More from A Beautiful Site
It's been awhile since I wrote about FOUCE and I've since come up with an improved solution that I think is worth a post. This approach is similar to hiding the page content and then fading it in, but I've noticed it's far less distracting without the fade. It also adds a two second timeout to prevent network issues or latency from rendering an "empty" page. First, we'll add a class called reduce-fouce to the <html> element. <html class="reduce-fouce"> ... </html> Then we'll add this rule to the CSS. <style> html.reduce-fouce { opacity: 0; } </style> Finally, we'll wait until all the custom elements have loaded or two seconds have elapsed, whichever comes first, and we'll remove the class causing the content to show immediately. <script type="module"> await Promise.race([ // Load all custom elements Promise.allSettled([ customElements.whenDefined('my-button'), customElements.whenDefined('my-card'), customElements.whenDefined('my-rating') // ... ]), // Resolve after two seconds new Promise(resolve => setTimeout(resolve, 2000)) ]); // Remove the class, showing the page content document.documentElement.classList.remove('reduce-fouce'); </script> This approach seems to work especially well and won't end up "stranding" the user if network issues occur.
Once upon a midnight dreary, while I pondered, weak and weary, While I nodded, nearly napping, suddenly there came a tapping, "'Tis a design system," I muttered, "bringing order to the core— Ah, distinctly I remember, every button, every splendor, Each component, standardized, like a raven's watchful eyes, Unified in system's might, like patterns we restore— And each separate style injection, linked with careful introspection, 'Tis a design system, nothing more.
It’s disappointing that some of the most outspoken individuals against Web Components are framework maintainers. These individuals are, after all, in some of the best positions to provide valuable feedback. They have a lot of great ideas! Alas, there’s little incentive for them because standards evolve independently and don’t necessarily align with framework opinions. How could they? Opinions are one of the things that make frameworks unique. And therein lies the problem. If you’re convinced that your way is the best and only way, it’s natural to feel disenchanted when a decision is made that you don’t fully agree with. This is my open response to Ryan Carniato’s post from yesterday called “Web Components Are Not the Future.” WTF is a component anyway? # The word component is a loaded term, but I like to think of it in relation to interoperability. If I write a component in Framework A, I would like to be able to use it in Framework B, C, and D without having to rewrite it or include its entire framework. I don’t think many will disagree with that objective. We’re not there yet, but the road has been paved and instead of learning to drive on it, frameworks are building…different roads. Ryan states: If the sheer number of JavaScript frameworks is any indicator we are nowhere near reaching a consensus on how one should author components on the web. And even if we were a bit closer today we were nowhere near there a decade ago. The thing is, we don’t need to agree on how to write components, we just need to agree on the underlying implementation, then you can use classes, hooks, or whatever flavor you want to create them. Turns out, we have a very well-known, ubiquitous technology that we’ve chosen to do this with: HTML. But it also can have a negative effect. If too many assumptions are made it becomes harder to explore alternative space because everything gravitates around the establishment. What is more established than a web standard that can never change? If the concern is premature standardization, well, it’s a bit late for that. So let’s figure out how to get from where we are now to where we want to be. The solution isn’t to start over at the specification level, it’s to rethink how front end frameworks engage with current and emerging standards and work to improve them. Respectfully, it’s time to stop complaining, move on, and fix the things folks perceive as suboptimal. The definition of component # That said, we also need to realize that Web Components aren’t a 1:1 replacement for framework components. They’re tangentially related things, and I think a lot of confusion stems from this. We should really fix the definition of component. So the fundamental problem with Web Components is that they are built on Custom Elements. Elements !== Components. More specifically, Elements are a subset of Components. One could argue that every Element could be a Component but not all Components are Elements. To be fair, I’ve never really liked the term “Web Components” because it competes with the concept of framework components, but that’s what caught on and that's what most people are familiar with these days. Alas, there is a very important distinction here. Sure, a button and a text field can be components, but there are other types. For example, many frameworks support a concept of renderless components that exist in your code, but not in the final HTML. You can’t do that with Web Components, because every custom element results in an actual DOM element. (FWIW I don’t think this is a bad thing — but I digress…) As to why Web components don’t do all the things framework components do, that’s because they’re a lower level implementation of an interoperable element. They’re not trying to do everything framework components do. That’s what frameworks are for. It’s ok to be shiny # In fact, this is where frameworks excel. They let you go above and beyond what the platform can do on its own. I fully support this trial-and-error way of doing things. After all, it’s fun to explore new ideas and live on the bleeding edge. We got a lot of cool stuff from doing that. We got document.querySelector() from jQuery. CSS Custom Properties were inspired by Sass. Tagged template literals were inspired by JSX. Soon we’re getting signals from Preact. And from all the component-based frameworks that came before them, we got Web Components: custom HTML elements that can be authored in many different ways (because we know people like choices) and are fully interoperable (if frameworks and metaframeworks would continue to move towards the standard instead of protecting their own). Frameworks are a testbed for new ideas that may or may not work out. We all need to be OK with that. Even framework authors. Especially framework authors. More importantly, we all need to stop being salty when our way isn’t what makes it into the browser. There will always be a better way to do something, but none of us have the foresight to know what a perfect solution looks like right now. Hindsight is 20/20. As humans, we’re constantly striving to make things better. We’re really good at it, by the way. But we must have the discipline to reach various checkpoints to pause, reflect, and gather feedback before continuing. Even the cheapest cars on the road today will outperform the Model T in every way. I’m sure Ford could have made the original Model T way better if they had spent another decade working on it, but do you know made the next version even better than 10 more years? The feedback they got from actual users who bought them, sat in them, and drove them around on actual roads. Web Standards offer a promise of stability and we need to move forward to improve them together. Using one’s influence to rally users against the very platform you’ve built your success on is damaging to both the platform and the community. We need these incredible minds to be less divisive and more collaborative. The right direction # Imagine if we applied the same arguments against HTML early on. What if we never standardized it at all? Would the Web be a better place if every site required a specific browser? (Narrator: it wasn't.) Would it be better if every site was Flash or a Java applet? (Remember Silverlight? lol) Sure, there are often better alternatives for every use case, but we have to pick something that works for the majority, then we can iterate on it. Web Components are a huge step in the direction of standardization and we should all be excited about that. But the Web Component implementation isn’t compatible with existing frameworks, and therein lies an existential problem. Web Components are a threat to the peaceful, proprietary way of life for frameworks that have amassed millions of users — the majority of web developers. Because opinions vary so wildly, when a new standard emerges frameworks can’t often adapt to them without breaking changes. And breaking changes can be detrimental to a user base. Have you spotted the issue? You can’t possibly champion Web Standards when you’ve built a non-standard thing that will break if you align with the emerging standard. It’s easier to oppose the threat than to adapt to it. And of course Web Components don’t do everything a framework does. How can the platform possibly add all the features every framework added last week? That would be absolutely reckless. And no, the platform doesn’t move as fast as your framework and that’s sometimes painful. But it’s by design. This process is what gives us APIs that continue to work for decades. As users, we need to get over this hurdle and start thinking about how frameworks can adapt to current standards and how to evolve them as new ones emerge. Let’s identify shortcomings in the spec and work together to improve the ecosystem instead of arguing about who’s shit smells worse. Reinventing the wheel isn’t the answer. Lock-in isn’t the answer. This is why I believe that next generation of frameworks will converge on custom elements as an interoperable component model, enhance that model by sprinkling in awesome features of their own, and focus more on flavors (class-based, functional, signals, etc.) and higher level functionality. As for today's frameworks? How they adapt will determine how relevant they remain. Living dangerously # Ryan concludes: So in a sense there are nothing wrong with Web Components as they are only able to be what they are. It's the promise that they are something that they aren't which is so dangerous. The way their existence warps everything around them that puts the whole web at risk. It's a price everyone has to pay. So Web Components aren’t the specific vision you had for components. That's fine. But that's how it is. They're not Solid components. They’re not React components. They’re not Svelte components. They’re not Vue components. They’re standards-based Web Components that work in all of the above. And they could work even better in all of the above if all of the above were interested in advancing the platform instead of locking users in. I’m not a conspiracy theorist, but I find interesting the number of people who are and have been sponsored and/or hired by for-profit companies whose platforms rely heavily on said frameworks. Do you think it’s in their best interest to follow Web Standards if that means making their service less relevant and less lucrative? Of course not. If you’ve built an empire on top of something, there’s absolutely zero incentive to tear it down for the betterment of humanity. That’s not how capitalism works. It’s far more profitable to lock users in and keep them paying. But you know what…? Web Standards don't give a fuck about monetization. Longevity supersedes ingenuity # The last thing I’d like to talk about is this line here. Web Components possibly pose the biggest risk to the future of the web that I can see. Of course, this is from the perspective of a framework author, not from the people actually shipping and maintaining software built using these frameworks. And the people actually shipping software are the majority, but that’s not prestigious so they rarely get the high follower counts. The people actually shipping software are tired of framework churn. They're tired of shit they wrote last month being outdated already. They want stability. They want to know that the stuff they build today will work tomorrow. As history has proven, no framework can promise that. You know what framework I want to use? I want a framework that aligns with the platform, not one that replaces it. I want a framework that values incremental innovation over user lock-in. I want a framework that says it's OK to break things if it means making the Web a better place for everyone. Yes, that comes at a cost, but almost every good investment does, and I would argue that cost will be less expensive than learning a new framework and rebuilding buttons for the umpteenth time. The Web platform may not be perfect, but it continuously gets better. I don’t think frameworks are bad but, as a community, we need to recognize that a fundamental piece of the platform has changed and it's time to embrace the interoperable component model that Web Component APIs have given us…even if that means breaking things to get there. The component war is over.
Components are like little machines. You build them once. Use them whenever you need them. Every now and then you open them up to oil them or replace a part, then you send them back to work. And work, they do. Little component machines just chugging along so you never have to write them from scratch ever again. Adapted from this tweet.
I've been struggling with the idea of reflecting attributes in custom elements and when it's appropriate. I think I've identified a gap in the platform, but I'm not sure exactly how we should fill it. I'll explain with an example. Let's say I want to make a simple badge component with primary, secondary, and tertiary variants. <my-badge variant="primary">foo</my-badge> <my-badge variant="secondary">bar</my-badge> <my-badge variant="tertiary">baz</my-badge> This is a simple component, but one that demonstrates the problem well. I want to style the badge based on the variant property, but sprouting attributes (which occurs as a result of reflecting a property back to an attribute) is largely considered a bad practice. A lot of web component libraries do it out of necessary to facilitate styling — including Shoelace — but is there a better way? The problem # I need to style the badge without relying on reflected attributes. This means I can't use :host([variant="..."]) because the attribute may or may not be set by the user. For example, if the component is rendered in a framework that sets properties instead of attributes, or if the property is set or changed programmatically, the attribute will be out of sync and my styles will be broken. So how can I style the badge based its variants without reflection? Let's assume we have the following internals, which is all we really need for the badge. <my-badge> #shadowRoot <slot></slot> </my-badge> What can we do about it? # I can't add classes to the slot, because :host(:has(.slot-class)) won't match. I can't set a data attribute on the host element, because that's the same as reflection and might cause issues with SSR and DOM morphing libraries. I could add a wrapper element around the slot and apply classes to it, but I'd prefer not to bloat the internals with additional elements. With a wrapper, users would have to use ::part(wrapper) to target it. Without the wrapper, they can set background, border, and other CSS properties directly on the host element which is more desirable. I could add custom states for each variant, but this gets messy for non-Boolean values and feels like an abuse of the API. Filling the gap # I'm not sure what the best solution is or could be, but one thing that comes to mind is a way to provide some kind of cross-root version of :has that works with :host. Something akin to: :host(:has-in-shadow-root(.some-selector)) { /* maybe one day… */ } If you have any thoughts on this one, hit me up on Twitter.
More in programming
I realize that for all I've talked about Logic for Programmers in this newsletter, I never once explained basic logical quantifiers. They're both simple and incredibly useful, so let's do that this week! Sets and quantifiers A set is a collection of unordered, unique elements. {1, 2, 3, …} is a set, as are "every programming language", "every programming language's Wikipedia page", and "every function ever defined in any programming language's standard library". You can put whatever you want in a set, with some very specific limitations to avoid certain paradoxes.2 Once we have a set, we can ask "is something true for all elements of the set" and "is something true for at least one element of the set?" IE, is it true that every programming language has a set collection type in the core language? We would write it like this: # all of them all l in ProgrammingLanguages: HasSetType(l) # at least one some l in ProgrammingLanguages: HasSetType(l) This is the notation I use in the book because it's easy to read, type, and search for. Mathematicians historically had a few different formats; the one I grew up with was ∀x ∈ set: P(x) to mean all x in set, and ∃ to mean some. I use these when writing for just myself, but find them confusing to programmers when communicating. "All" and "some" are respectively referred to as "universal" and "existential" quantifiers. Some cool properties We can simplify expressions with quantifiers, in the same way that we can simplify !(x && y) to !x || !y. First of all, quantifiers are commutative with themselves. some x: some y: P(x,y) is the same as some y: some x: P(x, y). For this reason we can write some x, y: P(x,y) as shorthand. We can even do this when quantifying over different sets, writing some x, x' in X, y in Y instead of some x, x' in X: some y in Y. We can not do this with "alternating quantifiers": all p in Person: some m in Person: Mother(m, p) says that every person has a mother. some m in Person: all p in Person: Mother(m, p) says that someone is every person's mother. Second, existentials distribute over || while universals distribute over &&. "There is some url which returns a 403 or 404" is the same as "there is some url which returns a 403 or some url that returns a 404", and "all PRs pass the linter and the test suites" is the same as "all PRs pass the linter and all PRs pass the test suites". Finally, some and all are duals: some x: P(x) == !(all x: !P(x)), and vice-versa. Intuitively: if some file is malicious, it's not true that all files are benign. All these rules together mean we can manipulate quantifiers almost as easily as we can manipulate regular booleans, putting them in whatever form is easiest to use in programming. Speaking of which, how do we use this in in programming? How we use this in programming First of all, people clearly have a need for directly using quantifiers in code. If we have something of the form: for x in list: if P(x): return true return false That's just some x in list: P(x). And this is a prevalent pattern, as you can see by using GitHub code search. It finds over 500k examples of this pattern in Python alone! That can be simplified via using the language's built-in quantifiers: the Python would be any(P(x) for x in list). (Note this is not quantifying over sets but iterables. But the idea translates cleanly enough.) More generally, quantifiers are a key way we express higher-level properties of software. What does it mean for a list to be sorted in ascending order? That all i, j in 0..<len(l): if i < j then l[i] <= l[j]. When should a ratchet test fail? When some f in functions - exceptions: Uses(f, bad_function). Should the image classifier work upside down? all i in images: classify(i) == classify(rotate(i, 180)). These are the properties we verify with tests and types and MISU and whatnot;1 it helps to be able to make them explicit! One cool use case that'll be in the book's next version: database invariants are universal statements over the set of all records, like all a in accounts: a.balance > 0. That's enforceable with a CHECK constraint. But what about something like all i, i' in intervals: NoOverlap(i, i')? That isn't covered by CHECK, since it spans two rows. Quantifier duality to the rescue! The invariant is equivalent to !(some i, i' in intervals: Overlap(i, i')), so is preserved if the query SELECT COUNT(*) FROM intervals CROSS JOIN intervals … returns 0 rows. This means we can test it via a database trigger.3 There are a lot more use cases for quantifiers, but this is enough to introduce the ideas! Next week's the one year anniversary of the book entering early access, so I'll be writing a bit about that experience and how the book changed. It's crazy how crude v0.1 was compared to the current version. MISU ("make illegal states unrepresentable") means using data representations that rule out invalid values. For example, if you have a location -> Optional(item) lookup and want to make sure that each item is in exactly one location, consider instead changing the map to item -> location. This is a means of implementing the property all i in item, l, l' in location: if ItemIn(i, l) && l != l' then !ItemIn(i, l'). ↩ Specifically, a set can't be an element of itself, which rules out constructing things like "the set of all sets" or "the set of sets that don't contain themselves". ↩ Though note that when you're inserting or updating an interval, you already have that row's fields in the trigger's NEW keyword. So you can just query !(some i in intervals: Overlap(new, i')), which is more efficient. ↩
After shipping my work transforming HTML with Netlify’s edge functions I realized I have a little bug: the order of the icons specified in the URL doesn’t match the order in which they are displayed on screen. Why’s this happening? I have a bunch of links in my HTML document, like this: <icon-list> <a href="/1/">…</a> <a href="/2/">…</a> <a href="/3/">…</a> <!-- 2000+ more --> </icon-list> I use html-rewriter in my edge function to strip out the HTML for icons not specified in the URL. So for a request to: /lookup?id=1&id=2 My HTML will be transformed like so: <icon-list> <!-- Parser keeps these two --> <a href="/1/">…</a> <a href="/2/">…</a> <!-- But removes this one --> <a href="/3/">…</a> </icon-list> Resulting in less HTML over the wire to the client. But what about the order of the IDs in the URL? What if the request is to: /lookup?id=2&id=1 Instead of: /lookup?id=1&id=2 In the source HTML document containing all the icons, they’re marked up in reverse chronological order. But the request for this page may specify a different order for icons in the URL. So how do I rewrite the HTML to match the URL’s ordering? The problem is that html-rewriter doesn’t give me a fully-parsed DOM to work with. I can’t do things like “move this node to the top” or “move this node to position x”. With html-rewriter, you only “see” each element as it streams past. Once it passes by, your chance at modifying it is gone. (It seems that’s just the way these edge function tools are designed to work, keeps them lean and performant and I can’t shoot myself in the foot). So how do I change the icon’s display order to match what’s in the URL if I can’t modify the order of the elements in the HTML? CSS to the rescue! Because my markup is just a bunch of <a> tags inside a custom element and I’m using CSS grid for layout, I can use the order property in CSS! All the IDs are in the URL, and their position as parameters has meaning, so I assign their ordering to each element as it passes by html-rewriter. Here’s some pseudo code: // Get all the IDs in the URL const ids = url.searchParams.getAll("id"); // Select all the icons in the HTML rewriter.on("icon-list a", { element: (element) => { // Get the ID const id = element.getAttribute('id'); // If it's in our list, set it's order // position from the URL if (ids.includes(id)) { const order = ids.indexOf(id); element.setAttribute( "style", `order: ${order}` ); // Otherwise, remove it } else { element.remove(); } }, }); Boom! I didn’t have to change the order in the source HTML document, but I can still get the displaying ordering to match what’s in the URL. I love shifty little workarounds like this! Email · Mastodon · Bluesky
In the previous article, we peeked at the reset circuit of ESP-Prog with an oscilloscope, and reproduced it with basic components. We observed that it did not behave quite as expected. In this article, we’ll look into the missing pieces. An incomplete circuit For a hint, we’ll first look a bit more closely at the … Continue reading The missing part of Espressif’s reset circuit → The post The missing part of Espressif’s reset circuit appeared first on Quentin Santos.
Here are a few tangentially-related ideas vaguely near the theme of comparison operators. comparison style clamp style clamp is median clamp in range range style style clash? comparison style Some languages such as BCPL, Icon, Python have chained comparison operators, like if min <= x <= max: ... In languages without chained comparison, I like to write comparisons as if they were chained, like, if min <= x && x <= max { // ... } A rule of thumb is to prefer less than (or equal) operators and avoid greater than. In a sequence of comparisons, order values from (expected) least to greatest. clamp style The clamp() function ensures a value is between some min and max, def clamp(min, x, max): if x < min: return min if max < x: return max return x I like to order its arguments matching the expected order of the values, following my rule of thumb for comparisons. (I used that flavour of clamp() in my article about GCRA.) But I seem to be unusual in this preference, based on a few examples I have seen recently. clamp is median Last month, Fabian Giesen pointed out a way to resolve this difference of opinion: A function that returns the median of three values is equivalent to a clamp() function that doesn’t care about the order of its arguments. This version is written so that it returns NaN if any of its arguments is NaN. (When an argument is NaN, both of its comparisons will be false.) fn med3(a: f64, b: f64, c: f64) -> f64 { match (a <= b, b <= c, c <= a) { (false, false, false) => f64::NAN, (false, false, true) => b, // a > b > c (false, true, false) => a, // c > a > b (false, true, true) => c, // b <= c <= a (true, false, false) => c, // b > c > a (true, false, true) => a, // c <= a <= b (true, true, false) => b, // a <= b <= c (true, true, true) => b, // a == b == c } } When two of its arguments are constant, med3() should compile to the same code as a simple clamp(); but med3()’s misuse-resistance comes at a small cost when the arguments are not known at compile time. clamp in range If your language has proper range types, there is a nicer way to make clamp() resistant to misuse: fn clamp(x: f64, r: RangeInclusive<f64>) -> f64 { let (&min,&max) = (r.start(), r.end()); if x < min { return min } if max < x { return max } return x; } let x = clamp(x, MIN..=MAX); range style For a long time I have been fond of the idea of a simple counting for loop that matches the syntax of chained comparisons, like for min <= x <= max: ... By itself this is silly: too cute and too ad-hoc. I’m also dissatisfied with the range or slice syntax in basically every programming language I’ve seen. I thought it might be nice if the cute comparison and iteration syntaxes were aspects of a more generally useful range syntax, but I couldn’t make it work. Until recently when I realised I could make use of prefix or mixfix syntax, instead of confining myself to infix. So now my fantasy pet range syntax looks like >= min < max // half-open >= min <= max // inclusive And you might use it in a pattern match if x is >= min < max { // ... } Or as an iterator for x in >= min < max { // ... } Or to take a slice xs[>= min < max] style clash? It’s kind of ironic that these range examples don’t follow the left-to-right, lesser-to-greater rule of thumb that this post started off with. (x is not lexically between min and max!) But that rule of thumb is really intended for languages such as C that don’t have ranges. Careful stylistic conventions can help to avoid mistakes in nontrivial conditional expressions. It’s much better if language and library features reduce the need for nontrivial conditions and catch mistakes automatically.
SumatraPDF is a medium size (120k+ loc, not counting dependencies) Windows GUI (win32) C++ code base started by me and written by mostly 2 people. The goals of SumatraPDF are to be: fast small packed with features and yet with thoughtfully minimal UI It’s not just a matter of pride in craftsmanship of writing code. I believe being fast and small are a big reason for SumatraPDF’s success. People notice when an app starts in an instant because that’s sadly not the norm in modern software. The engineering goals of SumatraPDF are: reliable (no crashes) fast compilation to enable fast iteration SumatraPDF has been successful achieving those objectives so I’m writing up my C++ implementation decisions. I know those decisions are controversial. Maybe not Terry Davis level of controversial but still. You probably won’t adopt them. Even if you wanted to, you probably couldn’t. There’s no way code like this would pass Google review. Not because it’s bad but becaues it’s different. Diverging from mainstream this much is only feasible if you have total control: it’s your company or your own open-source project. If my ideas were just like everyone else’s ideas, there would be little point in writing about them, would it? Use UTF8 strings internally My app only runs on Windows and a string native to Windows is WCHAR* where each character consumes 2 bytes. Despite that I mostly use char* assumed to be utf8-encoded. I only decided on that after lots of code was written so it was a refactoring oddysey that is still ongoing. My initial impetus was to be able to compile non-GUI parts under Linux and Mac. I abandoned that goal but I think that’s a good idea anyway. WCHAR* strings are 2x larger than char*. That’s more memory used which also makes the app slower. Binaries are bigger if string constants are WCHAR*. The implementation rule is simple: I only convert to WCHAR* when calling Windows API. When Windows API returns WCHA* I convert it to utf-8. No exceptions Do you want to hear a joke? “Zero-cost exceptions”. Throwing and catching exceptions generate bloated code. Exceptions are a non-local control flow that makes it hard to reason about program. Every memory allocation becomes a potential leak. But RAII, you protest. RAII is a “solution” to a problem created by exceptions. How about I don’t create the problem in the first place. Hard core #include discipline I wrote about it in depth. My objects are not shy I don’t bother with private and protected. struct is just class with guts exposed by default, so I use that. While intellectually I understand the reasoning behind hiding implementation details in practices it becomes busy work of typing noise and then even more typing when you change your mind about visibility. I’m the only person working on the code so I don’t need to force those of lesser intellect to write the code properly. My objects are shy At the same time I minimize what goes into a class, especially methods. The smaller the class, the faster the build. A common problem is adding too many methods to a class. You have a StrVec class for array of strings. A lesser programmer is tempted to add Join(const char* sep) method to StrVec. A wise programmer makes it a stand-alone function: Join(const StrVec& v, const char* sep). This is enabled by making everything in a class public. If you limit visibility you then have to use friendto allow Join() function access what it needs. Another example of “solution” to self-inflicted problems. Minimize #ifdef #ifdef is problematic because it creates code paths that I don’t always build. I provide arm64, intel 32-bit and 64-bit builds but typically only develop with 64-bit intel build. Every #ifdef that branches on architecture introduces potential for compilation error which I’ll only know about when my daily ci build fails. Consider 2 possible implementations of IsProcess64Bit(): Bad: bool IsProcess64Bit() { #ifdef _WIN64 return true; #else return false; #endif } Good: bool IsProcess64Bit() { return sizeof(uintptr_t) == 8; } The bad version has a bug: it was correct when I was only doing intel builds but became buggy when I added arm64 builds. This conflicts with the goal of smallest possible size but it’s worth it. Stress testing SumatraPDF supports a lot of very complex document and image formats. Complex format require complex code that is likely to have bugs. I also have lots of files in those formats. I’ve added stress testing functionality where I point SumatraPDF to a folder with files and tell it to render all of them. For greater coverage, I also simulate some of the possible UI actions users can take like searching, switching view modes etc. Crash reporting I wrote about it in depth. Heavy use of CrashIf() C/C++ programmers are familiar with assert() macro. CrashIf() is my version of that, tailored to my needs. The purpose of assert / CrashIf is to add checks to detect incorrect use of APIs or invalid states in the program. For example, if the code tries to access an element of an array at an invalid index (negative or larger than size of the array), it indicates a bug in the program. I want to be notified about such bugs both when I test SumatraPDF and when it runs on user’s computers. As the name implies, it’ll crash (by de-referencing null pointer) and therefore generate a crash report. It’s enabled in debug and pre-release builds but not in release builds. Release builds have many, many users so I worry about too many crash reports. premake to generate Visual Studio solution Visual Studio uses XML files as a list of files in the project and build format. The format is impossible to work with in a text editor so you have no choice but to use Visual Studio to edit the project / solution. To add a new file: find the right UI element, click here, click there, pick a file using file picker, click again. To change a compilation setting of a project or a file? Find the right UI element, click here, click there, type this, confirm that. You accidentally changed compilation settings of 1 file out of a hundred? Good luck figuring out which one. Go over all files in UI one by one. In other words: managing project files using Visual Studio UI is a nightmare. Premake is a solution. It’s a meta-build system. You define your build using lua scripts, which look like test configuration files. Premake then can generate Visual Studio projects, XCode project, makefiles etc. That’s the meta part. It was truly a life server on project with lots of files (SumatraPDF’s own are over 300, many times more for third party libraries). Using /analyze and cppcheck cppcheck and /analyze flag in cl.exe are tools to find bugs in C++ code via static analysis. They are like a C++ compiler but instead of generating code, they analyze control flow in a program to find potential programs. It’s a cheap way to find some bugs, so there’s no excuse to not run them from time to time on your code. Using asan builds Address Sanitizer (asan) is a compiler flag /fsanitize=address that instruments the code with checks for common memory-related bugs like using an object after freeing it, over-writing values on the stack, freeing an object twice, writing past allocated memory. The downside of this instrumentation is that the code is much slower due to overhead of instrumentation. I’ve created a project for release build with asan and run it occasionally, especially in stress test. Write for the debugger Programmers love to code golf i.e. put us much code on one line as possible. As if lines of code were expensive. Many would write: Bad: // ... return (char*)(start + offset); I write: Good: // ... char* s = (char*)(start + offset); return s; Why? Imagine you’re in a debugger stepping through a debug build of your code. The second version makes it trivial to set a breakpoint at return s line and look at the value of s. The first doesn’t. I don’t optimize for smallest number of lines of code but for how easy it is to inspect the state of the program in the debugger. In practice it means that I intentionally create intermediary variables like s in the example above. Do it yourself standard library I’m not using STL. Yes, I wrote my own string and vector class. There are several reasons for that. Historical reason When I started SumatraPDF over 15 years ago STL was crappy. Bad APIs Today STL is still crappy. STL implementations improved greatly but the APIs still suck. There’s no API to insert something in the middle of a string or a vector. I understand the intent of separation of data structures and algorithms but I’m a pragmatist and to my pragmatist eyes v.insert (v.begin(), myarray, myarray+3); is just stupid compared to v.inert(3, el). Code bloat STL is bloated. Heavy use of templates leads to lots of generated code i.e. surprisingly large binaries for supposedly low-level language. That bloat is invisible i.e. you won’t know unless you inspect generated binaries, which no one does. The bloat is out of my control. Even if I notice, I can’t fix STL classes. All I can do is to write my non-bloaty alternative, which is what I did. Slow compilation times Compilation of C code is not fast but it feels zippy compared to compilation of C++ code. Heavy use of templates is big part of it. STL implementations are over-templetized and need to provide all the C++ support code (operators, iterators etc.). As a pragmatist, I only implement the absolute minimum functionality I use in my code. I minimize use of templates. For example Str and WStr could be a single template but are 2 implementations. I don’t understand C++ I understand the subset of C++ I use but the whole of C++ is impossibly complicated. For example I’ve read a bunch about std::move() and I’m not confident I know how to use it correctly and that’s just one of many complicated things in C++. C++ is too subtle and I don’t want my code to be a puzzle. Possibility of optimized implementations I wrote a StrVec class that is optimized for storing vector of strings. It’s more efficient than std::vector<std::string> by a large margin and I use it extensively. Temporary allocator and pool allocators I use temporary allocators heavily. They make the code faster and smaller. Technically STL has support for non-standard allocators but the API is so bad that I would rather not. My temporary allocator and pool allocators are very small and simple and I can add support for them only when beneficial. Minimize unsigned int STL and standard C library like to use size_t and other unsigned integers. I think it was a mistake. Go shows that you can just use int. Having two types leads to cast-apalooza. I don’t like visual noise in my code. Unsigned are also more dangerous. When you substract you can end up with a bigger value. Indexing from end is subtle, for (int i = n; i >= 0; i--) is buggy because i >= 0 is always true for unsigned. Sadly I only realized this recently so there’s a lot of code still to refactor to change use of size_t to int. Mostly raw pointers No std::unique_ptr for me. Warnings are errors C++ makes a distinction between compilation errors and compilation warnings. I don’t like sloppy code and polluting build output with warning messages so for my own code I use a compiler flag that turns warnings into errors, which forces me to fix the warnings.