subtract that from address. Without this duplicated size information at the end of the block, it would be impossible to find the previous block and impossible to coalesce properly. Allocators that store bookkeeping information like this alongside allocations are called "boundary tag allocators." Surprisingly, nothing truly prevents this. We rely heavily, as an industry, on the correctness of code. You might have heard of "buffer overrun" or "use after free" bugs before. These are when a program modifies memory past the end of an allocated block, or accidentally uses a block of memory after freeing it. These are indeed catastrophic. They can result in your program immediately crashing, they can result in your program crashing in several minutes, hours, or days time. They can even result in hackers using the bug to gain access to systems they shouldn't have access to. We're seeing a rise in popularity of "memory safe" languages, for example Rust. These languages invest a lot in making sure it's not possible to make these types of mistake in the first place. Exactly how they do that is outside of the scope of this article, but if this interests you I highly recommend giving Rust a try. You might have also realised that calling free on a pointer that's in the middle of a block of memory could also have disastrous consequences. Depending on what values are in memory, the allocator could be tricked into thinking it's freeing something but what it's really doing is modifying memory it shouldn't be. To get around this, some allocators inject "magic" values as part of the bookkeeping information. They store, say, 0x55 at address + 2. This would waste an extra byte of memory per allocation, but would allow them to know when a mistake has been made. To reduce the impact of this, allocators often disable this behaviour by default and allow you to enable it only when you're debugging. › Playground If you're keen to take your new found knowledge and try your hand at writing your own allocators, you can click here to go to my allocator playground. You'll be able to write JavaScript code that implements the malloc/free API and visualise how it works! › Conclusion We've covered a lot in this post, and if it has left you yearning for more you won't be disappointed. I've specifically avoided the topics of virtual memory, brk vs mmap, the role of CPU caches, and the endless tricks real malloc implementations pull out of their sleeves. There's no shortage of information about memory allocators on the Internet, and if you've read this far you should be well-placed to dive in to it. Got feedback? Join the discussion on Hacker News! › Acknowledgments Special thanks to the following people: Chris Down for lending me his extensive knowledge of real-world memory allocators. Anton Verinov for lending me his extensive knowledge of the web, browser developer tools, and user experience. Blake Becker, Matt Kaspar, Krista Horn, Jason Peddle, and Josh W. Comeau for their insight and constructive reviews.

a year ago 34 votes

More in programming

Supa Pecha Kucha

slug: supapechakucha

8 hours ago 2 votes
Closing the borders alone won't fix the problems

Denmark has been reaping lots of delayed accolades from its relatively strict immigration policy lately. The Swedes and the Germans in particular are now eager to take inspiration from The Danish Model, given their predicaments. The very same countries that until recently condemned the lack of open-arms/open-border policies they would champion as Moral Superpowers.  But even in Denmark, thirty years after the public opposition to mass immigration started getting real political representation, the consequences of culturally-incompatible descendants from MENAPT continue to stress the high-trust societal model. Here are just three major cases that's been covered in the Danish media in 2025 alone: Danish public schools are increasingly struggling with violence and threats against students and teachers, primarily from descendants of MENAPT immigrants. In schools with 30% or more immigrants, violence is twice as prevalent. This is causing a flight to private schools from parents who can afford it (including some Syrians!). Some teachers are quitting the profession as a result, saying "the Quran run the class room". Danish women are increasingly feeling unsafe in the nightlife. The mayor of the country's third largest city, Odense, says he knows why: "It's groups of young men with an immigrant background that's causing it. We might as well be honest about that." But unfortunately, the only suggestion he had to deal with the problem was that "when [the women] meet these groups... they should take a big detour around them". A soccer club from the infamous ghetto area of Vollsmose got national attention because every other team in their league refused to play them. Due to the team's long history of violent assaults and death threats against opposing teams and referees. Bizarrely leading to the situation were the team got to the top of its division because they'd "win" every forfeited match. Problems of this sort have existed in Denmark for well over thirty years. So in a way, none of this should be surprising. But it actually is. Because it shows that long-term assimilation just isn't happening at a scale to tackle these problems. In fact, data shows the opposite: Descendants of MENAPT immigrants are more likely to be violent and troublesome than their parents. That's an explosive point because it blows up the thesis that time will solve these problems. Showing instead that it actually just makes it worse. And then what? This is particularly pertinent in the analysis of Sweden. After the "far right" party of the Swedish Democrats got into government, the new immigrant arrivals have plummeted. But unfortunately, the net share of immigrants is still increasing, in part because of family reunifications, and thus the problems continue. Meaning even if European countries "close the borders", they're still condemned to deal with the damning effects of maladjusted MENAPT immigrant descendants for decades to come. If the intervention stops there. There are no easy answers here. Obviously, if you're in a hole, you should stop digging. And Sweden has done just that. But just because you aren't compounding the problem doesn't mean you've found a way out. Denmark proves to be both a positive example of minimizing the digging while also a cautionary tale that the hole is still there.

9 hours ago 2 votes
An unexpected lesson in CSS stacking contexts

I’ve made another small tweak to the site – I’ve added “new” banners to articles I’ve written recently, and any post marked as “new” will be pinned to the homepage. Previously, the homepage was just a random selection of six articles I’d written at any time. Last year I made some changes to de-emphasise sorting by date and reduce recency bias. I stand by that decision, but now I see I went too far. Nobody comes to my site asking “what did Alex write on a specific date”, but there are people who ask “what did Alex write recently”. I’d made it too difficult to find my newest writing, and that’s what this tweak is trying to fix. This should have been a simple change, but it became a lesson about the inner workings of CSS. Absolute positioning and my first attempt I started with some code I wrote last year. Let’s step through it in detail. <div class="container"> <div class="banner">NEW</div> <img src="computer.jpg"> </div> NEW .banner { position: absolute; } absolute positioning, which removes the banner from the normal document flow and allows it to be placed anywhere on the page. Now it sits alone, and it doesn't affect the layout of other elements on the page – in particular, the image no longer has to leave space for it. NEW .container { position: relative; } .banner { transform: rotate(45deg); right: 16px; top: 20px; } NEW I chose the transform, right, and top values by tweaking until I got something that looked correct. They move the banner to the corner, and then the transform rotates it diagonally. The relative position of the container element is vital. The absolutely positioned banner still needs a reference point for the top and right, and it uses the closest ancestor with an explicit position – or if it doesn’t find one, the root <html> element. Setting position: relative; means the offsets are measured against the sides of the container, not the entire HTML document. This is a CSS feature called positioning context, which I’d never heard of until I started writing this blog post. I’d been copying the position: relative; line from other examples without really understanding what it did, or why it was necessary. (What made this particularly confusing to me is that if you only add position: absolute to the banner, it seems like the image is the reference point – notice how, with just that property, the text is in the top left-hand corner of the image. It’s not until you set top or right that the banner starts using the entire page as a reference point. This is because an absolutely positioned element takes its initial position from where it would be in the normal flow, and doesn’t look for a positioned ancestor until you set an offset.) .banner { background: red; color: white; } NEW .banner { right: -34px; top: 18px; padding: 2px 50px; } NEW .container { overflow: hidden; } box-shadow on my homepage to make it stand out further, but cosmetic details like that aren’t important for the rest of this post. NEW As a reminder, here’s the HTML: <div class="container"> <div class="banner">NEW</div> <img src="computer.jpg"> </div> and here’s the complete CSS: .container { position: relative; overflow: hidden; } .banner { position: absolute; background: red; color: white; transform: rotate(45deg); right: -34px; top: 18px; padding: 2px 50px; } It’s only nine CSS properties, but it contains a surprising amount of complexity. I had this CSS and I knew it worked, but I didn’t really understand it – and especially the way absolute positioning worked – until I wrote this post. This worked when I wrote it as a standalone snippet, and then I deployed it on this site, and I found a bug. (The photo I used in the examples is from Viktorya Sergeeva on Pexels.) Dark mode, filters, and stacking contexts I added dark mode support to this site a couple of years ago – the background changes from white to black, the text colour flips, and a few other changes. I’m a light mode person, but I know a lot of people prefer dark mode and it was a fun bit of CSS work, so it’s there. The code I described above breaks if you’re using this site in dark mode. What. I started poking around in my browser’s developer tools, and I could see that the banner was being rendered, but it was under the image instead of on top of it. All my positioning code that worked in light mode was broken in dark mode. I was baffled. I discovered that by adding a z-index property to the banner, I could make it reappear. I knew that elements with a higher z-index will appear above an element with a lower z-index – so I was moving my banner back out from under the image. I had a fix, but it felt uncomfortable because I couldn’t explain why it worked, or why it was only necessary in dark mode. I wanted to go deeper. I knew the culprit was in the CSS I’d written. I could see the issue if I tried my code in this site, but not if I copied it to a standalone HTML file. To find the issue, I created a local branch of the site, and I started deleting CSS until I could no longer reproduce the issue. I eventually tracked it down to the following rule: @media (prefers-color-scheme: dark) { /* see https://web.dev/articles/prefers-color-scheme#re-colorize_and_darken_photographic_images */ img:not([src*='.svg']):not(.dark_aware) { filter: grayscale(10%); } } This applies a slight darkening to any images when dark mode is enabled – unless they’re an SVG, or I’ve added the dark_aware class that means an image look okay in dark mode. This makes images a bit less vibrant in dark mode, so they’re not too visually loud. This is a suggestion from Thomas Steiner, from an article with a lot of useful advice about supporting dark mode. When this rule is present, the banner vanishes. When I delete it, the banner looks fine. Eventually I found the answer: I’d not thought about (or heard of!) the stacking context. The stacking context is a way of thinking about HTML elements in three dimensions. It introduces a z‑axis that determines which elements appear above or below each other. It’s affected by properties like z-index, but also less obvious ones like filter. In light mode, the banner and the image are both part of the same stacking context. This means that both elements can be rendered together, and the positioning rules are applied together – so the banner appears on top of the image. In dark mode, my filter property creates a new stacking context. Applying a filter to an element forces it into a new stacking context, and in this case that means the image and the banner will be rendered separately. Browsers render elements in DOM order, and because the banner appears before the image in the HTML, the stacking context with the banner is rendered first, then the stacking context with the image is rendered separately and covers it up. The correct fix is not to set a z-index, but to swap the order of DOM elements so the banner is rendered after the image: <div class="container"> <img src="computer.jpg"> <div class="banner">NEW</div> </div> This is the code I’m using now, and now the banner looks correct in dark mode. In hindsight, this ordering makes more sense anyway – the banner is an overlay on the image, and it feels right to me that it should appear later in the HTML. If I was laying this out with bits of paper, I’d put down the image, then the banner. One example is nowhere near enough for me to properly understand stacking contexts or rendering order, but now I know it’s a thing I need to consider. I have a vague recollection that I made another mistake with filter and rendering order in the past, but I didn’t investigate properly – this time, I wanted to understand what was happening. I’m still not done – now I have the main layout working, I’m chasing a hairline crack that’s started appearing in the cards, but only on WebKit. There’s an interaction between relative positioning and border-radius that’s throwing everything off. CSS is hard. I stick to a small subset of CSS properties, but that doesn’t mean I can avoid the complexity of the web. There are lots of moving parts that interact in non-obvious ways, and my understanding is rudimentary at best. I have a lot of respect for front-end developers who work on much larger and more complex code bases. I’m getting better, but CSS keeps reminding me how much more I have to learn. [If the formatting of this post looks odd in your feed reader, visit the original article]

yesterday 2 votes
Rohit Chess

fun little board game

yesterday 4 votes
Top Coworking Spaces in Karuizawa

Since November 2023, I’ve been living in Karuizawa, a small resort town that’s 70 minutes away from Tokyo by Shinkansen. The elevation is approximately 1000 meters above sea level, making the summers relatively mild. Unlike other colder places in Japan, it doesn’t get much snow, and has the same sunny winters I came to love in Tokyo. With COVID and the remote work boom, it’s also become popular among professionals such as myself who want to live somewhere with an abundance of nature, but who still need to commute into Tokyo on a semi-regular basis. While I have a home office, I sometimes like to work outside. So I thought I’d share my impressions of the coworking spaces in town that I’ve personally visited, and a few other places where you can get some work done when you’re in town. Sawamura Roastery 11am on a Friday morning and there was only one other customer. Sawamura Roastery is technically a cafe, but it’s my personal favourite coworking space. It has free wifi, outlets, and comfortable chairs. While their coffees are on the expensive side, at about 750 yen for a cafe latte, they are also some of Karuizawa’s best. It’s empty enough on weekday mornings that I feel fine about staying there for hours, making it a deal compared to official drop-in coworking spaces. Another bonus is that it opens early: 7 a.m. (or 8 a.m. during the winter months). This allows me to start working right after I drop off my kids at daycare, rather than having 20 odd minutes to kill before heading to the other places that open at 9 a.m. If you’re having an online meeting, you can make use of the outdoor seating. It’s perfect when the weather is nice, but they also have heating for when it isn’t. The downsides are that their playlist is rather short, so I’m constantly hearing the same songs, and their roasting machine sometimes gets quite noisy. Gokalab Gokalab is my favourite dedicated coworking space in Karuizawa. Technically it is in Miyota, the next town over, which is sometimes called “Nishikaruizawa”. But it’s the only coworking space in the area I’ve been to that feels like it has a real community. When you want to work here, you have three options: buy a drink (600 yen for a cafe au lait—no cafe lattes, unfortunately, but if you prefer black coffee they have a good selection) and work out of the cafe area on the first floor; pay their daily drop-in fee of 1,000 yen; or become a “researcher” (研究員, kenkyuin) for 3,000 yen per month and enjoy unlimited usage. Now you may be thinking that the last option is a steal. That’s because it is. However, to become a researcher you need to go through a workshop that involves making something out of LEGO, and submit an essay about why you want to use the space. The thinking behind this is that they want to support people who actually share their vision, and aren’t just after a cheap space to work or study. Kind of zany, but that sort of out-of-the-box thinking is exactly what I want in a coworking space. When I first moved to Karuizawa, my youngest child couldn’t get into the local daycare. However, we found out that in Miyota, Suginoko Kindergarten had part-time spots available for two year olds. My wife and I ended up taking turns driving my kid there, and then spending the morning working out of Gokalab. Since my youngest is now in a local daycare, I haven’t made it out to Gokalab much. It’s just a bit too far for me (about a 15-minute drive from my house, while other options on this list are at most a 15-minute bicycle ride). But if I was living closer, I’d be a regular there. 232 Coworking Space & Hotel Noon on a Monday morning at 232 Coworking Space. If you’re looking for a coworking space near Karuizawa station, 232 Coworking Space & Hotel is the best option I’ve come across. The “hotel” part of the name made me think they were focused on “workcations,” but the space seems like it caters to locals as well. The space offers free coffee via an automatic espresso machine, along with other drinks, and a decent number of desks. When I used it on a Monday morning in the off-season, it was moderately occupied at perhaps a quarter capacity. Everyone spoke in whispers, so it felt a bit like a library. There were two booths for calls, but unfortunately they were both occupied when I wanted to have mine, so I had to sit in the hall instead. If the weather was a bit warmer I would have taken it outside, as there was some nice covered seating available. The decor was nice, though the chairs weren’t that comfortable. After a couple of hours I was getting sore. It was also too dimly lit for me, without much natural light. The price for drop-ins is reasonable, starting at 1,500 yen for four hours. They also have monthly plans starting from 10,000 yen for five days per month. WhatI found missing was a feeling of community. I didn’t see any small talk between the people working there, though I was only there for a couple hours, and maybe this occurs at other times. Their webpage also mentioned that they host events, but apparently they don’t have any upcoming ones planned and haven’t had any in a while. Shozo Coffee Karuizawa The latte is just okay here, but the atmosphere is nice. Shozo Coffee Karuizawa is a cafe on the first floor of the bookstore in Karuizawa Commongrounds. The second floor has a dedicated coworking space, but for me personally, the cafe is a better deal. Their cafe latte is mid-tier and 700 yen. In the afternoons I’ll go for their chai to avoid over-caffeination. They offer free wifi and have signs posted asking you not to hold online meetings, implicitly making it clear that otherwise they don’t mind you working there. Location-wise, this place is very convenient for me, but it suffers from a fatal flaw that prevents me from working there for an extended amount of time: the tables are way too low for me to type comfortably. I’m tall though (190 cm), so they aren’t designed with me in mind. Sheridan Coffee and a popover \- my entrance fee to this “coworking space”. Sheridan is a western breakfast and brunch restaurant. They aren’t that busy on weekdays and have free wifi, plus the owner was happy to let me work there. The coffee comes in a pot with enough for at least one refill. There’s also some covered outdoor seating. I used this spot to get some work done when my child was sick and being looked after at the wonderful Hochi Lodge (ほっちのロージ). It’s a clinic and sick childcare facility that does its best to not let on that it’s a medical facility. The doctors and nurses don’t wear uniforms, and appointments there feel more like you’re visiting someone’s home. Sheridan is within walking distance of it. Natural Cafeina An excellent cappuccino but only an okay place to work. If you’d like to get a bit of work done over an excellent cappuccino, Natural Cafeina is a good option. This cafe feels a bit cramped, and as there isn’t much seating, I wouldn’t want to use it for an extended period of time. Also, the music was also a bit loud. But they do have free wifi, and when I visited, there were a couple of other customers besides myself working there. Nakakaruizawa Library The Nakakaruizawa Library is a beautiful space with plenty of desks facing the windows and free wifi. Anyone can use it for free, making it the most economical coworking space in town. I’ve tried working out of it, but found that, for me personally, it wasn’t conducive to work. It is still a library, and there’s something about the vibes that just doesn’t inspire me. Karuizawa Commongrounds Bookstore Coworking Space The renowned bookstore Tsutaya operates Karuizawa Books in the Karuizawa Commongrounds development. The second floor has a coworking space that features the “cheap chic” look common among hip coworking spaces. Unfinished plywood is everywhere, as are books. I’d never actually worked at this space until writing this article. The price is just too high for me to justify it, as it starts at 1,100 yen for a mere hour, to a max of 4,000 yen per day. At 22,000 yen per month, it’s a more reasonable price for someone using it as an office full time. But I already have a home office and just want somewhere I can drop in at occasionally. There are a couple options, seating-wise. Most of the seats are in booths, which I found rather dark but with comfortable chairs. Then there’s a row of stools next to the window, which offer a good view, but are too uncomfortable for me. Depending on your height, the bar there may work as a standing desk. Lastly, there are two coveted seats with office chairs by a window, but they were both occupied when I visited. The emphasis here seems to be on individual deep work, and though there were a number of other people working, I’d have felt uncomfortable striking up a conversation with one of them. That’s enough to make me give it a pass. Coworking Space Ikoi Villa Coworking Space Ikoi Villa is located in Naka-Karuizawa, relatively close to my home. I’ve only used it once though. It’s part of a hotel, and they converted the lobby to a coworking space by putting a bunch of desks and chairs in it. If all you need is wifi and space to work, it gets the job done. But it’s a shame they didn’t invest a bit more in making it feel like a nice place to work. I went during the summer on one of the hottest days. My house only had one AC unit and couldn’t keep up, so I was hoping to find somewhere cooler to work. But they just had the windows open with some fans going, which left me disappointed. This was ostensibly the peak season for Karuizawa, but only a couple of others were working there that day. Maybe the regulars knew it’d be too hot, but it felt kind of lonely for a coworking space. The drop-in fee starts at 1,000 yen for four hours. It comes with free drinks from a machine: green tea, coffee, and water, if I recall correctly. Karuizawa Prince The Workation Core Do you like corporate vibes? Then this is the place for you. Karuizawa Prince The Workation Core is a coworking space located in my least favourite part of the town—the outlet mall. The throngs of shoppers and rampant commercialism are in stark contrast to the serenity found farther away from the station. This is another coworking space I visited expressly for this article. The fee is 660 yen per 30 minutes, to a maximum of 6,336 yen per day. Even now, just reading that maximum, my heart skipped a beat. This is certainly the most expensive coworking space I’ve ever worked from—I better get this article done fast. The facilities include a large open space with reasonably comfortable seating. There are a number of booths with monitors. As they are 23.8 inch monitors with 1,920 x 1,080 resolution, they’re a step down from the resolution of modern laptops, and so not of much use. Though there was room for 40 plus people, I was the only person working . Granted this was on a Sunday morning, so not when most people would typically attend. I don’t think I’ll be back here again. The price and sterile corporate vibe just aren’t for me. If you’re staying at The Prince Hotel, I think you get a discount. In that case, maybe it’s worth it, but otherwise I think there are better options. Sawamura Bakery & Restaurant Kyukaruizawa Sawamura Bakery & Restaurant is across the street from the Roastery. It offers slightly cheaper prices, with about 100 yen off the cafe latte, though the quality is worse, as is the vibe of the place as a whole. They do have a bigger selection of baked goods, though. As a cafe for doing some work, there’s nothing wrong with it per se. The upstairs cafe area has ample seating outside of peak hours. But I just don’t have a good reason to work here over the Roastery. The Pie Hole Los Angles Karuizawa The best (and only) pecan pie that I’ve had in Japan. The name of this place is a mouthful. Technically, it shouldn’t be on this list because I’ve never worked out of it. But they have wonderful pie, free wifi, and not many customers, so I could see working here. The chairs are a bit uncomfortable though, so I wouldn’t want to stop by for more than an hour or two. While this place had been on my radar for a while, I’d avoided it because there’s no good bicycle parking nearby—-or so I thought. I just found that the relatively close Church Street shopping street has a bit of bicycle parking off to the side. If you come to Karuizawa… When I was living in Tokyo, there were just too many opportunities to meet people, and so I found myself having to frequently turn down offers to go out for coffee. Since moving here, I’ve made some local connections, but the pace has been a lot slower. If you’re ever passing through Karuizawa, do get in touch, and I’d be happy to meet up for a cafe latte and possibly some pie.

yesterday 4 votes