Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
26
This weekend I was in Rotterdam for the RIPE DNS Hackathon. About 50 people gathered with several ideas for potential projects: things like easier DNSSEC provisioning, monitoring DNS activity in the network, what is the environmental cost of the DNS, … At the start of the weekend we were asked to introduce ourselves and say what our goals were. My goal was to do something different from my day job working on BIND. I was successful, tho I did help some others out with advice on a few of BIND’s obscurities. The team I joined was very successful at producing a working prototype and a cool demo. runner up The project that was the second most interesting to me was “DNS OOPS”, out-of-protocol signalling. The idea there was to find out things like when a zone has been loaded and is ready to serve, so that it can be added to a BGP route advertisement. I talked about it with Willem Toorop, and I said OOPS sounded close to what I had done with nsnotifyd, but OOPS would need a little more...
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Tony Finch's blog

clamp / median / range

Here are a few tangentially-related ideas vaguely near the theme of comparison operators. comparison style clamp style clamp is median clamp in range range style style clash? comparison style Some languages such as BCPL, Icon, Python have chained comparison operators, like if min <= x <= max: ... In languages without chained comparison, I like to write comparisons as if they were chained, like, if min <= x && x <= max { // ... } A rule of thumb is to prefer less than (or equal) operators and avoid greater than. In a sequence of comparisons, order values from (expected) least to greatest. clamp style The clamp() function ensures a value is between some min and max, def clamp(min, x, max): if x < min: return min if max < x: return max return x I like to order its arguments matching the expected order of the values, following my rule of thumb for comparisons. (I used that flavour of clamp() in my article about GCRA.) But I seem to be unusual in this preference, based on a few examples I have seen recently. clamp is median Last month, Fabian Giesen pointed out a way to resolve this difference of opinion: A function that returns the median of three values is equivalent to a clamp() function that doesn’t care about the order of its arguments. This version is written so that it returns NaN if any of its arguments is NaN. (When an argument is NaN, both of its comparisons will be false.) fn med3(a: f64, b: f64, c: f64) -> f64 { match (a <= b, b <= c, c <= a) { (false, false, false) => f64::NAN, (false, false, true) => b, // a > b > c (false, true, false) => a, // c > a > b (false, true, true) => c, // b <= c <= a (true, false, false) => c, // b > c > a (true, false, true) => a, // c <= a <= b (true, true, false) => b, // a <= b <= c (true, true, true) => b, // a == b == c } } When two of its arguments are constant, med3() should compile to the same code as a simple clamp(); but med3()’s misuse-resistance comes at a small cost when the arguments are not known at compile time. clamp in range If your language has proper range types, there is a nicer way to make clamp() resistant to misuse: fn clamp(x: f64, r: RangeInclusive<f64>) -> f64 { let (&min,&max) = (r.start(), r.end()); if x < min { return min } if max < x { return max } return x; } let x = clamp(x, MIN..=MAX); range style For a long time I have been fond of the idea of a simple counting for loop that matches the syntax of chained comparisons, like for min <= x <= max: ... By itself this is silly: too cute and too ad-hoc. I’m also dissatisfied with the range or slice syntax in basically every programming language I’ve seen. I thought it might be nice if the cute comparison and iteration syntaxes were aspects of a more generally useful range syntax, but I couldn’t make it work. Until recently when I realised I could make use of prefix or mixfix syntax, instead of confining myself to infix. So now my fantasy pet range syntax looks like >= min < max // half-open >= min <= max // inclusive And you might use it in a pattern match if x is >= min < max { // ... } Or as an iterator for x in >= min < max { // ... } Or to take a slice xs[>= min < max] style clash? It’s kind of ironic that these range examples don’t follow the left-to-right, lesser-to-greater rule of thumb that this post started off with. (x is not lexically between min and max!) But that rule of thumb is really intended for languages such as C that don’t have ranges. Careful stylistic conventions can help to avoid mistakes in nontrivial conditional expressions. It’s much better if language and library features reduce the need for nontrivial conditions and catch mistakes automatically.

yesterday 2 votes
Golang and Let's Encrypt: a free software story

Here’s a story from nearly 10 years ago. the bug I think it was my friend Richard Kettlewell who told me about a bug he encountered with Let’s Encrypt in its early days in autumn 2015: it was failing to validate mail domains correctly. the context At the time I had previously been responsible for Cambridge University’s email anti-spam system for about 10 years, and in 2014 I had been given responsibility for Cambridge University’s DNS. So I knew how Let’s Encrypt should validate mail domains. Let’s Encrypt was about one year old. Unusually, the code that runs their operations, Boulder, is free software and open to external contributors. Boulder is written in Golang, and I had not previously written any code in Golang. But its reputation is to be easy to get to grips with. So, in principle, the bug was straightforward for me to fix. How difficult would it be as a Golang newbie? And what would Let’s Encrypt’s contribution process be like? the hack I cloned the Boulder repository and had a look around the code. As is pretty typical, there are a couple of stages to fixing a bug in an unfamiliar codebase: work out where the problem is try to understand if the obvious fix could be better In this case, I remember discovering a relatively substantial TODO item that intersected with the bug. I can’t remember the details, but I think there were wider issues with DNS lookups in Boulder. I decided it made sense to fix the immediate problem without getting involved in things that would require discussion with Let’s Encrypt staff. I faffed around with the code and pushed something that looked like it might work. A fun thing about this hack is that I never got a working Boulder test setup on my workstation (or even Golang, I think!) – I just relied on the Let’s Encrypt cloud test setup. The feedback time was very slow, but it was tolerable for a simple one-off change. the fix My pull request was small, +48-14. After a couple of rounds of review and within a few days, it was merged and put into production! A pleasing result. the upshot I thought Golang (at least as it was used in the Boulder codebase) was as easy to get to grips with as promised. I did not touch it again until several years later, because there was no need to, but it seemed fine. I was very impressed by the Let’s Encrypt continuous integration and automated testing setup, and by their low-friction workflow for external contributors. One of my fastest drive-by patches to get into worldwide production. My fix was always going to be temporary, and all trace of it was overwritten years ago. It’s good when “temporary” turns out to be true! the point I was reminded of this story in the pub this evening, and I thought it was worth writing down. It demonstrated to me that Let’s Encrypt really were doing all the good stuff they said they were doing. So thank you to Let’s Encrypt for providing an exemplary service and for giving me a happy little anecdote.

a week ago 10 votes
performance of random floats

A couple of years ago I wrote about random floating point numbers. In that article I was mainly concerned about how neat the code is, and I didn’t pay attention to its performance. Recently, a comment from Oliver Hunt and a blog post from Alisa Sireneva prompted me to wonder if I made an unwarranted assumption. So I wrote a little benchmark, which you can find in pcg-dxsm.git. As a brief recap, there are two basic ways to convert a random integer to a floating point number between 0.0 and 1.0: Use bit fiddling to construct an integer whose format matches a float between 1.0 and 2.0; this is the same span as the result but with a simpler exponent. Bitcast the integer to a float and subtract 1.0 to get the result. Shift the integer down to the same range as the mantissa, convert to float, then multiply by a scaling factor that reduces it to the desired range. This produces one more bit of randomness than the bithacking conversion. (There are other less basic ways.) My benchmark has 2 x 2 x 2 tests: bithacking vs multiplying 32 bit vs 64 bit sequential integers vs random integers Each operation is isolated from the benchmark loop by putting it in a separate translation unit (to prevent the compiler from inlining) and there is a fence instruction (ISB SY on ARM, MFENCE on AMD) in the loop to stop the CPU from overlapping successive iterations. I ran the benchmark on my Apple M1 Pro and my AMD Ryzen 7950X. In the table below, the leftmost column is the number of random bits. The top half measures sequential numbers, the bottom half is random numbers. The times are nanoseconds per operation, which includes the overheads of the benchmark loop and function call. arm amd 23 12.15 11.22 24 13.37 11.21 52 12.11 11.02 53 13.38 11.20 23 14.75 12.62 24 15.85 12.81 52 16.78 14.23 53 18.02 14.41 The times vary a little from run to run but the difference in speed of the various loops is reasonably consistent. I think my conclusion is that the bithacking conversion is about 1ns faster than the multiply conversion on my ARM box. There’s a subnanosecond difference on my AMD box which might indicate that the conversion takes different amounts of time depending on the value? Dunno.

3 weeks ago 17 votes
moka pot notes

In hot weather I like to drink my coffee in an iced latte. To make it, I have a very large Bialetti Moka Express. Recently when I got it going again after a winter of disuse, it took me a couple of attempts to get the technique right, so here are some notes as a reminder to my future self next year. It’s worth noting that I’m not fussy about my coffee: I usually drink pre-ground beans from the supermarket, with cream (in winter hot coffee) or milk and ice. basic principle When I was getting the hang of my moka pot, I learned from YouTube coffee geeks such as James Hoffmann that the main aim is for the water to be pushed through the coffee smoothly and gently. Better to err on the side of too little flow than too much. I have not had much success trying to make fine temperature adjustments while the coffee is brewing, because the big moka pot has a lot of thermal inertia: it takes a long time for any change in gas level to have any effect on on the coffee flow. routine fill the kettle and turn it on put the moka pot’s basket in a mug to keep it stable fill it with coffee (mine needs about 4 Aeropress scoops) tamp it down firmly [1] when the kettle has boiled, fill the base of the pot to just below the pressure valve (which is also just below the filter screen in the basket) insert the coffee basket, making sure there are no stray grounds around the edge where the seal will mate screw on the upper chamber firmly put it on a small gas ring turned up to the max [2] leave the lid open and wait for the coffee to emerge immediately turn the gas down to the minimum [3] the coffee should now come out in a steady thin stream without spluttering or stalling when the upper chamber is filled near the mouths of the central spout, it’ll start fizzing or spluttering [4] turn off the gas and pour the coffee into a carafe notes If I don’t tamp the grounds, the pot tends to splutter. I guess tamping gives the puck better integrity to resist channelling, and to keep the water under even pressure. Might be an effect of the relatively coarse supermarket grind? It takes a long time to get the pot back up to boiling point and I’m not sure that heating it up slower helps. The main risk, I think, is overshooting the ideal steady brewing state too much, but: With my moka pot on my hob the lowest gas flow on the smallest rings is just enough to keep the coffee flowing without stalling. The flow when the coffee first emerges is relatively fast, and it slows to the steady state several seconds after I turn the heat down, so I think the overshoot isn’t too bad. This routine turns almost all of the water into coffee, which Hoffmann suggests is a good result, and a sign that the pressure and temperature aren’t getting too high.

a month ago 13 votes
the algebra of dependent types

TIL (or this week-ish I learned) why big-sigma and big-pi turn up in the notation of dependent type theory. I’ve long been aware of the zoo of more obscure Greek letters that turn up in papers about type system features of functional programming languages, μ, Λ, Π, Σ. Their meaning is usually clear from context but the reason for the choice of notation is usually not explained. I recently stumbled on an explanation for Π (dependent functions) and Σ (dependent pairs) which turn out to be nicer than I expected, and closely related to every-day algebraic data types. sizes of types The easiest way to understand algebraic data types is by counting the inhabitants of a type. For example: the unit type () has one inhabitant, (), and the number 1 is why it’s called the unit type; the bool type hass two inhabitants, false and true. I have even seen these types called 1 and 2 (cruelly, without explanation) in occasional papers. product types Or pairs or (more generally) tuples or records. Usually written, (A, B) The pair contains an A and a B, so the number of possible values is the number of possible A values multiplied by the number of possible B values. So it is spelled in type theory (and in Standard ML) like, A * B sum types Or disjoint union, or variant record. Declared in Haskell like, data Either a b = Left a | Right b Or in Rust like, enum Either<A, B> { Left(A), Right(B), } A value of the type is either an A or a B, so the number of possible values is the number of A values plus the number of B values. So it is spelled in type theory like, A + B dependent pairs In a dependent pair, the type of the second element depends on the value of the first. The classic example is a slice, roughly, struct IntSlice { len: usize, elem: &[i64; len], } (This might look a bit circular, but the idea is that an array [i64; N] must be told how big it is – its size is an explicit part of its type – but an IntSlice knows its own size. The traditional dependent “vector” type is a sized linked list, more like my array type than my slice type.) The classic way to write a dependent pair in type theory is like,      Σ len: usize . Array(Int, len) The big sigma binds a variable that has a type annotation, with a scope covering the expression after the dot – similar syntax to a typed lambda expression. We can expand a simple example like this into a many-armed sum type: either an array of length zero, or an array of length 1, or an array of length 2, … but in a sigma type the discriminant is user-defined instead of hidden. The number of possible values of the type comes from adding up all the alternatives, a summation just like the big sigma summation we were taught in school. ∑ a ∈ A B a When the second element doesn’t depend on the first element, we can count the inhabitants like, ∑ A B = A*B And the sigma type simplifies to a product type. telescopes An aside from the main topic of these notes, I also recently encountered the name “telescope” for a multi-part dependent tuple or record. The name “telescope” comes from de Bruijn’s AUTOMATH, one of the first computerized proof assistants. (I first encountered de Bruijn as the inventor of numbered lambda bindings.) dependent functions The return type of a dependent function can vary according to the argument it is passed. For example, to construct an array we might write something like, fn repeat_zero(len: usize) -> [i64; len] { [0; len] } The classic way to write the type of repeat_zero() is very similar to the IntSlice dependent pair, but with a big pi instead of a big sigma:      Π len: usize . Array(Int, len) Mmm, pie. To count the number of possible (pure, total) functions A ➞ B, we can think of each function as a big lookup table with A entries each containing a B. That is, a big tuple (B, B, … B), that is, B * B * … * B, that is, BA. Functions are exponential types. We can count a dependent function, where the number of possible Bs depends on which A we are passed, ∏ a ∈ A B a danger I have avoided the terms “dependent sum” and “dependent product”, because they seem perfectly designed to cause confusion over whether I am talking about variants, records, or functions. It kind of makes me want to avoid algebraic data type jargon, except that there isn’t a good alternative for “sum type”. Hmf.

a month ago 21 votes

More in programming

Logical Quantifiers in Software

I realize that for all I've talked about Logic for Programmers in this newsletter, I never once explained basic logical quantifiers. They're both simple and incredibly useful, so let's do that this week! Sets and quantifiers A set is a collection of unordered, unique elements. {1, 2, 3, …} is a set, as are "every programming language", "every programming language's Wikipedia page", and "every function ever defined in any programming language's standard library". You can put whatever you want in a set, with some very specific limitations to avoid certain paradoxes.2 Once we have a set, we can ask "is something true for all elements of the set" and "is something true for at least one element of the set?" IE, is it true that every programming language has a set collection type in the core language? We would write it like this: # all of them all l in ProgrammingLanguages: HasSetType(l) # at least one some l in ProgrammingLanguages: HasSetType(l) This is the notation I use in the book because it's easy to read, type, and search for. Mathematicians historically had a few different formats; the one I grew up with was ∀x ∈ set: P(x) to mean all x in set, and ∃ to mean some. I use these when writing for just myself, but find them confusing to programmers when communicating. "All" and "some" are respectively referred to as "universal" and "existential" quantifiers. Some cool properties We can simplify expressions with quantifiers, in the same way that we can simplify !(x && y) to !x || !y. First of all, quantifiers are commutative with themselves. some x: some y: P(x,y) is the same as some y: some x: P(x, y). For this reason we can write some x, y: P(x,y) as shorthand. We can even do this when quantifying over different sets, writing some x, x' in X, y in Y instead of some x, x' in X: some y in Y. We can not do this with "alternating quantifiers": all p in Person: some m in Person: Mother(m, p) says that every person has a mother. some m in Person: all p in Person: Mother(m, p) says that someone is every person's mother. Second, existentials distribute over || while universals distribute over &&. "There is some url which returns a 403 or 404" is the same as "there is some url which returns a 403 or some url that returns a 404", and "all PRs pass the linter and the test suites" is the same as "all PRs pass the linter and all PRs pass the test suites". Finally, some and all are duals: some x: P(x) == !(all x: !P(x)), and vice-versa. Intuitively: if some file is malicious, it's not true that all files are benign. All these rules together mean we can manipulate quantifiers almost as easily as we can manipulate regular booleans, putting them in whatever form is easiest to use in programming. Speaking of which, how do we use this in in programming? How we use this in programming First of all, people clearly have a need for directly using quantifiers in code. If we have something of the form: for x in list: if P(x): return true return false That's just some x in list: P(x). And this is a prevalent pattern, as you can see by using GitHub code search. It finds over 500k examples of this pattern in Python alone! That can be simplified via using the language's built-in quantifiers: the Python would be any(P(x) for x in list). (Note this is not quantifying over sets but iterables. But the idea translates cleanly enough.) More generally, quantifiers are a key way we express higher-level properties of software. What does it mean for a list to be sorted in ascending order? That all i, j in 0..<len(l): if i < j then l[i] <= l[j]. When should a ratchet test fail? When some f in functions - exceptions: Uses(f, bad_function). Should the image classifier work upside down? all i in images: classify(i) == classify(rotate(i, 180)). These are the properties we verify with tests and types and MISU and whatnot;1 it helps to be able to make them explicit! One cool use case that'll be in the book's next version: database invariants are universal statements over the set of all records, like all a in accounts: a.balance > 0. That's enforceable with a CHECK constraint. But what about something like all i, i' in intervals: NoOverlap(i, i')? That isn't covered by CHECK, since it spans two rows. Quantifier duality to the rescue! The invariant is equivalent to !(some i, i' in intervals: Overlap(i, i')), so is preserved if the query SELECT COUNT(*) FROM intervals CROSS JOIN intervals … returns 0 rows. This means we can test it via a database trigger.3 There are a lot more use cases for quantifiers, but this is enough to introduce the ideas! Next week's the one year anniversary of the book entering early access, so I'll be writing a bit about that experience and how the book changed. It's crazy how crude v0.1 was compared to the current version. MISU ("make illegal states unrepresentable") means using data representations that rule out invalid values. For example, if you have a location -> Optional(item) lookup and want to make sure that each item is in exactly one location, consider instead changing the map to item -> location. This is a means of implementing the property all i in item, l, l' in location: if ItemIn(i, l) && l != l' then !ItemIn(i, l'). ↩ Specifically, a set can't be an element of itself, which rules out constructing things like "the set of all sets" or "the set of sets that don't contain themselves". ↩ Though note that when you're inserting or updating an interval, you already have that row's fields in the trigger's NEW keyword. So you can just query !(some i in intervals: Overlap(new, i')), which is more efficient. ↩

9 hours ago 2 votes
The missing part of Espressif’s reset circuit

In the previous article, we peeked at the reset circuit of ESP-Prog with an oscilloscope, and reproduced it with basic components. We observed that it did not behave quite as expected. In this article, we’ll look into the missing pieces. An incomplete circuit For a hint, we’ll first look a bit more closely at the … Continue reading The missing part of Espressif’s reset circuit → The post The missing part of Espressif’s reset circuit appeared first on Quentin Santos.

10 hours ago 2 votes
Setting Element Ordering With HTML Rewriter Using CSS

After shipping my work transforming HTML with Netlify’s edge functions I realized I have a little bug: the order of the icons specified in the URL doesn’t match the order in which they are displayed on screen. Why’s this happening? I have a bunch of links in my HTML document, like this: <icon-list> <a href="/1/">…</a> <a href="/2/">…</a> <a href="/3/">…</a> <!-- 2000+ more --> </icon-list> I use html-rewriter in my edge function to strip out the HTML for icons not specified in the URL. So for a request to: /lookup?id=1&id=2 My HTML will be transformed like so: <icon-list> <!-- Parser keeps these two --> <a href="/1/">…</a> <a href="/2/">…</a> <!-- But removes this one --> <a href="/3/">…</a> </icon-list> Resulting in less HTML over the wire to the client. But what about the order of the IDs in the URL? What if the request is to: /lookup?id=2&id=1 Instead of: /lookup?id=1&id=2 In the source HTML document containing all the icons, they’re marked up in reverse chronological order. But the request for this page may specify a different order for icons in the URL. So how do I rewrite the HTML to match the URL’s ordering? The problem is that html-rewriter doesn’t give me a fully-parsed DOM to work with. I can’t do things like “move this node to the top” or “move this node to position x”. With html-rewriter, you only “see” each element as it streams past. Once it passes by, your chance at modifying it is gone. (It seems that’s just the way these edge function tools are designed to work, keeps them lean and performant and I can’t shoot myself in the foot). So how do I change the icon’s display order to match what’s in the URL if I can’t modify the order of the elements in the HTML? CSS to the rescue! Because my markup is just a bunch of <a> tags inside a custom element and I’m using CSS grid for layout, I can use the order property in CSS! All the IDs are in the URL, and their position as parameters has meaning, so I assign their ordering to each element as it passes by html-rewriter. Here’s some pseudo code: // Get all the IDs in the URL const ids = url.searchParams.getAll("id"); // Select all the icons in the HTML rewriter.on("icon-list a", { element: (element) => { // Get the ID const id = element.getAttribute('id'); // If it's in our list, set it's order // position from the URL if (ids.includes(id)) { const order = ids.indexOf(id); element.setAttribute( "style", `order: ${order}` ); // Otherwise, remove it } else { element.remove(); } }, }); Boom! I didn’t have to change the order in the source HTML document, but I can still get the displaying ordering to match what’s in the URL. I love shifty little workarounds like this! Email · Mastodon · Bluesky

10 hours ago 2 votes
clamp / median / range

Here are a few tangentially-related ideas vaguely near the theme of comparison operators. comparison style clamp style clamp is median clamp in range range style style clash? comparison style Some languages such as BCPL, Icon, Python have chained comparison operators, like if min <= x <= max: ... In languages without chained comparison, I like to write comparisons as if they were chained, like, if min <= x && x <= max { // ... } A rule of thumb is to prefer less than (or equal) operators and avoid greater than. In a sequence of comparisons, order values from (expected) least to greatest. clamp style The clamp() function ensures a value is between some min and max, def clamp(min, x, max): if x < min: return min if max < x: return max return x I like to order its arguments matching the expected order of the values, following my rule of thumb for comparisons. (I used that flavour of clamp() in my article about GCRA.) But I seem to be unusual in this preference, based on a few examples I have seen recently. clamp is median Last month, Fabian Giesen pointed out a way to resolve this difference of opinion: A function that returns the median of three values is equivalent to a clamp() function that doesn’t care about the order of its arguments. This version is written so that it returns NaN if any of its arguments is NaN. (When an argument is NaN, both of its comparisons will be false.) fn med3(a: f64, b: f64, c: f64) -> f64 { match (a <= b, b <= c, c <= a) { (false, false, false) => f64::NAN, (false, false, true) => b, // a > b > c (false, true, false) => a, // c > a > b (false, true, true) => c, // b <= c <= a (true, false, false) => c, // b > c > a (true, false, true) => a, // c <= a <= b (true, true, false) => b, // a <= b <= c (true, true, true) => b, // a == b == c } } When two of its arguments are constant, med3() should compile to the same code as a simple clamp(); but med3()’s misuse-resistance comes at a small cost when the arguments are not known at compile time. clamp in range If your language has proper range types, there is a nicer way to make clamp() resistant to misuse: fn clamp(x: f64, r: RangeInclusive<f64>) -> f64 { let (&min,&max) = (r.start(), r.end()); if x < min { return min } if max < x { return max } return x; } let x = clamp(x, MIN..=MAX); range style For a long time I have been fond of the idea of a simple counting for loop that matches the syntax of chained comparisons, like for min <= x <= max: ... By itself this is silly: too cute and too ad-hoc. I’m also dissatisfied with the range or slice syntax in basically every programming language I’ve seen. I thought it might be nice if the cute comparison and iteration syntaxes were aspects of a more generally useful range syntax, but I couldn’t make it work. Until recently when I realised I could make use of prefix or mixfix syntax, instead of confining myself to infix. So now my fantasy pet range syntax looks like >= min < max // half-open >= min <= max // inclusive And you might use it in a pattern match if x is >= min < max { // ... } Or as an iterator for x in >= min < max { // ... } Or to take a slice xs[>= min < max] style clash? It’s kind of ironic that these range examples don’t follow the left-to-right, lesser-to-greater rule of thumb that this post started off with. (x is not lexically between min and max!) But that rule of thumb is really intended for languages such as C that don’t have ranges. Careful stylistic conventions can help to avoid mistakes in nontrivial conditional expressions. It’s much better if language and library features reduce the need for nontrivial conditions and catch mistakes automatically.

yesterday 2 votes
C++ engineering decision in SumatraPDF code

SumatraPDF is a medium size (120k+ loc, not counting dependencies) Windows GUI (win32) C++ code base started by me and written by mostly 2 people. The goals of SumatraPDF are to be: fast small packed with features and yet with thoughtfully minimal UI It’s not just a matter of pride in craftsmanship of writing code. I believe being fast and small are a big reason for SumatraPDF’s success. People notice when an app starts in an instant because that’s sadly not the norm in modern software. The engineering goals of SumatraPDF are: reliable (no crashes) fast compilation to enable fast iteration SumatraPDF has been successful achieving those objectives so I’m writing up my C++ implementation decisions. I know those decisions are controversial. Maybe not Terry Davis level of controversial but still. You probably won’t adopt them. Even if you wanted to, you probably couldn’t. There’s no way code like this would pass Google review. Not because it’s bad but becaues it’s different. Diverging from mainstream this much is only feasible if you have total control: it’s your company or your own open-source project. If my ideas were just like everyone else’s ideas, there would be little point in writing about them, would it? Use UTF8 strings internally My app only runs on Windows and a string native to Windows is WCHAR* where each character consumes 2 bytes. Despite that I mostly use char* assumed to be utf8-encoded. I only decided on that after lots of code was written so it was a refactoring oddysey that is still ongoing. My initial impetus was to be able to compile non-GUI parts under Linux and Mac. I abandoned that goal but I think that’s a good idea anyway. WCHAR* strings are 2x larger than char*. That’s more memory used which also makes the app slower. Binaries are bigger if string constants are WCHAR*. The implementation rule is simple: I only convert to WCHAR* when calling Windows API. When Windows API returns WCHA* I convert it to utf-8. No exceptions Do you want to hear a joke? “Zero-cost exceptions”. Throwing and catching exceptions generate bloated code. Exceptions are a non-local control flow that makes it hard to reason about program. Every memory allocation becomes a potential leak. But RAII, you protest. RAII is a “solution” to a problem created by exceptions. How about I don’t create the problem in the first place. Hard core #include discipline I wrote about it in depth. My objects are not shy I don’t bother with private and protected. struct is just class with guts exposed by default, so I use that. While intellectually I understand the reasoning behind hiding implementation details in practices it becomes busy work of typing noise and then even more typing when you change your mind about visibility. I’m the only person working on the code so I don’t need to force those of lesser intellect to write the code properly. My objects are shy At the same time I minimize what goes into a class, especially methods. The smaller the class, the faster the build. A common problem is adding too many methods to a class. You have a StrVec class for array of strings. A lesser programmer is tempted to add Join(const char* sep) method to StrVec. A wise programmer makes it a stand-alone function: Join(const StrVec& v, const char* sep). This is enabled by making everything in a class public. If you limit visibility you then have to use friendto allow Join() function access what it needs. Another example of “solution” to self-inflicted problems. Minimize #ifdef #ifdef is problematic because it creates code paths that I don’t always build. I provide arm64, intel 32-bit and 64-bit builds but typically only develop with 64-bit intel build. Every #ifdef that branches on architecture introduces potential for compilation error which I’ll only know about when my daily ci build fails. Consider 2 possible implementations of IsProcess64Bit(): Bad: bool IsProcess64Bit() { #ifdef _WIN64 return true; #else return false; #endif } Good: bool IsProcess64Bit() { return sizeof(uintptr_t) == 8; } The bad version has a bug: it was correct when I was only doing intel builds but became buggy when I added arm64 builds. This conflicts with the goal of smallest possible size but it’s worth it. Stress testing SumatraPDF supports a lot of very complex document and image formats. Complex format require complex code that is likely to have bugs. I also have lots of files in those formats. I’ve added stress testing functionality where I point SumatraPDF to a folder with files and tell it to render all of them. For greater coverage, I also simulate some of the possible UI actions users can take like searching, switching view modes etc. Crash reporting I wrote about it in depth. Heavy use of CrashIf() C/C++ programmers are familiar with assert() macro. CrashIf() is my version of that, tailored to my needs. The purpose of assert / CrashIf is to add checks to detect incorrect use of APIs or invalid states in the program. For example, if the code tries to access an element of an array at an invalid index (negative or larger than size of the array), it indicates a bug in the program. I want to be notified about such bugs both when I test SumatraPDF and when it runs on user’s computers. As the name implies, it’ll crash (by de-referencing null pointer) and therefore generate a crash report. It’s enabled in debug and pre-release builds but not in release builds. Release builds have many, many users so I worry about too many crash reports. premake to generate Visual Studio solution Visual Studio uses XML files as a list of files in the project and build format. The format is impossible to work with in a text editor so you have no choice but to use Visual Studio to edit the project / solution. To add a new file: find the right UI element, click here, click there, pick a file using file picker, click again. To change a compilation setting of a project or a file? Find the right UI element, click here, click there, type this, confirm that. You accidentally changed compilation settings of 1 file out of a hundred? Good luck figuring out which one. Go over all files in UI one by one. In other words: managing project files using Visual Studio UI is a nightmare. Premake is a solution. It’s a meta-build system. You define your build using lua scripts, which look like test configuration files. Premake then can generate Visual Studio projects, XCode project, makefiles etc. That’s the meta part. It was truly a life server on project with lots of files (SumatraPDF’s own are over 300, many times more for third party libraries). Using /analyze and cppcheck cppcheck and /analyze flag in cl.exe are tools to find bugs in C++ code via static analysis. They are like a C++ compiler but instead of generating code, they analyze control flow in a program to find potential programs. It’s a cheap way to find some bugs, so there’s no excuse to not run them from time to time on your code. Using asan builds Address Sanitizer (asan) is a compiler flag /fsanitize=address that instruments the code with checks for common memory-related bugs like using an object after freeing it, over-writing values on the stack, freeing an object twice, writing past allocated memory. The downside of this instrumentation is that the code is much slower due to overhead of instrumentation. I’ve created a project for release build with asan and run it occasionally, especially in stress test. Write for the debugger Programmers love to code golf i.e. put us much code on one line as possible. As if lines of code were expensive. Many would write: Bad: // ... return (char*)(start + offset); I write: Good: // ... char* s = (char*)(start + offset); return s; Why? Imagine you’re in a debugger stepping through a debug build of your code. The second version makes it trivial to set a breakpoint at return s line and look at the value of s. The first doesn’t. I don’t optimize for smallest number of lines of code but for how easy it is to inspect the state of the program in the debugger. In practice it means that I intentionally create intermediary variables like s in the example above. Do it yourself standard library I’m not using STL. Yes, I wrote my own string and vector class. There are several reasons for that. Historical reason When I started SumatraPDF over 15 years ago STL was crappy. Bad APIs Today STL is still crappy. STL implementations improved greatly but the APIs still suck. There’s no API to insert something in the middle of a string or a vector. I understand the intent of separation of data structures and algorithms but I’m a pragmatist and to my pragmatist eyes v.insert (v.begin(), myarray, myarray+3); is just stupid compared to v.inert(3, el). Code bloat STL is bloated. Heavy use of templates leads to lots of generated code i.e. surprisingly large binaries for supposedly low-level language. That bloat is invisible i.e. you won’t know unless you inspect generated binaries, which no one does. The bloat is out of my control. Even if I notice, I can’t fix STL classes. All I can do is to write my non-bloaty alternative, which is what I did. Slow compilation times Compilation of C code is not fast but it feels zippy compared to compilation of C++ code. Heavy use of templates is big part of it. STL implementations are over-templetized and need to provide all the C++ support code (operators, iterators etc.). As a pragmatist, I only implement the absolute minimum functionality I use in my code. I minimize use of templates. For example Str and WStr could be a single template but are 2 implementations. I don’t understand C++ I understand the subset of C++ I use but the whole of C++ is impossibly complicated. For example I’ve read a bunch about std::move() and I’m not confident I know how to use it correctly and that’s just one of many complicated things in C++. C++ is too subtle and I don’t want my code to be a puzzle. Possibility of optimized implementations I wrote a StrVec class that is optimized for storing vector of strings. It’s more efficient than std::vector<std::string> by a large margin and I use it extensively. Temporary allocator and pool allocators I use temporary allocators heavily. They make the code faster and smaller. Technically STL has support for non-standard allocators but the API is so bad that I would rather not. My temporary allocator and pool allocators are very small and simple and I can add support for them only when beneficial. Minimize unsigned int STL and standard C library like to use size_t and other unsigned integers. I think it was a mistake. Go shows that you can just use int. Having two types leads to cast-apalooza. I don’t like visual noise in my code. Unsigned are also more dangerous. When you substract you can end up with a bigger value. Indexing from end is subtle, for (int i = n; i >= 0; i--) is buggy because i >= 0 is always true for unsigned. Sadly I only realized this recently so there’s a lot of code still to refactor to change use of size_t to int. Mostly raw pointers No std::unique_ptr for me. Warnings are errors C++ makes a distinction between compilation errors and compilation warnings. I don’t like sloppy code and polluting build output with warning messages so for my own code I use a compiler flag that turns warnings into errors, which forces me to fix the warnings.

yesterday 2 votes