Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
50
Apollo 1.9’s a massive update to Apollo that’s taken months and months to complete, but I’m really happy with the result, and it brings together a ton of ideas from the community to make Apollo even nicer to use. The update includes a variety of features around crossposts, flair, new app icons, translation, and quality of life improvements. Thanks to everyone who writes in via email or via the ApolloApp subreddit, your suggestions for what you want to see in Apollo help immensely and really motivate me to keep making Apollo better and better. Without further ado, here are the changes included in this 1.9 update to Apollo: Crosspost Viewing Crossposting (taking an existing post and reposting it to a similar subreddit) has been a big part of Reddit for ages, but recently it became a full-fledged feature where you can see exactly which subreddit it came from, and quickly jump to the original post. Apollo now supports this fully, so you can see the interesting content of the post, but also...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Christian Selig

You should repaste your MacBook (but don't)

My favorite memory of my M1 Pro MacBook Pro was the whole sensation of “holy crap, you never hear the fans in this thing”, which was very novel in 2021. Four years later, this MacBook Pro is still a delight. It’s the longest I’ve ever owned a laptop, and while I’d love to pick up the new M4 goodness, this dang thing still seems to just shrug at basically anything I throw at it. Video editing, code compiling, CAD models, the works. (My desire to update is helped though by the fact I got the 2TB SSD, 32GB RAM option, and upgrading to those on new MacBooks is still eye wateringly expensive.) But my MacBook is starting to show its age in one area: it’s not quiet anymore. If you’re doing anything too intensive like compiling code for awhile, or converting something in Handbrake, the age of the fans being quiet is long past. The fans are properly loud. (And despite having two cats, it’s not them! I clean out the fans pretty regularly.) Enter the thermal paste Everyone online seems to point toward one thing: the thermal paste on computers tends to dry up over the years. What the heck is thermal paste? Well, components on your computer that generate a lot of heat are normally made to touch something like a copper heatsink that is really good at pulling that heat away from it. The issue is, when you press these two metal surfaces against each other, even the best machining isn’t perfect and you there’s microscopic gaps between them meaning there’s just air at those parts, and air is a terrible conductor of heat. The solution is to put a little bit of thermal paste (basically a special grey toothpaste gunk that is really good at transferring heat) between them, and it fills in any of those microscopic gaps. The problem with this solution is after hundreds and hundreds of days of intense heat, the paste can dry up into something closer to almost a powder, and it’s not nearly as good at filling in those gaps. Replacement time The logic board! MacBook thermal paste isn’t anything crazy (for the most part, see below), custom PC builders use thermal paste all the time so incredibly performant options are available online. I grabbed a tube of Noctua NT-H2 for about $10 and set to taking apart my MacBook to swap out the aging thermal paste. And thankfully, iFixit has a tremendous, in depth guide on the disassembly required, so I got to it. Indeed, that grey thermal paste looked quite old, but also above and below it (on the RAM chips) I noticed something that didn’t quite seem like thermal paste, it was far more… grainy almost? Spottiness is due to half of it being on the heatsink It turns out, ending with my generation of MacBooks (lucky me!) Apple used a very special kind of thermal compound often called “Carbon Black”, which is basically designed to be able to bridge an even thicker gap than traditional thermal paste. I thought about replacing it, but it seems really hard to come across that special thermal compound (and do not do it with normal thermal paste) and my RAM temperatures always seemed fine (65°C is fine… right?) so I just made sure to not touch that. For the regular grey thermal paste, I used some cotton swabs and isopropyl alcohol to remove the dried up existing thermal paste, then painted on a bit of the new stuff. Disaster To get to the underside of the CPU, you basically need to disassemble the entire MacBook. It’s honestly not that hard, but iFixit warned that the fan cables (which also need to be unclipped) are incredibly delicate. And they’re not wrong, seriously they have the structural integrity of the half-ply toilet paper available at gas stations. So, wouldn’t you know it, I moved the left fan’s cable a bit too hard and it completely tore in half. Gah. I found a replacement fan online (yeah you can’t just buy the cable, need a whole new fan) and in the meantime I just kept an eye on my CPU thermals. As long as I wasn’t doing anything too intensive it honestly always stayed around 65° which was warm, but not terrifying (MacBook Airs completely lack a fan, after all). Take two A few days later, the fans arrived, and I basically had to redo the entire disassembly process to get to the fans. At least I was a lot faster this time. The fan was incredibly easy to swap out (hats off there, Apple!) and I screwed everything back together and began reconnecting all the little connectors. Until I saw it: the tiny (made of the same half ply material as the fan cable) Touch ID sensor cable was inexpicably torn in half, the top half just hanging out. I didn’t even half to touch this thing really, and I hadn’t even got to the stage of reconnecting it (I was about to!), it comes from underneath the logic board and I guess just the movement of sliding the logic board back in sheared it in half. me Bah. I looked up if I could just grab another replacement cable here, and sure enough you can… but the Touch ID chip is cryptographically paired to your MacBook so you’d have to take it into an Apple Store. Estimates seemed to be in the hundreds of dollars, so if anyone has any experience there let me know, but for now I’m just going to live happily without a Touch ID sensor… or the button because the button also does not work. RIP little buddy (And yeah I’m 99.9% sure I can’t solder this back together, there’s a bunch of tiny lanes that make up the cable that you would need experience with proper micro-soldering to do.) Honestly, the disassembly process for my MacBook was surprisingly friendly and not very difficult, I just really wish they beefed up some of the cables even slightly so they weren’t so delicate. The results I was going to cackle if I went through all that just to have identical temperatures as before, but I’m very happy to say they actually improved a fair bit. I ran a Cinebench test before disassembling the MacBook the very first time to establish a baseline: Max CPU temperature: 102°C Max fan speed: 6,300 RPM Cinbench score: 12,252 After the new thermal paste (and the left fan being new): Max CPU temperature: 96°C Max fan speed: 4,700 RPM Cinbench score: 12,316 Now just looking at those scores you might be like… so? But let me tell you, dropping 1,600 RPM on the fan is a noticeable change, it goes from “Oh my god this is annoyingly loud” to “Oh look the fans kicked in”, and despite slower fan speeds there was still a decent drop in CPU temperature! And a 0.5% higher Cinebench score! But where I also really notice it is in idling: just writing this blog post my CPU was right at 46°C the whole time, where previously my computer idled right aroud 60°C. The whole computer just feels a bit healthier. So… should you do it? Honestly, unless you’re very used to working on small, delicate electronics, probably not. But if you do have that experience and are very careful, or have a local repair shop that can do it for a reasonable fee (and your MacBook is a few years old so as to warrant it) it’s honestly a really nice tweak that I feel will hopefully at least get me to the M5 generation. I do miss Touch ID, though.

2 days ago 6 votes
A slept on upscaling tool for macOS

I uploaded YouTube videos from time to time, and a fun comment I often get is “Whoa, this is in 8K!”. Even better, I’ve had comments from the like, seven people with 8K TVs that the video looks awesome on their TV. And you guessed it, I don’t record my videos in 8K! I record them in 4K and upscale them to 8K after the fact. There’s no shortage of AI video upscaling tools today, but they’re of varying quality, and some are great but quite expensive. The legendary Finn Voorhees created a really cool too though, called fx-upscale, that smartly leverages Apple’s built-in MetalFX framework. For the unfamiliar, this library is an extensive of Apple’s Metal graphics library, and adds functionality similar to NVIDIA’s DLSS where it intelligently upscales video using machine learning (AI), so rather than just stretching an image, it uses a model to try to infer what the frame would look like at a higher resolution. It’s primarily geared toward video game use, but Finn’s library shows it does an excellent job for video too. I think this is a really killer utility, and use it for all my videos. I even have a license for Topaz Video AI, which arguably works better, but takes an order of magnitude longer. For instance my recent 38 minute, 4K video took about an hour to render to 8K via fx-upscale on my M1 Pro MacBook Pro, but would take over 24 hours with Topaz Video AI. # Install with homebrew brew install finnvoor/tools/fx-upscale # Outputs a file named my-video Upscaled.mov fx-upscale my-video.mov --width 7680 --codec h265 Anyway, just wanted to give a tip toward a really cool tool! Finn’s even got a [version in the Mac App Store called Unsqueeze](https://apps.apple.com/ca/app/unsqueeze/id6475134617 Unsqueeze) with an actual GUI that’s even easier to use, but I really like the command line version because you get a bit more control over the output. 8K is kinda overkill for most use cases, so to be clear you can go from like, 1080p to 4K as well if you’re so inclined. I just really like 8K for the future proofing of it all, in however many years when 8K TVs are more common I’ll be able to have some of my videos already able to take advantage of that. And it takes long enough to upscale that I’d be surprised to see TVs or YouTube offering that upscaling natively in a way that looks as good given the amount of compute required currently. Obviously very zoomed in to show the difference easier If you ask me, for indie creators, even when 8K displays are more common, the future of recording still probably won’t be in native 8K. 4K recording gives so much detail still that have more than enough details to allow AI to do a compelling upscale to 8K. I think for my next camera I’m going to aim for recording in 6K (so I can still reframe in post), and then continue to output the final result in 4K to be AI upscaled. I’m coming for you, Lumix S1ii.

a week ago 19 votes
Embedding Godot games in iOS is easy

Recently there’s been very exciting developments in the Godot game engine, that have allowed really easy and powerful integration into an existing normal iOS or Mac app. I couldn’t find a lot of documentation or discussion about this, so I wanted to shine some light on why this is so cool, and how easy it is to do! What’s Godot? For the uninitiated, Godot is an engine for building games, other common ones you might know of are Unity and Unreal Engine. It’s risen in popularity a lot over the last couple years due to its open nature: it’s completely open source, MIT licensed, and worked on in the open. But beyond that, it’s also a really well made tool for building games with (both 2D and 3D), with a great UI, beautiful iconography, a ton of tutorials and resources, and as a bonus, it’s very lightweight. I’ve had a lot of fun playing around with it (considering potentially integrating it into Pixel Pals), and while Unity and Unreal Engine are also phenomenal tools, Godot has felt lightweight and approachable in a really nice way. As an analogy, Godot feels closer to Sketch and Figma whereas Unity and Unreal feel more like Photoshop/Illustrator or other kinda bulky Adobe products. Even Apple has taken interest in it, contributing a substantial pull request for visionOS support in Godot. Why use it with iOS? You’ve always been able to build a game in Godot and export it to run on iOS, but recently thanks to advancements in the engine and work by amazing folks like Miguel de Icaza, you can now embed a Godot game in an existing normal SwiftUI or UIKit app just as you would an extra UITextView or ScrollView. Why is this important? Say you want to build a game or experience, but you don’t want it to feel just like another port, you want it to integrate nicely with iOS and feel at home there through use of some native frameworks and UI here and there to anchor the experience (share sheets, local notifications, a simple SwiftUI sheet for adding a friend, etc.). Historically your options have been very limited or difficult. You no longer have to have “a Godot game” or “an iOS app”, you can have the best of both worlds. A fun game built entirely in Godot, while having your share sheets, Settings screens, your paywall, home screen widgets, onboarding, iCloud sync, etc. all in native Swift code. Dynamically choosing which tool you want for the job. (Again, this was technically possible before and with other engines, but was much, much more complicated. Unity’s in particular seems to have been last updated during the first Obama presidency.) And truly, this doesn’t only benefit “game apps”. Heck, if the user is doing something that will take awhile to complete (uploading a video, etc.) you could give them a small game to play in the interim. Or just for some fun you could embed a little side scroller easter egg in one of your Settings screens to delight spelunking users. Be creative! SpriteKit? A quick aside. It wouldn’t be an article about game dev on iOS without mentioning SpriteKit, Apple’s native 2D game framework (Apple also has SceneKit for 3D). SpriteKit is well done, and actually what I built most of Pixel Pals in. But it has a lot of downsides versus a proper, dedicated game engine: Godot has a wealth of tutorials on YouTube and elsewhere, bustling Discord communities for help, where SpriteKit being a lot more niche can be quite hard to find details on The obvious one: SpriteKit only works on Apple platforms, so if you want to port your game to Android or Windows you’re probably not going to have a great time, where Godot is fully cross platform Godot being a full out game engine has a lot more tools for game development than can be handy, from animation tools, to sprite sheet editors, controls that make experimenting a lot easier, handy tools for creating shaders, and so much more than I could hope to go over in this article. If you ever watch a YouTube video of someone building a game in a full engine, the wealth of tools they have for speeding up development is bonkers. Godot is updated frequently by a large team of employees and volunteers, SpriteKit conversely isn’t exactly one of Apple’s most loved frameworks (I don’t think it’s been mentioned at WWDC in years) and kinda feels like something Apple ins’t interested in putting much more work into. Maybe that’s because it does everything Apple wants and is considered “finished” (if so I think that would be incorrect, see previous point for many things that it would be helpful for SpriteKit to have), but if you were to encounter a weird bug I’d feel much better about the likelihood of it getting fixed in Godot than SpriteKit I’m a big fan of using the right tool for the job. For iOS apps, most of the time that’s building something incredible in SwiftUI and UIKit. But for building a game, be it small or large, using something purpose built to be incredible at that seems like the play to me, and Godot feels like a great candidate there. Setup Simply add the SwiftGodotKit package to your Xcode project by selecting your project in the sidebar, ensuring your project is selected in the new sidebar, selecting the Package Dependencies tab, click the +, then paste the GitHub link. After adding it, you will also need to select the target that you added it to in the sidebar, select the Build Settings tab, then select “Other Linker Flags” and add -lc++. Lastly, with that same target, under the General tab add MetalFX.framework to Frameworks, Libraries, and Embedded Content. (Yeah you got me, I don’t know why we have to do that.) After that, you should be able to import SwiftGodotKit. Usage Now we’re ready to use Godot in our iOS app! What excites me most and I want to focus on is embedding an existing Godot game in your iOS app and communicating back and forth with it from your iOS app. This way, you can do the majority of the game development in Godot without even opening Xcode, and then sprinkle in delightful iOS integration by communicating between iOS and Godot where needed. To start, we’ll build a very simple game called IceCreamParlor, where we select from a list of ice cream options in SwiftUI, which then gets passed into Godot. Godot will have a button the user can tap to send a message back to SwiftUI with the total amount of ice cream. This will not be an impressive “game” by any stretch of the imagination, but should be easy to set up and understand the concepts so you can apply it to an actual game. To accomplish our communication, in essence we’ll be recreating iOS’ NotificationCenter to send messages back and forth between Godot and iOS, and like NotificationCenter, we’ll create a simple singleton to accomplish this. Those messages will be sent via Signals. This is Godot’s system for, well, signaling an event occurred, and can be used to signify everything from a button press, to a player taking damage, to a timer ending. Keeping with the NotificationCenter analogy, this would the be Notification that gets posted (except in Godot, it’s used for everything, where in iOS land you really wouldn’t use NotificationCenter for a button press.) And similar to Notification that has a userInfo field to provide more information about the notification, Godot signals can also take an argument that provides more information. (For example if the notification was “player took damage” the argument might be an integer that includes how much damage they took.) Like userInfo, this is optional however and you can also fire off a signal with no further information, something like “userUnlockedPro” for when they activate Pro after your SwiftUI paywall. For our simple example, we’re going to send a “selectedIceCream” signal from iOS to Godot, and a “updatedIceCreamCount” signal from Godot to iOS. The former will have a string argument for which ice cream was selected, and the latter will have an integer argument with the updated count. Setting up our Godot project Open Godot.app (available to download from their website) and create a new project, I’ll type in IceCreamParlor, choose the Mobile renderer, then click Create. Godot defaults to a 3D scene, so I’ll switch to 2D at the top, and then in the left sidebar click 2D Scene to create that as our root node. I’ll right-click the sidebar to add a child node, and select Label. We’ll set the text to the “Ice cream:”. In the right sidebar, we’ll go to Theme Overrides and increase the font size to 80 to make it more visible, and we’ll also rename it in the left sidebar from Label to IceCreamLabel. We’ll also do the same to add a Button to the scene, which we’ll call UpdateButton and sets its text to “Update Ice Cream Count”. If you click the Play button in the top right corner of Godot, it will run and you can click the button, but as of now it doesn’t do anything. We’ll select our root node (Node2D) in the sidebar, right click, and select “Attach Script”. Leave everything as default, and click Create. This will now present us with an area where we can actually code in GDScript, and we can refer to the objects in our scene by prefixing their name with a dollar sign. Inside our script, we’ll implement the _ready function, which is essentially Godot’s equivalent of viewDidLoad, and inside we’ll connect to our simple signal we discussed earlier. We’ll do this by grabbing a reference to our singleton, then reference the signal we want, then connect to it by passing a function we want to be called when the signal is received. And of course the function takes a String as a parameter because our signal includes what ice cream was selected. extends Node2D var ice_cream: Array[String] = [] func _ready() -> void: var singleton = Engine.get_singleton("GodotSwiftMessenger") singleton.ice_cream_selected.connect(_on_ice_cream_selected_signal_received) func _on_ice_cream_selected_signal_received(new_ice_cream: String) -> void: # We received a signal! Probably should do something… pass Note that we haven’t actually created the singleton yet, but we will shortly. Also note that normally in Godot, you have to declare custom signals like the ones we’re using, but we’re going to declare them in Swift. As long as they’re declared somewhere, Godot is happy! Let’s also hook up our button by going back to our scene, selecting our button in the canvas, selecting the “Node” tab in the right sidebar, and double-clicking the pressed() option. We can then select that same Node2D script and name the function _on_update_button_pressed to add a function that executes when the button is pressed (fun fact: the button being pressed event is also powered by signals). func _on_update_button_pressed() -> void: pass Setting up our iOS/Swift project Let’s jump over to Xcode and create a new SwiftUI project there as well, also calling it IceCreamParlor. We’ll start by adding the Swift package for SwiftGodotKit to Swift Package Manager, add -lc++ to our “Other Linker Flags” under “Build Settings”, add MetalFX, then go to ContentView.swift and add import SwiftGodotKit at the top. From here, let’s create a simple SwiftUI view so we can choose from some ice cream options. var body: some View { HStack { Button { } label: { Text("Chocolate") } Button { } label: { Text("Strawberry") } Button { } label: { Text("Vanilla") } } .buttonStyle(.bordered) } We’ll also create a new file in Xcode called GodotSwiftMessenger.swift. This will be where we implement our singleton that is akin to NotificationCenter. import SwiftGodot @Godot class GodotSwiftMessenger: Object { public static let shared = GodotSwiftMessenger() @Signal var iceCreamSelected: SignalWithArguments<String> @Signal var iceCreamCountUpdated: SignalWithArguments<Int> } We first import SwiftGodot (minus the Kit), essentially because this part is purely about interfacing with Godot through Godot, and doesn’t care about whether or not it’s embedded in an iOS app. For more details on SwiftGodot see its section below. Then, we annotate our class with the @Godot Swift Macro, which basically just says “Hey make Godot aware that this class exists”. The class is a subclass of Object as everything in Godot needs to inherit from Object, it’s essentially the parent class of everything. Following that is your bog standard Swift singleton initialization. Then, with another Swift Macro, we annotate a variable we want to be our signal which signifies that it’s a Signal to Godot. You can either specify its type as Signal or SignalWithArguments<T> depending on whether or not the specific signal also sends any data alongside it. We’ll use that “somethingHappened” signal we mentioned early, which includes a string for more details on what happened. Note that we used “ice_cream_selected” in Godot but “iceCreamSelected” in Swift, this is because the underscore convention is used in Godot, and SwiftGodotKit will automatically map the camelCase Swift convention to it. Now we need to tell Godot about this singleton we just made. We want Godot to know about it as soon as possible, otherwise if things aren’t hooked up, Godot might emit a signal that we wouldn’t receive in Swift, or vice-versa. So, we’ll hook it up very early in our app cycle. In SwiftUI, you might do this in the init of your main App struct as I’ll show below, and in UIKit in applicationDidFinishLaunching. @main struct IceCreamParlor: App { init() { initHookCb = { level in guard level == .scene else { return } register(type: GodotSwiftMessenger.self) Engine.registerSingleton(name: "GodotSwiftMessenger", instance: GodotSwiftMessenger.shared) } } var body: some Scene { WindowGroup { ContentView() } } } In addition to the boilerplate code Xcode gives us, we’ve added an extra step to the initializer, where we set a callback on initHookCb. This is just a callback that fires as Godot is setup, and it specifies what level of setup has occurred. We want to wait until the level setup is reached, which means the game is ready to go (you could set it up at an even earlier level if you see that as beneficial). Then, we just tell Godot about this type by calling register, and then we register the singleton itself with a name we want it to be accessible under. Again, we want to do this early, as if Godot was already setup in our app, and then we set initHookCb, its contents would never fire and thus we wouldn’t register anything. But don’t worry, this hook won’t fire until we first initialize our Godot game in iOS ourself, so as long as this code is called before then, we’re golden. Lastly, everything is registered in iOS land, but there’s still nothing that emits or receives signals. Let’s change that by going to ContentView.swift, and change our body to the following: import SwiftUI import SwiftGodotKit import SwiftGodot struct ContentView: View { @State var totalIceCream = 0 @State var godotApp: GodotApp = GodotApp(packFile: "main.pck") var body: some View { VStack { GodotAppView() .environment(\.godotApp, godotApp) Text("Total Ice Cream: \(totalIceCream)") HStack { Button { GodotSwiftMessenger.shared.iceCreamSelected.emit("chocolate") } label: { Text("Chocolate") } Button { GodotSwiftMessenger.shared.iceCreamSelected.emit("strawberry") } label: { Text("Strawberry") } Button { GodotSwiftMessenger.shared.iceCreamSelected.emit("vanilla") } label: { Text("Vanilla") } } .buttonStyle(.bordered) } .onAppear { GodotSwiftMessenger.shared.iceCreamCountUpdated.connect { newTotalIceCream in totalIceCream = newTotalIceCream } } } } There’s quite a bit going on here, but let’s break it down because it’s really quite simple. We have two new state variables, the first is to keep track of the new ice cream count. Could we just do this ourselves purely in SwiftUI? Totally, but for fun we’re going to be totally relying on Godot to keep us updated there, and we’ll just reflect that in SwiftUI to show the communication. Secondly and more importantly, we need to declare a variable for our actual game file so we can embed it. We do this embedding at the top of the VStack by creating a GodotAppView, a handy SwiftUI view we can now leverage, and we do so by just setting its environment variable to the game we just declared. Then, we change our buttons to actually emit the selections via signals, and when the view appears, we make sure we connect to the signal that keeps us updated on the count so we can reflect that in the UI. Note that we don’t also connect to the iceCreamSelected signal, because we don’t care to receive it in SwiftUI, we’re just firing that one off for Godot to handle. Communicating Let’s update our gdscript in Godot to take advantage of these changes. func _on_ice_cream_selected_signal_received(new_ice_cream: String) -> void: ice_cream.append(new_ice_cream) $IceCreamLabel.text = "Ice creams: " + ", ".join(ice_cream) func _on_update_button_pressed() -> void: var singleton = Engine.get_singleton("GodotSwiftMessenger") singleton.ice_cream_count_updated.emit(ice_cream.size()) Not too bad! We now receive the signal from SwiftUI and update our UI and internal state in Godot accordingly, as well as the UI by making our ice cream into a comma separated list. And then when the user taps the update button, we then send (emit) that signal back to SwiftUI with the updated count. Running To actually see this live, first make sure you have an actual iOS device plugged in. Unfortunately Godot doesn’t work with the iOS simulator. Secondly, in Godot, select the Project menu bar item, then Export, then click the Add button and select “iOS”. This will bring you to a screen with a bunch of options, but my understanding is that this is 99% if you’re building your app entirely in Godot, you can plug in all the things you’d otherwise plug into Xcode here instead, and Godot will handle them for you. That doesn’t apply to us, we’re going to do all that normally in Xcode anyway, we just want the game files, so ignore all that and select “Export PCK/ZIP…” at the bottom. It’ll ask you where you want to save it, and I just keep it in the Godot project directory, make sure “Godot Project Pack (*.pck)” is selected in the dropdown, and then save it as main.pck. That’s our “game” bundled up, as meager as it is! We’ll then drop that into Xcode, making sure to add it to our target, then we can run it on the device! Here we’ll see choosing the ice cream flavor at the bottom in SwiftUI beams it into the Godot game that’s just chilling like a SwiftUI view, and then we can tap the update button in Godot land to beam the new count right back to SwiftUI to be displayed. Not exactly a AAA game but enough to show the basics of communication 😄 Look at you go! Take this as a leaping off point for all the cool SwiftUI and Godot interoperability that you can accomplish, be it tappings a Settings icon in Godot to bring up a beautifully designed, native SwiftUI settings screen, or confirmation to you your game when the user updated to the Pro version of your game through your SwiftUI paywall. Bonus: SwiftGodot (minus the “Kit”) An additional fun option (that sits at the heart of SwiftGodotKit) is SwiftGodot, which allows you to actually build your entire Godot game with Swift as the programming language if you so choose. Swift for iOS apps, Swift on the server, Swift for game dev. Swift truly is everywhere. For me, I’m liking playing around in GDScript, which is Godot’s native programming language, but it’s a really cool option to know about. Embed size A fear might be that embedding Godot into your app might bloat the binary and result in an enormous app download size. Godot is very lightweight, adding it to your codebase adds a relatively meager (at least by 2025 standards) 30MB to your binary size. That’s a lot larger than SpriteKit’s 0MB, but for all the benefits Godot offers that’s a pretty compelling trade. (30MB was measured by handy blog sponsor, Emerge Tools.) Tips Logging If you log something in Godot/GDScript via print("something") that will also print to the Xcode console, handy! Quickly embedding the pck into iOS Exporting the pck file from Godot to Xcode is quite a few clicks, so if you’re doing it a lot it would be nice to speed that up. We can use the command line to make this a lot nicer. Godot.app also has a headless mode you can use by going inside the .app file, then Contents > MacOS > Godot. But typing the full path to that binary is no fun, so let’s symlink the binary to /usr/local/bin. sudo ln -s "/Applications/Godot.app/Contents/MacOS/Godot" /usr/local/bin/godot Now we can simply type godot anywhere in the Terminal to either open the Godot app, or we can use godot --headless for some command line goodness. My favorite way to do this, is to do something like the following within your Godot project directory: godot --headless --export-pack "iOS" /path/to/xcodeproject/target/main.pck This will handily export the pck and add it to our Xcode project, overwriting any existing pck file, from which point we can simply compile our iOS app. Wrapping it up I really think Godot’s new interoperability with iOS is an incredibly exciting avenue for building games on iOS, be it a full fledged game or a small little easter egg integrated into an existing iOS app, and hats off to all the folks who did the hard work getting it working. Hopefully this serves as an easy way to get things up and running! It might seem like a lot at first glance, but most of the code shown above is just boilerplate to get an example Godot and iOS project up and running, the actual work to embed a game and communicate across them is so delightfully simple! (Also big shout out to Chris Backas and Miguel de Icaza for help getting this tutorial off the ground.)

a month ago 26 votes
Curing Mac mini M4 fomo with 3D printing

Spoiler: 3D printed! The colored ports really sell the effect If you’re anything like me, you’ve found the new, tinier Mac mini to be absolutely adorable. But you might also be like me that you either already have an awesome M1 Mac mini that you have no real reason to replace, or the new Mac mini just isn’t something you totally need. While that logic might be sound, but it doesn’t make you want one any less. To help cure this FOMO, I made a cute little 3D printable Mac mini that can sit on your desk and be all cute. But then I had an even better idea, the new Mac mini is powerful sure, but it can’t hold snacks. Or a plant. Or your phone. Or pens/pencils. So I also made some versions you can print that add some cute utility to your desk in the form of the new Mac mini. They’re free of course! Just chuck ’em into your (or your friend’s) 3D printer. It even has all the little details modeled, like the power button, ports (including rear), and fan holes! They’re pretty easy to print, it’s in separate parts for ease of printing the bottom a different color (black) versus the top, then just put a dab of glue (or just use gravity) to keep them together. If you have a multi-color 3D printer, you can color the ports and power LED to make it look extra cool (or just do it after the fact with paint). Here are the different options for your desk! Secret item stash The possibilities for what you can store on your desk are now truly endless. Individually wrapped mints? Key switches? Screws? Paper clips? Rubber bands? Flash drives? Download link: https://makerworld.com/en/models/793456 A very green sorta Mac First carbon neutral Mac is cool and all but what if your Mac mini literally had a plant in it? Every desk needs a cute little plant. Download link: https://makerworld.com/en/models/793464 Phone holder A phone/tablet holder is an essential item on my desk for debugging things, watching a video, or just keeping an eye on an Uber Eats order. Before, guests came over and saw my boring phone stand and judged me, now they come over and think I’m exciting and well-traveled. You can even charge your phone/tablet in portrait mode by pushing the cable through a tunnel made through the Ethernet port that then snakes up to the surface. Download link: https://makerworld.com/en/models/793495 Pen holder The Playdate had the cutest little pen/pencil holder accessory but it unfortunately never shipped and my desk is sad. This will be a nice stand in for your beloved pens, pencils, markers, and Apple Pencils. Download link: https://makerworld.com/en/models/793470 A solid model Or if you just want to stare at it without any frills, you can just print the normal model too! Download link: https://makerworld.com/en/models/793447 Printer recommendation Whenever I post about 3D printing I understandably get a bunch of “Which 3D printer should I buy??” questions. This isn’t sponsored, but I’ve found over the last few years the answer has been pretty easy: something from Bambu Lab. Their printers are somehow super easy to use, well designed, and reasonably priced. Prusas are great too, but I think Bambu is hard to beat for the price. Don’t get an Ender. So if you’re looking for a printer now, Black Friday deals are aplenty so it’s pretty much the best time to pick one up. I’d grab something in their A series if you’re on a budget, or the P1S for a bit more if you can swing it (that’s what I use). https://bambulab.com On the other hand if you just want to print one thing now and again, a lot of local libraries are starting to have 3D printers so that might be worth looking into! And online services exist too (eg: JLCPCB and PCBWay), but if you do it with any regularity a 3D printer is a really fun thing to pick up. Enjoy! ❤️ Learning 3D modeling over the last year has been a ton of fun so I love a good excuse to practice, and shout out to Jerrod Hofferth and his amazing 3D printable Mac mini tower (that you should totally download) for the idea to solve my desire with some 3D printing! Also, the models are almost certainly not accurate down to the micrometer as I don’t actually have one, they’re based off Apple’s measurements as well as measuring screenshots. But it should be close! If you have a multi-color 3D printer, the linked models have the colors built-in for your ready to go, but if you want to print it in single-colors I also made versions available with the top and bottom separate as well as the logo, so you can print them separately in the individual colors then connect them with a touch of super glue or something.

8 months ago 66 votes
Introducing Tiny Storage: a small, lightweight UserDefaults replacement

Hey I'm a developer not an artist Following my last blog post about difficulties surrounding UserDefaults and edge cases that lead to data loss (give it a read if you haven’t, it’s an important precursor to this post!), I wanted to build something small and lightweight that would serve to fix the issues I was encountering with UserDefaults and thus TinyStorage was born! It’s open source so you can use it in your projects too if would like. GitHub link 🐙 Overview As mentioned in that blog post, UserDefaults has more and more issues as of late with returning nil data when the device is locked and iOS “prelaunches” your app, leaving me honestly sort of unable to trust what UserDefaults returns. Combined with an API that doesn’t really do a great job of surfacing whether it’s available, you can quite easily find yourself in a situation with difficult to track down bugs and data loss. This library seeks to address that fundamentally by not encrypting the backing file, allowing more reliable access to your saved data (if less secure, so don’t store sensitive data), with some niceties sprinkled on top. This means it’s great for preferences and collections of data like bird species the user likes, but not for sensitive details. Do not store passwords/keys/tokens/secrets/diary entries/grammy’s spaghetti recipe, anything that could be considered sensitive user information, as it’s not encrypted on the disk. But don’t use UserDefaults for sensitive details either as UserDefaults data is still fully decrypted when the device is locked so long as the user has unlocked the device once after reboot. Instead use Keychain for sensitive data. As with UserDefaults, TinyStorage is intended to be used with relatively small, non-sensitive values. Don’t store massive databases in TinyStorage as it’s not optimized for that, but it’s plenty fast for retrieving stored Codable types. As a point of reference I’d say keep it under 1 MB. This reliable storing of small, non-sensitive data (to me) is what UserDefaults was always intended to do well, so this library attempts to realize that vision. It’s pretty simple and just a few hundred lines, far from a marvel of filesystem engineering, but just a nice little utility hopefully! (Also to be clear, TinyStorage is not a wrapper for UserDefaults, it is a full replacement. It does not interface with the UserDefaults system in any way.) Features Reliable access: even on first reboot or in application prewarming states, TinyStorage will read and write data properly Read and write Swift Codable types easily with the API Similar to UserDefaults uses an in-memory cache on top of the disk store to increase performance Thread-safe through an internal DispatchQueue so you can safely read/write across threads without having to coordinate that yourself Supports storing backing file in shared app container Uses NSFileCoordinator for coordinating reading/writing to disk so can be used safely across multiple processes at the same time (main target and widget target, for instance) When using across multiple processes, will automatically detect changes to file on disk and update accordingly SwiftUI property wrapper for easy use in a SwiftUI hierarchy (Similar to @AppStorage) Uses OSLog for logging A function to migrate your UserDefaults instance to TinyStorage Limitations Unlike UserDefaults, TinyStorage does not support mixed collections, so if you have a bunch of strings, dates, and integers all in the same array in UserDefaults without boxing them in a shared type, TinyStorage won’t work. Same situation with dictionaries, you can use them fine with TinyStorage but the key and value must both be a Codable type, so you can’t use [String: Any] for instance where each string key could hold a different type of value. Installation Simply add a Swift Package Manager dependency for https://github.com/christianselig/TinyStorage.git Usage First, either initialize an instance of TinyStorage or create a singleton and choose where you want the file on disk to live. To keep with UserDefaults convention I normally create a singleton for the app container: extension TinyStorage { static let appGroup: TinyStorage = { let appGroupID = "group.com.christianselig.example" let containerURL = FileManager.default.containerURL(forSecurityApplicationGroupIdentifier: appGroupID)! return .init(insideDirectory: containerURL) }() } (You can store it wherever you see fit though, in URL.documentsDirectory is also an idea for instance!) Then, decide how you want to reference your keys, similar to UserDefaults you can use raw strings, but I recommend a more strongly-typed approach, where you simply conform a type to TinyStorageKey and return a var rawValue: String and then you can use it as a key for your storage without worrying about typos. If you’re using something like an enum, making it a String enum gives you this for free, so no extra work! After that you can simply read/write values in and out of your TinyStorge instance: enum AppStorageKeys: String, TinyStorageKey { case likesIceCream case pet case hasBeatFirstLevel } // Read let pet: Pet? = TinyStorage.appGroup.retrieve(type: Pet.self, forKey: AppStorageKeys.pet) // Write TinyStorage.appGroup.store(true, forKey: AppStorageKeys.likesIceCream) (If you have some really weird type or don’t want to conform to Codable, just convert the type to Data through whichever means you prefer and store that, as Data itself is Codable.) If you want to use it in SwiftUI and have your view automatically respond to changes for an item in your storage, you can use the @TinyStorageItem property wrapper. Simply specify your storage, the key for the item you want to access, and specify a default value. @TinyStorageItem(key: AppStorageKey.pet, storage: .appGroup) var pet: = Pet(name: "Boots", species: .fish, hasLegs: false) var body: some View { Text(pet.name) } You can even use Bindings to automatically read/write. @TinyStorageItem(key: AppStorageKeys.message, storage: .appGroup) var message: String = "" var body: some View { VStack { Text("Stored Value: \(message)") TextField("Message", text: $message) } } It also addresses some of the annoyances of @AppStorage, such as not being able to store collections: @TinyStorageItem(key: "names", storage: .appGroup) var names: [String] = [] Or better support for optional values: @TinyStorageItem(key: "nickname", storage: .appGroup) var nickname: String? = nil // or "Cool Guy" Hope it’s handy! If you like it or have any feedback let me know! I’m going to start slowly integrating it into Pixel Pals and hopefully solve a few bugs in the process.

9 months ago 96 votes

More in technology

You should repaste your MacBook (but don't)

My favorite memory of my M1 Pro MacBook Pro was the whole sensation of “holy crap, you never hear the fans in this thing”, which was very novel in 2021. Four years later, this MacBook Pro is still a delight. It’s the longest I’ve ever owned a laptop, and while I’d love to pick up the new M4 goodness, this dang thing still seems to just shrug at basically anything I throw at it. Video editing, code compiling, CAD models, the works. (My desire to update is helped though by the fact I got the 2TB SSD, 32GB RAM option, and upgrading to those on new MacBooks is still eye wateringly expensive.) But my MacBook is starting to show its age in one area: it’s not quiet anymore. If you’re doing anything too intensive like compiling code for awhile, or converting something in Handbrake, the age of the fans being quiet is long past. The fans are properly loud. (And despite having two cats, it’s not them! I clean out the fans pretty regularly.) Enter the thermal paste Everyone online seems to point toward one thing: the thermal paste on computers tends to dry up over the years. What the heck is thermal paste? Well, components on your computer that generate a lot of heat are normally made to touch something like a copper heatsink that is really good at pulling that heat away from it. The issue is, when you press these two metal surfaces against each other, even the best machining isn’t perfect and you there’s microscopic gaps between them meaning there’s just air at those parts, and air is a terrible conductor of heat. The solution is to put a little bit of thermal paste (basically a special grey toothpaste gunk that is really good at transferring heat) between them, and it fills in any of those microscopic gaps. The problem with this solution is after hundreds and hundreds of days of intense heat, the paste can dry up into something closer to almost a powder, and it’s not nearly as good at filling in those gaps. Replacement time The logic board! MacBook thermal paste isn’t anything crazy (for the most part, see below), custom PC builders use thermal paste all the time so incredibly performant options are available online. I grabbed a tube of Noctua NT-H2 for about $10 and set to taking apart my MacBook to swap out the aging thermal paste. And thankfully, iFixit has a tremendous, in depth guide on the disassembly required, so I got to it. Indeed, that grey thermal paste looked quite old, but also above and below it (on the RAM chips) I noticed something that didn’t quite seem like thermal paste, it was far more… grainy almost? Spottiness is due to half of it being on the heatsink It turns out, ending with my generation of MacBooks (lucky me!) Apple used a very special kind of thermal compound often called “Carbon Black”, which is basically designed to be able to bridge an even thicker gap than traditional thermal paste. I thought about replacing it, but it seems really hard to come across that special thermal compound (and do not do it with normal thermal paste) and my RAM temperatures always seemed fine (65°C is fine… right?) so I just made sure to not touch that. For the regular grey thermal paste, I used some cotton swabs and isopropyl alcohol to remove the dried up existing thermal paste, then painted on a bit of the new stuff. Disaster To get to the underside of the CPU, you basically need to disassemble the entire MacBook. It’s honestly not that hard, but iFixit warned that the fan cables (which also need to be unclipped) are incredibly delicate. And they’re not wrong, seriously they have the structural integrity of the half-ply toilet paper available at gas stations. So, wouldn’t you know it, I moved the left fan’s cable a bit too hard and it completely tore in half. Gah. I found a replacement fan online (yeah you can’t just buy the cable, need a whole new fan) and in the meantime I just kept an eye on my CPU thermals. As long as I wasn’t doing anything too intensive it honestly always stayed around 65° which was warm, but not terrifying (MacBook Airs completely lack a fan, after all). Take two A few days later, the fans arrived, and I basically had to redo the entire disassembly process to get to the fans. At least I was a lot faster this time. The fan was incredibly easy to swap out (hats off there, Apple!) and I screwed everything back together and began reconnecting all the little connectors. Until I saw it: the tiny (made of the same half ply material as the fan cable) Touch ID sensor cable was inexpicably torn in half, the top half just hanging out. I didn’t even half to touch this thing really, and I hadn’t even got to the stage of reconnecting it (I was about to!), it comes from underneath the logic board and I guess just the movement of sliding the logic board back in sheared it in half. me Bah. I looked up if I could just grab another replacement cable here, and sure enough you can… but the Touch ID chip is cryptographically paired to your MacBook so you’d have to take it into an Apple Store. Estimates seemed to be in the hundreds of dollars, so if anyone has any experience there let me know, but for now I’m just going to live happily without a Touch ID sensor… or the button because the button also does not work. RIP little buddy (And yeah I’m 99.9% sure I can’t solder this back together, there’s a bunch of tiny lanes that make up the cable that you would need experience with proper micro-soldering to do.) Honestly, the disassembly process for my MacBook was surprisingly friendly and not very difficult, I just really wish they beefed up some of the cables even slightly so they weren’t so delicate. The results I was going to cackle if I went through all that just to have identical temperatures as before, but I’m very happy to say they actually improved a fair bit. I ran a Cinebench test before disassembling the MacBook the very first time to establish a baseline: Max CPU temperature: 102°C Max fan speed: 6,300 RPM Cinbench score: 12,252 After the new thermal paste (and the left fan being new): Max CPU temperature: 96°C Max fan speed: 4,700 RPM Cinbench score: 12,316 Now just looking at those scores you might be like… so? But let me tell you, dropping 1,600 RPM on the fan is a noticeable change, it goes from “Oh my god this is annoyingly loud” to “Oh look the fans kicked in”, and despite slower fan speeds there was still a decent drop in CPU temperature! And a 0.5% higher Cinebench score! But where I also really notice it is in idling: just writing this blog post my CPU was right at 46°C the whole time, where previously my computer idled right aroud 60°C. The whole computer just feels a bit healthier. So… should you do it? Honestly, unless you’re very used to working on small, delicate electronics, probably not. But if you do have that experience and are very careful, or have a local repair shop that can do it for a reasonable fee (and your MacBook is a few years old so as to warrant it) it’s honestly a really nice tweak that I feel will hopefully at least get me to the M5 generation. I do miss Touch ID, though.

2 days ago 6 votes
Six Game Devs Speak to Computer Games Mag (1984)

Meet the Creators of Choplifter, Wizardry, Castle Wolfenstein, Zaxxon, Canyon Climber, and the Arcade Machine

2 days ago 4 votes
New AWS x Arduino Opta Workshop: Connect your PLC to the Cloud in just a few steps

We’re excited to invite you to a brand-new workshop created in collaboration with Amazon Web Services (AWS). Whether you’re modernizing factory operations or tinkering with your first industrial project, this hands-on workshop is your gateway to building cloud-connected PLCs that ship data – fast. At Arduino, we believe in making advanced technology more accessible. That’s […] The post New AWS x Arduino Opta Workshop: Connect your PLC to the Cloud in just a few steps appeared first on Arduino Blog.

2 days ago 4 votes
The History of Acer

A Shy Kid Builds the Taiwanese Tech Industry

5 days ago 11 votes
Concept Bytes’ coffee table tracks people and walks itself across a room when called

The term “mmWave” refers to radio waves with wavelengths on the millimeter scale. When it comes to wireless communications technology, like 5G, mmWave allows for very fast data transfer — though that comes at the expense of range. But mmWave technology also has some very useful sensing and scanning applications, which you may have experienced […] The post Concept Bytes’ coffee table tracks people and walks itself across a room when called appeared first on Arduino Blog.

5 days ago 8 votes