Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
64
I often get asked why I use Lit to build web components. Hands down, it's become my preference after years of working with various libraries and tools. Here's why I use it. Libraries offer a better DX # This seems like a selfish answer for a developer to lean on, but there are advantages to end users as well. A better developer experience (DX) means I can write components and fix bugs faster. In my experience, a lot faster. Lit, for example, maps attributes to properties automatically, meaning I can omit a ton of extra logic from my code. Abstractions like this make me more efficient at writing components because I can concentrate on the important stuff. And with less code to worry about, I find components are less prone to bugs. If I had to write those mappings myself, for example, it would get very cumbersome. More code to write, more bytes to load, and more complexity to maintain. I keep it DRY # If I were writing vanilla web components, I'd eventually recognize patterns amidst the...
a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from A Beautiful Site

Revisiting FOUCE

It's been awhile since I wrote about FOUCE and I've since come up with an improved solution that I think is worth a post. This approach is similar to hiding the page content and then fading it in, but I've noticed it's far less distracting without the fade. It also adds a two second timeout to prevent network issues or latency from rendering an "empty" page. First, we'll add a class called reduce-fouce to the <html> element. <html class="reduce-fouce"> ... </html> Then we'll add this rule to the CSS. <style> html.reduce-fouce { opacity: 0; } </style> Finally, we'll wait until all the custom elements have loaded or two seconds have elapsed, whichever comes first, and we'll remove the class causing the content to show immediately. <script type="module"> await Promise.race([ // Load all custom elements Promise.allSettled([ customElements.whenDefined('my-button'), customElements.whenDefined('my-card'), customElements.whenDefined('my-rating') // ... ]), // Resolve after two seconds new Promise(resolve => setTimeout(resolve, 2000)) ]); // Remove the class, showing the page content document.documentElement.classList.remove('reduce-fouce'); </script> This approach seems to work especially well and won't end up "stranding" the user if network issues occur.

6 months ago 80 votes
If Edgar Allan Poe was into Design Systems

Once upon a midnight dreary, while I pondered, weak and weary, While I nodded, nearly napping, suddenly there came a tapping, "'Tis a design system," I muttered, "bringing order to the core— Ah, distinctly I remember, every button, every splendor, Each component, standardized, like a raven's watchful eyes, Unified in system's might, like patterns we restore— And each separate style injection, linked with careful introspection, 'Tis a design system, nothing more.

7 months ago 84 votes
Web Components Are Not the Future — They’re the Present

It’s disappointing that some of the most outspoken individuals against Web Components are framework maintainers. These individuals are, after all, in some of the best positions to provide valuable feedback. They have a lot of great ideas! Alas, there’s little incentive for them because standards evolve independently and don’t necessarily align with framework opinions. How could they? Opinions are one of the things that make frameworks unique. And therein lies the problem. If you’re convinced that your way is the best and only way, it’s natural to feel disenchanted when a decision is made that you don’t fully agree with. This is my open response to Ryan Carniato’s post from yesterday called “Web Components Are Not the Future.” WTF is a component anyway? # The word component is a loaded term, but I like to think of it in relation to interoperability. If I write a component in Framework A, I would like to be able to use it in Framework B, C, and D without having to rewrite it or include its entire framework. I don’t think many will disagree with that objective. We’re not there yet, but the road has been paved and instead of learning to drive on it, frameworks are building…different roads. Ryan states: If the sheer number of JavaScript frameworks is any indicator we are nowhere near reaching a consensus on how one should author components on the web. And even if we were a bit closer today we were nowhere near there a decade ago. The thing is, we don’t need to agree on how to write components, we just need to agree on the underlying implementation, then you can use classes, hooks, or whatever flavor you want to create them. Turns out, we have a very well-known, ubiquitous technology that we’ve chosen to do this with: HTML. But it also can have a negative effect. If too many assumptions are made it becomes harder to explore alternative space because everything gravitates around the establishment. What is more established than a web standard that can never change? If the concern is premature standardization, well, it’s a bit late for that. So let’s figure out how to get from where we are now to where we want to be. The solution isn’t to start over at the specification level, it’s to rethink how front end frameworks engage with current and emerging standards and work to improve them. Respectfully, it’s time to stop complaining, move on, and fix the things folks perceive as suboptimal. The definition of component # That said, we also need to realize that Web Components aren’t a 1:1 replacement for framework components. They’re tangentially related things, and I think a lot of confusion stems from this. We should really fix the definition of component. So the fundamental problem with Web Components is that they are built on Custom Elements. Elements !== Components. More specifically, Elements are a subset of Components. One could argue that every Element could be a Component but not all Components are Elements. To be fair, I’ve never really liked the term “Web Components” because it competes with the concept of framework components, but that’s what caught on and that's what most people are familiar with these days. Alas, there is a very important distinction here. Sure, a button and a text field can be components, but there are other types. For example, many frameworks support a concept of renderless components that exist in your code, but not in the final HTML. You can’t do that with Web Components, because every custom element results in an actual DOM element. (FWIW I don’t think this is a bad thing — but I digress…) As to why Web components don’t do all the things framework components do, that’s because they’re a lower level implementation of an interoperable element. They’re not trying to do everything framework components do. That’s what frameworks are for. It’s ok to be shiny # In fact, this is where frameworks excel. They let you go above and beyond what the platform can do on its own. I fully support this trial-and-error way of doing things. After all, it’s fun to explore new ideas and live on the bleeding edge. We got a lot of cool stuff from doing that. We got document.querySelector() from jQuery. CSS Custom Properties were inspired by Sass. Tagged template literals were inspired by JSX. Soon we’re getting signals from Preact. And from all the component-based frameworks that came before them, we got Web Components: custom HTML elements that can be authored in many different ways (because we know people like choices) and are fully interoperable (if frameworks and metaframeworks would continue to move towards the standard instead of protecting their own). Frameworks are a testbed for new ideas that may or may not work out. We all need to be OK with that. Even framework authors. Especially framework authors. More importantly, we all need to stop being salty when our way isn’t what makes it into the browser. There will always be a better way to do something, but none of us have the foresight to know what a perfect solution looks like right now. Hindsight is 20/20. As humans, we’re constantly striving to make things better. We’re really good at it, by the way. But we must have the discipline to reach various checkpoints to pause, reflect, and gather feedback before continuing. Even the cheapest cars on the road today will outperform the Model T in every way. I’m sure Ford could have made the original Model T way better if they had spent another decade working on it, but do you know made the next version even better than 10 more years? The feedback they got from actual users who bought them, sat in them, and drove them around on actual roads. Web Standards offer a promise of stability and we need to move forward to improve them together. Using one’s influence to rally users against the very platform you’ve built your success on is damaging to both the platform and the community. We need these incredible minds to be less divisive and more collaborative. The right direction # Imagine if we applied the same arguments against HTML early on. What if we never standardized it at all? Would the Web be a better place if every site required a specific browser? (Narrator: it wasn't.) Would it be better if every site was Flash or a Java applet? (Remember Silverlight? lol) Sure, there are often better alternatives for every use case, but we have to pick something that works for the majority, then we can iterate on it. Web Components are a huge step in the direction of standardization and we should all be excited about that. But the Web Component implementation isn’t compatible with existing frameworks, and therein lies an existential problem. Web Components are a threat to the peaceful, proprietary way of life for frameworks that have amassed millions of users — the majority of web developers. Because opinions vary so wildly, when a new standard emerges frameworks can’t often adapt to them without breaking changes. And breaking changes can be detrimental to a user base. Have you spotted the issue? You can’t possibly champion Web Standards when you’ve built a non-standard thing that will break if you align with the emerging standard. It’s easier to oppose the threat than to adapt to it. And of course Web Components don’t do everything a framework does. How can the platform possibly add all the features every framework added last week? That would be absolutely reckless. And no, the platform doesn’t move as fast as your framework and that’s sometimes painful. But it’s by design. This process is what gives us APIs that continue to work for decades. As users, we need to get over this hurdle and start thinking about how frameworks can adapt to current standards and how to evolve them as new ones emerge. Let’s identify shortcomings in the spec and work together to improve the ecosystem instead of arguing about who’s shit smells worse. Reinventing the wheel isn’t the answer. Lock-in isn’t the answer. This is why I believe that next generation of frameworks will converge on custom elements as an interoperable component model, enhance that model by sprinkling in awesome features of their own, and focus more on flavors (class-based, functional, signals, etc.) and higher level functionality. As for today's frameworks? How they adapt will determine how relevant they remain. Living dangerously # Ryan concludes: So in a sense there are nothing wrong with Web Components as they are only able to be what they are. It's the promise that they are something that they aren't which is so dangerous. The way their existence warps everything around them that puts the whole web at risk. It's a price everyone has to pay. So Web Components aren’t the specific vision you had for components. That's fine. But that's how it is. They're not Solid components. They’re not React components. They’re not Svelte components. They’re not Vue components. They’re standards-based Web Components that work in all of the above. And they could work even better in all of the above if all of the above were interested in advancing the platform instead of locking users in. I’m not a conspiracy theorist, but I find interesting the number of people who are and have been sponsored and/or hired by for-profit companies whose platforms rely heavily on said frameworks. Do you think it’s in their best interest to follow Web Standards if that means making their service less relevant and less lucrative? Of course not. If you’ve built an empire on top of something, there’s absolutely zero incentive to tear it down for the betterment of humanity. That’s not how capitalism works. It’s far more profitable to lock users in and keep them paying. But you know what…? Web Standards don't give a fuck about monetization. Longevity supersedes ingenuity # The last thing I’d like to talk about is this line here. Web Components possibly pose the biggest risk to the future of the web that I can see. Of course, this is from the perspective of a framework author, not from the people actually shipping and maintaining software built using these frameworks. And the people actually shipping software are the majority, but that’s not prestigious so they rarely get the high follower counts. The people actually shipping software are tired of framework churn. They're tired of shit they wrote last month being outdated already. They want stability. They want to know that the stuff they build today will work tomorrow. As history has proven, no framework can promise that. You know what framework I want to use? I want a framework that aligns with the platform, not one that replaces it. I want a framework that values incremental innovation over user lock-in. I want a framework that says it's OK to break things if it means making the Web a better place for everyone. Yes, that comes at a cost, but almost every good investment does, and I would argue that cost will be less expensive than learning a new framework and rebuilding buttons for the umpteenth time. The Web platform may not be perfect, but it continuously gets better. I don’t think frameworks are bad but, as a community, we need to recognize that a fundamental piece of the platform has changed and it's time to embrace the interoperable component model that Web Component APIs have given us…even if that means breaking things to get there. The component war is over.

9 months ago 82 votes
Component Machines

Components are like little machines. You build them once. Use them whenever you need them. Every now and then you open them up to oil them or replace a part, then you send them back to work. And work, they do. Little component machines just chugging along so you never have to write them from scratch ever again. Adapted from this tweet.

10 months ago 77 votes
Styling Custom Elements Without Reflecting Attributes

I've been struggling with the idea of reflecting attributes in custom elements and when it's appropriate. I think I've identified a gap in the platform, but I'm not sure exactly how we should fill it. I'll explain with an example. Let's say I want to make a simple badge component with primary, secondary, and tertiary variants. <my-badge variant="primary">foo</my-badge> <my-badge variant="secondary">bar</my-badge> <my-badge variant="tertiary">baz</my-badge> This is a simple component, but one that demonstrates the problem well. I want to style the badge based on the variant property, but sprouting attributes (which occurs as a result of reflecting a property back to an attribute) is largely considered a bad practice. A lot of web component libraries do it out of necessary to facilitate styling — including Shoelace — but is there a better way? The problem # I need to style the badge without relying on reflected attributes. This means I can't use :host([variant="..."]) because the attribute may or may not be set by the user. For example, if the component is rendered in a framework that sets properties instead of attributes, or if the property is set or changed programmatically, the attribute will be out of sync and my styles will be broken. So how can I style the badge based its variants without reflection? Let's assume we have the following internals, which is all we really need for the badge. <my-badge> #shadowRoot <slot></slot> </my-badge> What can we do about it? # I can't add classes to the slot, because :host(:has(.slot-class)) won't match. I can't set a data attribute on the host element, because that's the same as reflection and might cause issues with SSR and DOM morphing libraries. I could add a wrapper element around the slot and apply classes to it, but I'd prefer not to bloat the internals with additional elements. With a wrapper, users would have to use ::part(wrapper) to target it. Without the wrapper, they can set background, border, and other CSS properties directly on the host element which is more desirable. I could add custom states for each variant, but this gets messy for non-Boolean values and feels like an abuse of the API. Filling the gap # I'm not sure what the best solution is or could be, but one thing that comes to mind is a way to provide some kind of cross-root version of :has that works with :host. Something akin to: :host(:has-in-shadow-root(.some-selector)) { /* maybe one day… */ } If you have any thoughts on this one, hit me up on Twitter.

a year ago 74 votes

More in programming

Another tip (tip)
16 hours ago 3 votes
Get in losers, we're moving to Linux!

I've never seen so many developers curious about leaving the Mac and giving Linux a go. Something has really changed in the last few years. Maybe Linux just got better? Maybe powerful mini PCs made it easier? Maybe Apple just fumbled their relationship with developers one too many times? Maybe it's all of it. But whatever the reason, the vibe shift is noticeable. This is why the future is so hard to predict! People have been joking about "The Year of Linux on the Desktop" since the late 90s. Just like self-driving cars were supposed to be a thing back in 2017. And now, in the year of our Lord 2025, it seems like we're getting both! I also wouldn't underestimate the cultural influence of a few key people. PewDiePie sharing his journey into Arch and Hyprland with his 110 million followers is important. ThePrimeagen moving to Arch and Hyprland is important. Typecraft teaching beginners how to build an Arch and Hyprland setup from scratch is important (and who I just spoke to about Omarchy). Gabe Newell's Steam Deck being built on Arch and pushing Proton to over 20,000 compatible Linux games is important. You'll notice a trend here, which is that Arch Linux, a notoriously "difficult" distribution, is at the center of much of this new engagement. Despite the fact that it's been around since 2003! There's nothing new about Arch, but there's something new about the circles of people it's engaging. I've put Arch at the center of Omarchy too. Originally just because that was what Hyprland recommended. Then, after living with the wonders of 90,000+ packages on the community-driven AUR package repository, for its own sake. It's really good! But while Arch (and Hyprland) are having a moment amongst a new crowd, it's also "just" Linux at its core. And Linux really is the star of the show. The perfect, free, and open alternative that was just sitting around waiting for developers to finally have had enough of the commercial offerings from Apple and Microsoft. Now obviously there's a taste of "new vegan sees vegans everywhere" here. You start talking about Linux, and you'll hear from folks already in the community or those considering the move too. It's easy to confuse what you'd like to be true with what is actually true. And it's definitely true that Linux is still a niche operating system on the desktop. Even among developers. Apple and Microsoft sit on the lion's share of the market share. But the mind share? They've been losing that fast. The window is open for a major shift to happen. First gradually, then suddenly. It feels like morning in Linux land!

10 hours ago 2 votes
All about Svelte 5 snippets

Snippets are a useful addition to Svelte 5. I use them in my Svelte 5 projects like Edna. Snippet basics A snippet is a function that renders html based on its arguments. Here’s how to define and use a snippet: {#snippet hello(name)} <div>Hello {name}!</div> {/snippet} {@render hello("Andrew")} {@render hello("Amy")} You can re-use snippets by exporting them: <script module> export { hello }; </script> {@snippet hello(name)}<div>Hello {name}!</div>{/snippet} Snippets use cases Snippets for less nesting Deeply nested html is hard to read. You can use snippets to extract some parts to make the structure clearer. For example, you can transform: <div> <div class="flex justify-end mt-2"> <button onclick={onclose} class="mr-4 px-4 py-1 border border-black hover:bg-gray-100" >Cancel</button > <button onclick={() => emitRename()} disabled={!canRename} class="px-4 py-1 border border-black hover:bg-gray-50 disabled:text-gray-400 disabled:border-gray-400 disabled:bg-white default:bg-slate-700" >Rename</button > </div> into: {#snippet buttonCancel()} <button onclick={onclose} class="mr-4 px-4 py-1 border border-black hover:bg-gray-100" >Cancel</button > {/snippet} {#snippet buttonRename()}...{/snippet} To make this easier to read: <div> <div class="flex justify-end mt-2"> {@render buttonCancel()} {@render buttonRename()} </div> </div> snippets replace default <slot/> In Svelte 4, if you wanted place some HTML inside the component, you used <slot />. Let’s say you have Overlay.svelte component used like this: <Overlay> <MyDialog></MyDialog> </Overlay> In Svelte 4, you would use <slot /> to render children: <div class="overlay-wrapper"> <slot /> </div> <slot /> would be replaced with <MyDialog></MyDialog>. In Svelte 5 <MyDialog></MyDialog> is passed to Overlay.svelte as children property so you would change Overlay.svelte to: <script> let { children } = $props(); </script> <div class="overlay-wrapper"> {@render children()} </div> children property is created by Svelte compiler so you should avoid naming your own props children. snippets replace named slots A component can have a default slot for rendering children and additional named slots. In Svelte 5 instead of named slots you pass snippets as props. An example of Dialog.svelte: <script> let { title, children } = $props(); </script> <div class="dialog"> <div class="title"> {@render title()} </div> {@render children()} </div> And use: {#snippet title()} <div class="fancy-title">My fancy title</div> {/snippet} <Dialog title={title}> <div>Body of the dialog</div> </Dialog> passing snippets as implicit props You can pass title snippet prop implicitly: <Dialog> {#snippet title()} <div class="fancy-title">My fancy title</div> {/snippet} <div>Body of the dialog</div> </Dialog> Because {snippet title()} is a child or <Dialog>, we don’t have to pass it as explicit title={title} prop. The compiler does it for us. snippets to reduce repetition Here’s part of how I render https://tools.arslexis.io/ {#snippet row(name, url, desc)} <tr> <td class="text-left align-top" ><a class="font-semibold whitespace-nowrap" href={url}>{name}</a> </td> <td class="pl-4 align-top">{@html desc}</td> </tr> {/snippet} {@render row("unzip", "/unzip/", "unzip a file in the browser")} {@render row("wc", "/wc/", "like <tt>wc</tt>, but in the browser")} It saves me copy & paste of the same HTML and makes the structure more readable. snippets for recursive rendering Sometimes you need to render a recursive structure, like nested menus or file tree. In Svelte 4 you could use <svelte:self> but the downside of that is that you create multiple instances of the component. That means that the state is also split among multiple instances. That makes it harder to implement functionality that requires a global view of the structure, like keyboard navigation. With snippets you can render things recursively in a single instance of the component. I used it to implement nested context menus. snippets to customize rendering Let’s say you’re building a Menu component. Each menu item is a <div> with some non-trivial children. To allow the client of Menu customize how items are rendered, you could provide props for things like colors, padding etc. or you could allow ultimate flexibility by accepting an optional menuitem prop that is a snippet that renders the item. You can think of it as a headless UI i.e. you provide the necessary structure and difficult logic like keyboard navigation etc. and allow the client lots of control over how things are rendered. snippets for library of icons Before snippets every SVG Icon I used was a Svelte component. Many icons means many files. Now I have a single Icons.svelte file, like: <script module> export { IconMenu, IconSettings }; </script> {#snippet IconMenu(arg1, arg2, ...)} <svg>... icon svg</svg> {/snippet}} {#snippet IconSettings()} <svg>... icon svg</svg> {/snippet}}

yesterday 2 votes
Logical Quantifiers in Software

I realize that for all I've talked about Logic for Programmers in this newsletter, I never once explained basic logical quantifiers. They're both simple and incredibly useful, so let's do that this week! Sets and quantifiers A set is a collection of unordered, unique elements. {1, 2, 3, …} is a set, as are "every programming language", "every programming language's Wikipedia page", and "every function ever defined in any programming language's standard library". You can put whatever you want in a set, with some very specific limitations to avoid certain paradoxes.2 Once we have a set, we can ask "is something true for all elements of the set" and "is something true for at least one element of the set?" IE, is it true that every programming language has a set collection type in the core language? We would write it like this: # all of them all l in ProgrammingLanguages: HasSetType(l) # at least one some l in ProgrammingLanguages: HasSetType(l) This is the notation I use in the book because it's easy to read, type, and search for. Mathematicians historically had a few different formats; the one I grew up with was ∀x ∈ set: P(x) to mean all x in set, and ∃ to mean some. I use these when writing for just myself, but find them confusing to programmers when communicating. "All" and "some" are respectively referred to as "universal" and "existential" quantifiers. Some cool properties We can simplify expressions with quantifiers, in the same way that we can simplify !(x && y) to !x || !y. First of all, quantifiers are commutative with themselves. some x: some y: P(x,y) is the same as some y: some x: P(x, y). For this reason we can write some x, y: P(x,y) as shorthand. We can even do this when quantifying over different sets, writing some x, x' in X, y in Y instead of some x, x' in X: some y in Y. We can not do this with "alternating quantifiers": all p in Person: some m in Person: Mother(m, p) says that every person has a mother. some m in Person: all p in Person: Mother(m, p) says that someone is every person's mother. Second, existentials distribute over || while universals distribute over &&. "There is some url which returns a 403 or 404" is the same as "there is some url which returns a 403 or some url that returns a 404", and "all PRs pass the linter and the test suites" is the same as "all PRs pass the linter and all PRs pass the test suites". Finally, some and all are duals: some x: P(x) == !(all x: !P(x)), and vice-versa. Intuitively: if some file is malicious, it's not true that all files are benign. All these rules together mean we can manipulate quantifiers almost as easily as we can manipulate regular booleans, putting them in whatever form is easiest to use in programming. Speaking of which, how do we use this in in programming? How we use this in programming First of all, people clearly have a need for directly using quantifiers in code. If we have something of the form: for x in list: if P(x): return true return false That's just some x in list: P(x). And this is a prevalent pattern, as you can see by using GitHub code search. It finds over 500k examples of this pattern in Python alone! That can be simplified via using the language's built-in quantifiers: the Python would be any(P(x) for x in list). (Note this is not quantifying over sets but iterables. But the idea translates cleanly enough.) More generally, quantifiers are a key way we express higher-level properties of software. What does it mean for a list to be sorted in ascending order? That all i, j in 0..<len(l): if i < j then l[i] <= l[j]. When should a ratchet test fail? When some f in functions - exceptions: Uses(f, bad_function). Should the image classifier work upside down? all i in images: classify(i) == classify(rotate(i, 180)). These are the properties we verify with tests and types and MISU and whatnot;1 it helps to be able to make them explicit! One cool use case that'll be in the book's next version: database invariants are universal statements over the set of all records, like all a in accounts: a.balance > 0. That's enforceable with a CHECK constraint. But what about something like all i, i' in intervals: NoOverlap(i, i')? That isn't covered by CHECK, since it spans two rows. Quantifier duality to the rescue! The invariant is equivalent to !(some i, i' in intervals: Overlap(i, i')), so is preserved if the query SELECT COUNT(*) FROM intervals CROSS JOIN intervals … returns 0 rows. This means we can test it via a database trigger.3 There are a lot more use cases for quantifiers, but this is enough to introduce the ideas! Next week's the one year anniversary of the book entering early access, so I'll be writing a bit about that experience and how the book changed. It's crazy how crude v0.1 was compared to the current version. MISU ("make illegal states unrepresentable") means using data representations that rule out invalid values. For example, if you have a location -> Optional(item) lookup and want to make sure that each item is in exactly one location, consider instead changing the map to item -> location. This is a means of implementing the property all i in item, l, l' in location: if ItemIn(i, l) && l != l' then !ItemIn(i, l'). ↩ Specifically, a set can't be an element of itself, which rules out constructing things like "the set of all sets" or "the set of sets that don't contain themselves". ↩ Though note that when you're inserting or updating an interval, you already have that row's fields in the trigger's NEW keyword. So you can just query !(some i in intervals: Overlap(new, i')), which is more efficient. ↩

2 days ago 5 votes
The missing part of Espressif’s reset circuit

In the previous article, we peeked at the reset circuit of ESP-Prog with an oscilloscope, and reproduced it with basic components. We observed that it did not behave quite as expected. In this article, we’ll look into the missing pieces. An incomplete circuit For a hint, we’ll first look a bit more closely at the … Continue reading The missing part of Espressif’s reset circuit → The post The missing part of Espressif’s reset circuit appeared first on Quentin Santos.

2 days ago 3 votes