More from Sam Altman
The second birthday of ChatGPT was only a little over a month ago, and now we have transitioned into the next paradigm of models that can do complex reasoning. New years get people in a reflective mood, and I wanted to share some personal thoughts about how it has gone so far, and some of the things I’ve learned along the way. As we get closer to AGI, it feels like an important time to look at the progress of our company. There is still so much to understand, still so much we don’t know, and it’s still so early. But we know a lot more than we did when we started. We started OpenAI almost nine years ago because we believed that AGI was possible, and that it could be the most impactful technology in human history. We wanted to figure out how to build it and make it broadly beneficial; we were excited to try to make our mark on history. Our ambitions were extraordinarily high and so was our belief that the work might benefit society in an equally extraordinary way. At the time, very few people cared, and if they did, it was mostly because they thought we had no chance of success. In 2022, OpenAI was a quiet research lab working on something temporarily called “Chat With GPT-3.5”. (We are much better at research than we are at naming things.) We had been watching people use the playground feature of our API and knew that developers were really enjoying talking to the model. We thought building a demo around that experience would show people something important about the future and help us make our models better and safer. We ended up mercifully calling it ChatGPT instead, and launched it on November 30th of 2022. We always knew, abstractly, that at some point we would hit a tipping point and the AI revolution would get kicked off. But we didn’t know what the moment would be. To our surprise, it turned out to be this. The launch of ChatGPT kicked off a growth curve like nothing we have ever seen—in our company, our industry, and the world broadly. We are finally seeing some of the massive upside we have always hoped for from AI, and we can see how much more will come soon. It hasn’t been easy. The road hasn’t been smooth and the right choices haven’t been obvious. In the last two years, we had to build an entire company, almost from scratch, around this new technology. There is no way to train people for this except by doing it, and when the technology category is completely new, there is no one at all who can tell you exactly how it should be done. Building up a company at such high velocity with so little training is a messy process. It’s often two steps forward, one step back (and sometimes, one step forward and two steps back). Mistakes get corrected as you go along, but there aren’t really any handbooks or guideposts when you’re doing original work. Moving at speed in uncharted waters is an incredible experience, but it is also immensely stressful for all the players. Conflicts and misunderstanding abound. These years have been the most rewarding, fun, best, interesting, exhausting, stressful, and—particularly for the last two—unpleasant years of my life so far. The overwhelming feeling is gratitude; I know that someday I’ll be retired at our ranch watching the plants grow, a little bored, and will think back at how cool it was that I got to do the work I dreamed of since I was a little kid. I try to remember that on any given Friday, when seven things go badly wrong by 1 pm. A little over a year ago, on one particular Friday, the main thing that had gone wrong that day was that I got fired by surprise on a video call, and then right after we hung up the board published a blog post about it. I was in a hotel room in Las Vegas. It felt, to a degree that is almost impossible to explain, like a dream gone wrong. Getting fired in public with no warning kicked off a really crazy few hours, and a pretty crazy few days. The “fog of war” was the strangest part. None of us were able to get satisfactory answers about what had happened, or why. The whole event was, in my opinion, a big failure of governance by well-meaning people, myself included. Looking back, I certainly wish I had done things differently, and I’d like to believe I’m a better, more thoughtful leader today than I was a year ago. I also learned the importance of a board with diverse viewpoints and broad experience in managing a complex set of challenges. Good governance requires a lot of trust and credibility. I appreciate the way so many people worked together to build a stronger system of governance for OpenAI that enables us to pursue our mission of ensuring that AGI benefits all of humanity. My biggest takeaway is how much I have to be thankful for and how many people I owe gratitude towards: to everyone who works at OpenAI and has chosen to spend their time and effort going after this dream, to friends who helped us get through the crisis moments, to our partners and customers who supported us and entrusted us to enable their success, and to the people in my life who showed me how much they cared. [1] We all got back to the work in a more cohesive and positive way and I’m very proud of our focus since then. We have done what is easily some of our best research ever. We grew from about 100 million weekly active users to more than 300 million. Most of all, we have continued to put technology out into the world that people genuinely seem to love and that solves real problems. Nine years ago, we really had no idea what we were eventually going to become; even now, we only sort of know. AI development has taken many twists and turns and we expect more in the future. Some of the twists have been joyful; some have been hard. It’s been fun watching a steady stream of research miracles occur, and a lot of naysayers have become true believers. We’ve also seen some colleagues split off and become competitors. Teams tend to turn over as they scale, and OpenAI scales really fast. I think some of this is unavoidable—startups usually see a lot of turnover at each new major level of scale, and at OpenAI numbers go up by orders of magnitude every few months. The last two years have been like a decade at a normal company. When any company grows and evolves so fast, interests naturally diverge. And when any company in an important industry is in the lead, lots of people attack it for all sorts of reasons, especially when they are trying to compete with it. Our vision won’t change; our tactics will continue to evolve. For example, when we started we had no idea we would have to build a product company; we thought we were just going to do great research. We also had no idea we would need such a crazy amount of capital. There are new things we have to go build now that we didn’t understand a few years ago, and there will be new things in the future we can barely imagine now. We are proud of our track-record on research and deployment so far, and are committed to continuing to advance our thinking on safety and benefits sharing. We continue to believe that the best way to make an AI system safe is by iteratively and gradually releasing it into the world, giving society time to adapt and co-evolve with the technology, learning from experience, and continuing to make the technology safer. We believe in the importance of being world leaders on safety and alignment research, and in guiding that research with feedback from real world applications. We are now confident we know how to build AGI as we have traditionally understood it. We believe that, in 2025, we may see the first AI agents “join the workforce” and materially change the output of companies. We continue to believe that iteratively putting great tools in the hands of people leads to great, broadly-distributed outcomes. We are beginning to turn our aim beyond that, to superintelligence in the true sense of the word. We love our current products, but we are here for the glorious future. With superintelligence, we can do anything else. Superintelligent tools could massively accelerate scientific discovery and innovation well beyond what we are capable of doing on our own, and in turn massively increase abundance and prosperity. This sounds like science fiction right now, and somewhat crazy to even talk about it. That’s alright—we’ve been there before and we’re OK with being there again. We’re pretty confident that in the next few years, everyone will see what we see, and that the need to act with great care, while still maximizing broad benefit and empowerment, is so important. Given the possibilities of our work, OpenAI cannot be a normal company. How lucky and humbling it is to be able to play a role in this work. (Thanks to Josh Tyrangiel for sort of prompting this. I wish we had had a lot more time.) [1] There were a lot of people who did incredible and gigantic amounts of work to help OpenAI, and me personally, during those few days, but two people stood out from all others. Ron Conway and Brian Chesky went so far above and beyond the call of duty that I’m not even sure how to describe it. I’ve of course heard stories about Ron’s ability and tenaciousness for years and I’ve spent a lot of time with Brian over the past couple of years getting a huge amount of help and advice. But there’s nothing quite like being in the foxhole with people to see what they can really do. I am reasonably confident OpenAI would have fallen apart without their help; they worked around the clock for days until things were done. Although they worked unbelievably hard, they stayed calm and had clear strategic thought and great advice throughout. They stopped me from making several mistakes and made none themselves. They used their vast networks for everything needed and were able to navigate many complex situations. And I’m sure they did a lot of things I don’t know about. What I will remember most, though, is their care, compassion, and support. I thought I knew what it looked like to support a founder and a company, and in some small sense I did. But I have never before seen, or even heard of, anything like what these guys did, and now I get more fully why they have the legendary status they do. They are different and both fully deserve their genuinely unique reputations, but they are similar in their remarkable ability to move mountains and help, and in their unwavering commitment in times of need. The tech industry is far better off for having both of them in it. There are others like them; it is an amazingly special thing about our industry and does much more to make it all work than people realize. I look forward to paying it forward. On a more personal note, thanks especially to Ollie for his support that weekend and always; he is incredible in every way and no one could ask for a better partner.
There are two things from our announcement today I wanted to highlight. First, a key part of our mission is to put very capable AI tools in the hands of people for free (or at a great price). I am very proud that we’ve made the best model in the world available for free in ChatGPT, without ads or anything like that. Our initial conception when we started OpenAI was that we’d create AI and use it to create all sorts of benefits for the world. Instead, it now looks like we’ll create AI and then other people will use it to create all sorts of amazing things that we all benefit from. We are a business and will find plenty of things to charge for, and that will help us provide free, outstanding AI service to (hopefully) billions of people. Second, the new voice (and video) mode is the best computer interface I’ve ever used. It feels like AI from the movies; and it’s still a bit surprising to me that it’s real. Getting to human-level response times and expressiveness turns out to be a big change. The original ChatGPT showed a hint of what was possible with language interfaces; this new thing feels viscerally different. It is fast, smart, fun, natural, and helpful. Talking to a computer has never felt really natural for me; now it does. As we add (optional) personalization, access to your information, the ability to take actions on your behalf, and more, I can really see an exciting future where we are able to use computers to do much more than ever before. Finally, huge thanks to the team that poured so much work into making this happen!
Optimism, obsession, self-belief, raw horsepower and personal connections are how things get started. Cohesive teams, the right combination of calmness and urgency, and unreasonable commitment are how things get finished. Long-term orientation is in short supply; try not to worry about what people think in the short term, which will get easier over time. It is easier for a team to do a hard thing that really matters than to do an easy thing that doesn’t really matter; audacious ideas motivate people. Incentives are superpowers; set them carefully. Concentrate your resources on a small number of high-conviction bets; this is easy to say but evidently hard to do. You can delete more stuff than you think. Communicate clearly and concisely. Fight bullshit and bureaucracy every time you see it and get other people to fight it too. Do not let the org chart get in the way of people working productively together. Outcomes are what count; don’t let good process excuse bad results. Spend more time recruiting. Take risks on high-potential people with a fast rate of improvement. Look for evidence of getting stuff done in addition to intelligence. Superstars are even more valuable than they seem, but you have to evaluate people on their net impact on the performance of the organization. Fast iteration can make up for a lot; it’s usually ok to be wrong if you iterate quickly. Plans should be measured in decades, execution should be measured in weeks. Don’t fight the business equivalent of the laws of physics. Inspiration is perishable and life goes by fast. Inaction is a particularly insidious type of risk. Scale often has surprising emergent properties. Compounding exponentials are magic. In particular, you really want to build a business that gets a compounding advantage with scale. Get back up and keep going. Working with great people is one of the best parts of life.
Helion has been progressing even faster than I expected and is on pace in 2024 to 1) demonstrate Q > 1 fusion and 2) resolve all questions needed to design a mass-producible fusion generator. The goals of the company are quite ambitious—clean, continuous energy for 1 cent per kilowatt-hour, and the ability to manufacture enough power plants to satisfy the current electrical demand of earth in a ten year period. If both things happen, it will transform the world. Abundant, clean, and radically inexpensive energy will elevate the quality of life for all of us—think about how much the cost of energy factors into what we do and use. Also, electricity at this price will allow us to do things like efficiently capture carbon (so although we’ll still rely on gasoline for awhile, it’ll be ok). Although Helion’s scientific progress of the past 8 years is phenomenal and necessary, it is not sufficient to rapidly get to this new energy economy. Helion now needs to figure out how to engineer machines that don’t break, how to build a factory and supply chain capable of manufacturing a machine every day, how to work with power grids and governments around the world, and more. The biggest input to the degree and speed of success at the company is now the talent of the people who join the team. Here are a few of the most critical jobs, but please don’t let the lack of a perfect fit deter you from applying. Electrical Engineer, Low Voltage: https://boards.greenhouse.io/helionenergy/jobs/4044506005 Electrical Engineer, Pulsed Power: https://boards.greenhouse.io/helionenergy/jobs/4044510005 Mechanical Engineer, Generator Systems: https://boards.greenhouse.io/helionenergy/jobs/4044522005 Manager of Mechanical Engineering: https://boards.greenhouse.io/helionenergy/jobs/4044521005 (All current jobs: https://www.helionenergy.com/careers/)
More in AI
I don’t like reading obviously AI-generated content on Twitter. There’s a derogatory term for it: AI “slop”, which means something like “AI…
IEEE Spectrum reported at the time, it was “the motleyest assortment of vehicles assembled in one place since the filming of Mad Max 2: The Road Warrior.” Not a single entrant made it across the finish line. Some didn’t make it out of the parking lot. So it’s all the more remarkable that in the second DARPA Grand Challenge, just a year and a half later, five vehicles crossed the finish line. Stanley, developed by the Stanford Racing Team, eked out a first-place win to claim the $2 million purse. This modified Volkswagen Touareg [shown at top] completed the 212-kilometer course in 6 hours, 54 minutes. Carnegie Mellon’s Sandstorm and H1ghlander took second and third place, respectively, with times of 7:05 and 7:14. So how did the Grand Challenge go from a total bust to having five robust finishers in such a short period of time? It’s definitely a testament to what can be accomplished when engineers rise to a challenge. But the outcome of this one race was preceded by a much longer path of research, and that plus a little bit of luck are what ultimately led to victory. Before Stanley, there was Minerva Let’s back up to 1998, when computer scientist Sebastian Thrun was working at Carnegie Mellon and experimenting with a very different robot: a museum tour guide. For two weeks in the summer, Minerva, which looked a bit like a Dalek from “Doctor Who,” navigated an exhibit at the Smithsonian National Museum of American History. Its main task was to roll around and dispense nuggets of information about the displays. Minerva was a museum tour-guide robot developed by Sebastian Thrun. In an interview at the time, Thrun acknowledged that Minerva was there to entertain. But Minerva wasn’t just a people pleaser ; it was also a machine learning experiment. It had to learn where it could safely maneuver without taking out a visitor or a priceless artifact. Visitor, nonvisitor; display case, not-display case; open floor, not-open floor. It had to react to humans crossing in front of it in unpredictable ways. It had to learn to “see.” Fast-forward five years: Thrun transferred to Stanford in July 2003. Inspired by the first Grand Challenge, he organized the Stanford Racing Team with the aim of fielding a robotic car in the second competition. team’s paper.) A remote-control kill switch, which DARPA required on all vehicles, would deactivate the car before it could become a danger. About 100,000 lines of code did that and much more. Many of the other 2004 competitors regrouped to try again, and new ones entered the fray. In all, 195 teams applied to compete in the 2005 event. Teams included students, academics, industry experts, and hobbyists. In the early hours of 8 October, the finalists gathered for the big race. Each team had a staggered start time to help avoid congestion along the route. About two hours before a team’s start, DARPA gave them a CD containing approximately 3,000 GPS coordinates representing the course. Once the team hit go, it was hands off: The car had to drive itself without any human intervention. PBS’s NOVA produced an excellent episode on the 2004 and 2005 Grand Challenges that I highly recommend if you want to get a feel for the excitement, anticipation, disappointment, and triumph. In the 2005 Grand Challenge, Carnegie Mellon University’s H1ghlander was one of five autonomous cars to finish the race.Damian Dovarganes/AP H1ghlander held the pole position, having placed first in the qualifying rounds, followed by Stanley and Sandstorm. H1ghlander pulled ahead early and soon had a substantial lead. That’s where luck, or rather the lack of it, came in. What went wrong with H1ghlander remained a mystery, even after extensive postrace analysis. It wasn’t until 12 years after the race—and once again with a bit of luck—that CMU discovered the problem: Pressing on a small electronic filter between the engine control module and the fuel injector caused the engine to lose power and even turn off. Team members speculated that an accident a few weeks before the competition had damaged the filter. (To learn more about how CMU finally figured this out, see Spectrum Senior Editor Evan Ackerman’s 2017 story.) The Legacy of the DARPA Grand Challenge Regardless of who won the Grand Challenge, many success stories came out of the contest. A year and a half after the race, Thrun had already made great progress on adaptive cruise control and lane-keeping assistance, which is now readily available on many commercial vehicles. He then worked on Google’s Street View and its initial self-driving cars. CMU’s Red Team worked with NASA to develop rovers for potentially exploring the moon or distant planets. Closer to home, they helped develop self-propelled harvesters for the agricultural sector. Stanford team leader Sebastian Thrun holds a $2 million check, the prize for winning the 2005 Grand Challenge.Damian Dovarganes/AP Of course, there was also a lot of hype, which tended to overshadow the race’s militaristic origins—remember, the “D” in DARPA stands for “defense.” Back in 2000, a defense authorization bill had stipulated that one-third of the U.S. ground combat vehicles be “unmanned” by 2015, and DARPA conceived of the Grand Challenge to spur development of these autonomous vehicles. The U.S. military was still fighting in the Middle East, and DARPA promoters believed self-driving vehicles would help minimize casualties, particularly those caused by improvised explosive devices. 2007 Urban Challenge, in which vehicles navigated a simulated city and suburban environment; the 2012 Robotics Challenge for disaster-response robots; and the 2022 Subterranean Challenge for—you guessed it—robots that could get around underground. Despite the competitions, continued military conflicts, and hefty government contracts, actual advances in autonomous military vehicles and robots did not take off to the extent desired. As of 2023, robotic ground vehicles made up only 3 percent of the global armored-vehicle market. Much of the contemporary reporting on the Grand Challenge predicted that self-driving cars would take us closer to a “Jetsons” future, with a self-driving vehicle to ferry you around. But two decades after Stanley, the rollout of civilian autonomous cars has been confined to specific applications, such as Waymo robotaxis transporting people around San Francisco or the GrubHub Starships struggling to deliver food across my campus at the University of South Carolina. A Tale of Two Stanleys Not long after the 2005 race, Stanley was ready to retire. Recalling his experience testing Minerva at the National Museum of American History, Thrun thought the museum would make a nice home. He loaned it to the museum in 2006, and since 2008 it has resided permanently in the museum’s collections, alongside other remarkable specimens in robotics and automobiles. In fact, it isn’t even the first Stanley in the collection. Stanley now resides in the collections of the Smithsonian Institution’s National Museum of American History, which also houses another Stanley—this 1910 Stanley Runabout. Behring Center/National Museum of American History/Smithsonian Institution That distinction belongs to a 1910 Stanley Runabout, an early steam-powered car introduced at a time when it wasn’t yet clear that the internal-combustion engine was the way to go. Despite clear drawbacks—steam engines had a nasty tendency to explode—“Stanley steamers” were known for their fine craftsmanship. Fred Marriott set the land speed record while driving a Stanley in 1906. It clocked in at 205.5 kilometers per hour, which was significantly faster than the 21st-century Stanley’s average speed of 30.7 km/hr. To be fair, Marriott’s Stanley was racing over a flat, straight course rather than the off-road terrain navigated by Thrun’s Stanley. Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology. An abridged version of this article appears in the February 2025 print issue as “Slow and Steady Wins the Race.” References Sebastian Thrun and his colleagues at the Stanford Artificial Intelligence Laboratory, along with members of the other groups that sponsored Stanley, published “Stanley: The Robot That Won the DARPA Grand Challenge.” This paper, from the Journal of Field Robotics, explains the vehicle’s development. The NOVA PBS episode “The Great Robot Race” provides interviews and video footage from both the failed first Grand Challenge and the successful second one. I personally liked the side story of GhostRider, an autonomous motorcycle that competed in both competitions but didn’t quite cut it. (GhostRider also now resides in the Smithsonian’s collection.) Smithsonian curator Carlene Stephens kindly talked with me about how she collected Stanley for the National Museum of American History and where she sees artifacts like this fitting into the stream of history.
An AI engineer's must-reads for 1/31/25
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboCup German Open: 12–16 March 2025, NUREMBERG, GERMANY German Robotics Conference: 13–15 March 2025, NUREMBERG, GERMANY European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANY RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLAND ICUAS 2025: 14–17 May 2025, CHARLOTTE, NC ICRA 2025: 19–23 May 2025, ATLANTA, GA London Humanoids Summit: 29–30 May 2025, LONDON IEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN 2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TX RSS 2025: 21–25 June 2025, LOS ANGELES Enjoy today’s videos! This video about ‘foster’ Aibos helping kids at a children’s hospital is well worth turning on auto-translated subtitles for. [ Aibo Foster Program ] Hello everyone, let me introduce myself again. I am Unitree H1 “Fuxi”. I am now a comedian at the Spring Festival Gala, hoping to bring joy to everyone. Let’s push boundaries every day and shape the future together. [ Unitree ] Happy Chinese New Year from PNDbotics! [ PNDbotics ] In celebration of the upcoming Year of the Snake, TRON 1 swishes into three little lions, eager to spread hope, courage, and strength to everyone in 2025. Wishing you a Happy Chinese New Year and all the best, TRON TRON TRON! [ LimX Dynamics ] Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Mr. Bucket is my favorite. [ Mitsubishi Electric Research Laboratories ] Thanks, Yuki! What do you get when you put three aliens in a robotaxi? The first-ever Zoox commercial! We hope you have as much fun watching it as we had creating it and can’t wait for you to experience your first ride in the not-too-distant future. [ Zoox ] The Humanoids Summit at the Computer History Museum in December was successful enough (either because of or in spite of my active participation) that it’s not only happening again in 2025, there’s also going to be a spring version of the conference in London in May! [ Humanoids Summit ] I’m not sure it’ll ever be practical at scale, but I do really like JSK’s musculoskeletal humanoid work. [ Paper ] In November 2024, as part of the CRS-31 mission, flight controllers remotely maneuvered Canadarm2 and Dextre to extract a payload from the SpaceX Dragon cargo ship’s trunk (CRS-31) and install it on the International Space Station. This animation was developed in preparation for the operation and shows just how complex robotic tasks can be. [ Canadian Space Agency ] Staci Americas, a third-party logistics provider, addressed its inventory challenges by implementing the Corvus One™ Autonomous Inventory Management System in its Georgia and New Jersey facilities. The system uses autonomous drones for nightly, lights-out inventory scans, identifying discrepancies and improving workflow efficiency. [ Corvus Robotics ] Thanks, Joan! I would have said that this controller was too small to be manipulated with a pinch grasp. I would be wrong. [ Pollen ] How does NASA plan to use resources on the surface of the Moon? One method is the ISRU Pilot Excavator, or IPEx! Designed by Kennedy Space Center’s Swamp Works team, the primary goal of IPEx is to dig up lunar soil, known as regolith, and transport it across the Moon’s surface. [ NASA ] The TBS Mojito is an advanced forward-swept FPV flying wing platform that delivers unmatched efficiency and flight endurance. By focusing relentlessly on minimizing drag, the wing reaches speeds upwards of 200 km/h (125 mph), while cruising at 90-120 km/h (60-75 mph) with minimal power consumption. [ Team BlackSheep ] At Zoox, safety is more than a priority—it’s foundational to our mission and one of the core reasons we exist. Our System Design & Mission Assurance (SDMA) team is responsible for building the framework for safe autonomous driving. Our Co-Founder and CTO, Jesse Levinson, and Senior Director of System Design and Mission Assurance (SDMA), Qi Hommes, hosted a LinkedIn Live to provide an insider’s overview of the teams responsible for developing the metrics that ensure our technology is safe for deployment on public roads. [ Zoox ]