Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
14
"The Unexotic Underclass" "Let’s pretend, for a moment, that you are a 22-year-old college student in Kampala, Uganda. You’re sitting in class and discreetly scrolling through Facebook on your phone. You see that there has been another mass shooting in America, this time in a place called San Bernardino. You’ve never heard of it. You’ve never been to America. But you’ve certainly heard a lot about gun violence in the U.S. It seems like a new mass shooting happens every week.You wonder if you could go there and get stricter gun legislation passed. You’d be a hero to the American people, a problem-solver, a lifesaver. How hard could it be? Maybe there’s a fellowship for high-minded people like you to go to America after college and train as social entrepreneurs. You could start the nonprofit organization that ends mass shootings, maybe even win a humanitarian award by the time you are 30." medium.com/the-development-set/the-reductive-seduction-of-other-people-s-problems-3c07b307732d
over a year ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from David Crawshaw

How I program with LLMs

How I program with LLMs 2025-01-06 This document is a summary of my personal experiences using generative models while programming over the past year. It has not been a passive process. I have intentionally sought ways to use LLMs while programming to learn about them. The result has been that I now regularly use LLMs while working and I consider their benefits net-positive on my productivity. (My attempts to go back to programming without them are unpleasant.) Along the way I have found oft-repeated steps that can be automated, and a few of us are working on building those into a tool specifically for Go programming: . It’s very early but so far the experience has been positive.sketch.dev I am typically curious about new technology. It took very little experimentation with LLMs for me to want to see if I could extract practical value. There is an allure to a technology that can (at least some of the time) craft sophisticated responses to challenging questions. It is even more exciting to watch a computer attempt to write a piece of a program as requested, and make solid progress. The only technological shift I have experienced that feels similar to me happened in 1995, when we first configured our LAN with a usable default route. We replaced the shared computer in the other room running Trumpet Winsock with a machine that could route a dialup connection, and all at once I had The Internet on tap. Having the internet all the time was astonishing, and felt like the future. Probably far more to me in that moment than to many who had been on the internet longer at universities, because I was immediately dropped into high internet technology: web browsers, JPEGs, and millions of people. Access to a powerful LLM feels like that. So I followed this curiosity, to see if a tool that can generate something mostly not wrong most of the time could be a net benefit in my daily work. The answer appears to be yes, generative models are useful for me when I program. It has not been easy to get to this point. My underlying fascination with the new technology is the only way I have managed to figure it out, so I am sympathetic when other engineers claim LLMs are “useless.” But as I have been asked more than once how I can possibly use them effectively, this post is my attempt to describe what I have found so far. There are three ways I use LLMs in my day-to-day programming: As this is about the of programming, this has been a fundamentally qualitative process that is hard to write about with quantitative rigor. The closest I will get to data is to say: it appears from my records that for every two hours of programming I do now, I accept more than 10 autocomplete suggestions, use LLM for a search-like task once, and program in a chat session once.practice The rest of this is about extracting value from chat-driven programming. Let me try to motivate this for the skeptical. A lot of the value I personally get out of chat-driven programming is I reach a point in the day when I know what needs to be written, I can describe it, but I don’t have the energy to create a new file, start typing, then start looking up the libraries I need. (I’m an early-morning person, so this is usually any time after 11am for me, though it can also be any time I context-switch into a different language/framework/etc.) LLMs perform that service for me in programming. They give me a first draft, with some good ideas, with several of the dependencies I need, and often some mistakes. Often, .I find fixing those mistakes is a lot easier than starting from scratch This means chat-based programming may not be for you. I am doing a particular kind of programming, product development, which could be roughly described as trying to bring programs to a user through a robust interface. That means I am building a lot, throwing away a lot, and bouncing around between environments. Some days I mostly write typescript, some days mostly Go. I spent a week in a C++ codebase last month exploring an idea, and just had an opportunity to learn the HTTP server-side events format. I am all over the place, constantly forgetting and relearning. If you spend more time proving your optimization of a cryptographic algorithm is not vulnerable to timing attacks than you do writing the code, I don’t think any of my observations here are going to be useful to you. Give an LLM a specific objective and all the background material it needs so it can craft a well-contained code review packet and expect it to adjust as you question it. There are two major elements to this: The ideal task for an LLM is one where it needs to use a lot of common libraries (more than a human can remember, so it is doing a lot of small-scale research for you), working to an interface you designed or produces a small interface you can verify as sensible quickly, and it can write readable tests. Sometimes this means choosing the library for it, if you want something obscure (though with open source code LLMs are quite good at this). You always need to pass an LLM’s code through a compiler and run the tests before spending time reading it. They all produce code that doesn’t compile sometimes. (Always making errors I find surprisingly human, every time I see one I think, there but for the grace of God go I.) The better LLMs are very good at recovering from their mistakes, often all they need is for you to paste the compiler error or test failure into the chat and they fix the code. There are vague tradeoffs we make every day around the cost of writing, the cost of reading, and the cost of refactoring code. Let’s take Go package boundaries as an example. The standard library has a package “net/http” that contains some fundamental types for dealing with wire format encoding, MIME types, etc. It contains an HTTP client, and an HTTP server. Should it be one package, or several? Reasonable people can disagree! So much so, I do not know if there is a correct answer today. What we have works, after 15 years of use it is still not clear to me that some other package arrangement would work better. Advantages of a larger package include: centralized documentation for callers, easier initial writing, easier refactoring, easier sharing of helper code without devising robust interfaces for them (which often involves pulling the fundamental types of a package out into yet another leaf package filled with types). The disadvantages include the package being harder to read because many different things are going on (try reading the net/http client implementation without tripping up and finding yourself in the server code for a few minutes), or it being harder to use because there is too much going on in it. For example I have a codebase that uses a C library in some fundamental types, but parts of the codebase need to be in a binary widely distributed to many platforms that does not technically need the C library, so have more packages than you might expect in the codebase isolating the use of the C library to avoid cgo in the multi-platform binary. There are no right answers here, instead we are trading off different types of work that an engineer will have to do (upfront and ongoing). LLMs influence those tradeoffs: Let me work an example to combine a few of the discussed ideas: Write a reservoir sampler for the quartiles of floats. First off, package structure. Were I doing this before LLMs, I would have chosen to have some sort of streamstat package that contained several algorithms, maybe one per file. This does not seem to be a unique opinion, here is an open source package following that model. Now, I want just this one algorithm in its own package. Other variants or related algorithms can have their own package.quantile Next up, what do we get from an LLM. The first pass is not bad. That prompt, with some details about wanting it in Go got me quartile_sampler.go: The core interface is good too: Great! There are also tests. An aside: this may be the place to stop. Sometimes I use LLM codegen as a form of specialized search. E.g. I’m curious about reservoir sampling, but want to see how the algorithm would be applied under some surprising constraint, for example time-windowed sampling. Instead of doing a literature search I might amend my prompt for an implementation that tracks freshness. (I could also ask it to include references to the literature in the comments, which I could manually check to see if it’s making things up or if there’s some solid research to work from.) Often I spend 60 seconds reading some generated code, see an obvious trick I hadn’t thought of, then throw it away and start over. Now I know the trick is possible. This is why it is so hard to attribute value generated by LLMs. Yes sometimes it makes bad code, gets stuck in a rut, makes up something impossible (it hallucinated a part of the monaco API I wish existed the other day) and wastes my time. It can also save me hours by pointing out something relevant I don’t know. Back to the code. Fascinatingly, the initial code produced didn’t compile. In the middle of the Quartiles implementation there was the line: Which is a fine line, sorted is a slice defined a few lines earlier. But the value is never used so gopls (and the Go compiler if you run go build) immediately says: This is a very easy fix. If I paste the error back into the LLM it will correct it. Though in this case, as I’m reading the code, it’s quite clear to me that I can just delete the line myself, so I do. Now the tests. I got what I expected. In quartile_sampler_test.go: Exactly the sort of thing I would write! I would run some cases through another implementation to generate expected outputs and copy them into a test like this. But there are two issues with this. The first is the LLM did run these numbers through another implementation. (To the best of my knowledge. When using a sophisticated LLM service, it is hard to say for sure what is happening behind the scenes.) It made them up, and LLMs have a reputation for being weak at arithmetic. So this sort of test, while reasonable for a human to write because we base it on the output of another tool, or if we are particularly old-school do some arithmetic ourselves, is not great from an LLM.not The second issue with this is we can do better. I am happy we now live in a time when programmers write their own tests, but we do not hold ourselves to the same standards with tests as we do with production code. That is a reasonable tradeoff, there are only so many hours in the day. But what LLMs lack in arithmetical prowess, they make up for in enthusiasm. Let’s ask for an even better test. This got us some new test code: The original test from above has been reworked to to use checkQuartiles and we have something new: This is fun, because it's wrong. My running tool immediately says:gopls Pasting that error back into the LLM gets it to regenerate the fuzz test such that it is built around a function that uses to extract floats from the data slice. Interactions like this point us towards automating the feedback from tools: all it needed was the obvious error message to make solid progress towards something useful. I was not needed.func(t *testing.T, data []byte)math.Float64frombits Doing a quick survey of the last few weeks of my LLM chat history shows (which as I mentioned earlier, is not a proper quantitative analysis by any measure) that more than 80% of the time there is a tooling error, the LLM can make useful progress without me adding any insight. About half the time it can completely resolve the issue without me saying anything of note, I am just acting as the messenger. There was a programming movement some 25 years ago focused around the principle “don’t repeat yourself.” As is so often the case with short snappy principles taught to undergrads, it got taken too far. There is a lot of cost associated with abstracting out a piece of code so it can be reused, it requires creating intermediate abstractions that must be learned, and it requires adding features to the factored out code to make it maximally useful to the maximum number of people, which means we depend on libraries filled with useless distracting features. The past 10-15 years has seen a far more tempered approach to writing code, with many programmers understanding it is better to reimplement a concept if the cost of sharing the implementation is higher than the cost of implementing and maintaining separate code. It is far less common for me to write on a code review “this isn’t worth it, separate the implementations.” (Which is fortunate, because people really don’t want to hear things like that after they have done all the work.) Programmers are getting better at tradeoffs. What we have now is a world where the tradeoffs have shifted. It is now easier to write more comprehensive tests. You can have the LLM write the fuzz test implementation you want but didn’t have the hours to build properly. You can spend a lot more time writing tests to be readable, because the LLM is not sitting there constantly thinking “it would be better for the company if I went and picked another bug off the issue tracker than doing this.” So the tradeoff shifts in favor of having more specialized implementations. The place where I expect this to be most visible is language-specific . Every major company API comes with dozens of these, usually low quality, wrappers written by people who aren’t actually using their implementations for a specific goal, instead are trying to capture every nook and cranny of an API in a large and complex interface. Even when it is done well, I have found it easier to go to the REST documentation (usually a set of curl commands), and implement a language wrapper for the 1% of the API I actually care about. It cuts down the amount of the API I need to learn upfront, and it cuts down how much future programmers (myself) reading the code need to understand.REST API wrappers For example, as part of my recent work on sketch.dev I implemented a Gemini API wrapper in Go. Even though the in Go has been carefully handcrafted by people who know the language well and clearly care, there is a lot to read to understand it:official wrapper My simplistic initial wrapper was 200 lines of code total, one method, three types. Reading the entire implementation is 20% of the work of reading the documentation of the official package, and if you decide to try digging into its implementation you will discover that it is a wrapper around another largely code-generated implementation with protos and grpc and the works. All I want is to cURL and parse a JSON object. There obviously comes a point in a project, where Gemini is the foundation of the entire app, where nearly every feature is used, where building on gRPC aligns well with the telemetry system elsewhere in your organization, where you should use the large official wrapper. But most of the time it is so much more time consuming, both upfront and ongoing, to do so given we almost always want only some wafer-thin sliver of whatever API we need to use today, that custom clients, largely written by a GPU, are far more effective for getting work done. So I foresee a world with far more specialized code, with fewer generalized packages, and more readable tests. Reusable code will continue to thrive around small robust interfaces and otherwise will be pulled apart into specialized code. Depending how well this is done, it will lead to either better software or worse software. I would expect both, with a long-term trend towards better software by the metrics that matter. As a programmer my instinct is to make computers do work for me. It is a lot of work getting value out of LLMs, how can a computer do it? I believe the key to solving a problem is not to overgeneralize. Solve a particular problem and then expand slowly. So instead of building a general-purpose UI for chat programming that is just as good at COBOL as it is for Haskell, we want to focus on one particular environment. The bulk of my programming is in Go, and so what I want is easy to imagine for a Go programmer: A few of us have built an early prototype of this: .sketch.dev The goal is not a “Web IDE” but rather to challenge the notion that chat-based programming even belongs in what is traditionally called an IDE. IDEs are collections of tools arranged for people. It is a delicate environment where I know what is going on. While an LLM is ultimately a developer tool, it is one that needs its own IDE to get the feedback it needs to operate effectively.I do not want an LLM spewing its first draft all over my current branch. Put another way: we didn’t embed goimports into sketch for it to be used by humans, but to get Go code closer to compiling using automatic signals, so that the compiler can provide better error feedback to the LLM driving it. It might be better to think of sketch.dev as a “Go IDE for LLMs”. This is all very recent work with a lot left to do, e.g. git integration so we can load existing packages for editing and drop the results on a branch. Better test feedback. More console control. (If the answer is to run sed, run sed. Be you the human or the LLM.) We are still exploring, but are convinced that focusing an environment for a particular kind of programming will give us better results than the generalized tool. Background Overview Why use chat at all? Chat-based LLMs do best with exam-style questions Extra code structure is much cheaper An example Where are we going? Better tests, maybe even less DRY Automating these observations: sketch.dev . This makes me more productive by doing a lot of the more-obvious typing for me. It turns out the current state of the art can be improved on here, but that’s a conversation for another day. Even the standard products you can get off the shelf are better for me than nothing. I convinced myself of that by trying to give them up. I could not go a week without getting frustrated by how much mundane typing I had to do before having a FIM model. This is the place to experiment first. Autocomplete . If I have a question about a complex environment, say “how do I make a button transparent in CSS” I will get a far better answer asking any consumer-based LLM, o1, sonnet 3.5, etc, than I do using an old fashioned web search engine and trying to parse the details out of whatever page I land on. (Sometimes the LLM is wrong. So are people. The other day I put my shoe on my head and asked my two year old what she thought of my hat. She dealt with it and gave me a proper scolding. I can deal with LLMs being wrong sometimes too.) Search . This is the hardest of the three. This is where I get the most value of LLMs, but also the one that bothers me the most. It involves learning a lot and adjusting how you program, and on principle I don’t like that. It requires at least as much messing about to get value out of LLM chat as it does to learn to use a slide rule, with the added annoyance that it is a non-deterministic service that is regularly changing its behavior and user interface. Indeed, the long-term goal in my work is to replace the need for chat-driven programming, to bring the power of these models to a developer in a way that is not so off-putting. But as of now I am dedicated to approaching the problem incrementally, which means figuring out how to do best with what we have and improve it.Chat-driven programming Avoid creating a situation with so much complexity and ambiguity that the LLM gets confused and produces bad results. This is why I have had little success with chat inside my IDE. My workspace is often messy, the repository I am working on is by default too large, it is filled with distractions. One thing humans appear to be much better than LLMs at (as of January 2025) is not getting distracted. That is why I still use an LLM via a web browser, because I want a blank slate on which to craft a well-contained request. Ask for work that is easy to verify. Your job as a programmer using an LLM is to read the code it produces, think about it, and decide if the work is good. You can ask an LLM to do things you would never ask a human to do. “Rewrite all of your new tests introducing an <intermediate concept designed to make the tests easier to read>” is an appalling thing to ask a human, you’re going to have days of tense back-and-forth about whether the cost of the work is worth the benefit. An LLM will do it in 60 seconds and not make you fight to get it done. Take advantage of the fact that .redoing work is extremely cheap As LLMs do better with exam-style questions, more and smaller packages make it easier to give a complete and yet isolated context for a piece of work. This is true for humans too, which is why we use packages at all, but we trade off package size against the extra typing/plumbing/filing to make more readable code. With an LLM both doing and benefiting from a big chunk of that extra work, the tradeoff shifts. (As a bonus, we humans get more readable code!) Smaller and more numerous packages can be compiled and tested independently of unrelated code. This is helpful for the LLM dev cycle as it means changes can be compiled and tested before other dependent packages are refactored, and the package has a simpler test environment. something like the Go playground, built around editing a package and tests with a chat interface onto editable code a little UNIX env where we can run go get and go test goimports integration gopls integration automatic model feedback: on model edit run go get, go build, go test, feedback missing packages, compiler errors, test failures to the model to try and get them fixed automatically // QuartileSampler maintains a reservoir sample to estimate quartiles of a stream // of float64 values. It uses reservoir sampling to maintain a representative // sample when processing large streams of data. type QuartileSampler struct { reservoir []float64 seen int maxSize int rng *rand.Rand } // NewQuartileSampler creates a new sampler that maintains up to maxSize samples. // A larger maxSize provides more accurate estimates but uses more memory. func NewQuartileSampler(maxSize int) *QuartileSampler { … } // Add adds a new value to the sampler. func (qs *QuartileSampler) Add(value float64) { … } // Quartiles returns the estimated 25th, 50th (median), and 75th percentiles // of the data seen so far. Returns (0,0,0) if no data has been added. func (qs *QuartileSampler) Quartiles() (q1, median, q3 float64) { if len(qs.reservoir) == 0 { return 0, 0, 0 } // Make a copy to avoid modifying the reservoir sorted := make([]float64, len(qs.reservoir)) copy(sorted, qs.reservoir) slices.Sort(sorted) n := len(sorted) q1 = percentile(sorted, 0.25) median = percentile(sorted, 0.50) q3 = percentile(sorted, 0.75) return q1, median, q3 } n := len(sorted) declared and not used: n func TestQuartileSampler(t *testing.T) { tests := []struct { name string data []float64 wantQ1 float64 wantMed float64 wantQ3 float64 epsilon float64 // allowed error for floating point comparison }{ { name: "basic sequence", data: []float64{1, 2, 3, 4, 5, 6, 7}, wantQ1: 2, wantMed: 4, wantQ3: 6, epsilon: 0.1, }, … } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { qs := NewQuartileSampler(100) // Use large reservoir for accurate testing for _, v := range tt.data { qs.Add(v) } q1, med, q3 := qs.Quartiles() if math.Abs(q1-tt.wantQ1) > tt.epsilon { t.Errorf("Q1 = %v, want %v (±%v)", q1, tt.wantQ1, tt.epsilon) } if math.Abs(med-tt.wantMed) > tt.epsilon { t.Errorf("Median = %v, want %v (±%v)", med, tt.wantMed, tt.epsilon) } if math.Abs(q3-tt.wantQ3) > tt.epsilon { t.Errorf("Q3 = %v, want %v (±%v)", q3, tt.wantQ3, tt.epsilon) } }) } } // referenceQuartiles calculates the exact quartiles for a slice of float64 values // using linear interpolation, matching the behavior expected from the sampler. func referenceQuartiles(data []float64) (q1, median, q3 float64) { … } // compareQuartiles checks if two sets of quartiles are within epsilon of each other. // Returns true if they match within the tolerance, false otherwise. func compareQuartiles(q1a, meda, q3a, q1b, medb, q3b, epsilon float64) bool { … } // checkQuartiles is a test helper that compares sampler output against the reference // implementation and reports any differences. func checkQuartiles(t *testing.T, data []float64, epsilon float64) { t.Helper() // Get reference values wantQ1, wantMed, wantQ3 := referenceQuartiles(data) // Get sampler values using a large reservoir for accuracy qs := NewQuartileSampler(1000) for _, v := range data { qs.Add(v) } gotQ1, gotMed, gotQ3 := qs.Quartiles() if !compareQuartiles(gotQ1, gotMed, gotQ3, wantQ1, wantMed, wantQ3, epsilon) { t.Errorf("Quartiles mismatch:\ngot (q1=%v, med=%v, q3=%v)\nwant (q1=%v, med=%v, q3=%v)\nepsilon=%v", gotQ1, gotMed, gotQ3, wantQ1, wantMed, wantQ3, epsilon) } } func FuzzQuartileSampler(f *testing.F) { // Add some seed corpus f.Add([]float64{1, 2, 3, 4, 5}) f.Fuzz(func(t *testing.T, data []float64) { // Use a larger epsilon for fuzzing since we might get more extreme values checkQuartiles(t, data, 0.2) }) } fuzzing arguments can only have the following types: string, bool, float32, float64, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, []byte $ go doc -all genai | wc -l 1155 In the tests, implement the simplest, most readable version of the standard code for quartiles over a fixed set of known values in a slice. Then pass the test cases through the standard code and the reservoir sampler and confirm they are within an epsilon of each other. Structure the comparison code such that it can be used in a fuzz test too.

6 months ago 24 votes
jsonfile: a quick hack for tinkering

jsonfile: a quick hack for tinkering Consider your requirements! A reference implementation A final thought 2024-02-06 The year is 2024. I am on vacation and dream up a couple of toy programs I would like to build. It has been a few years since I built a standalone toy, I have . So instead of actually building any of the toys I think of, I spend my time researching if anything has changed since the last time I did it. Should pick up new tools or techniques?been busy It turns out lots of things have changed! There’s some great stuff out there, including decent quorum-write regional cloud databases now. Oh and the ability to have a fascinating hour-long novel conversation with transistors. But things are still awkward for small fast tinkering. Going back in time, I struggled constantly rewriting the database for the prototype for Tailscale, so I ended up writing my in-memory objects out as . It went far further than I planned. Somewhere in the intervening years I convinced myself it must have been a bad idea even for toys, given all the pain migrating away from it caused. But now that I find myself in an empty text editor wanting to write a little web server, I am not so sure. The migration was painful, and a lot of that pain was born by others (which is unfortunate, I find handing a mess to someone else deeply unpleasant). Much of that pain came from the brittle design of the caching layers on top (also my doing), which came from not moving to an SQL system soon enough.a JSON file I suspect, considering the process retrospect, a great deal of that pain can be avoided by committing to migrating directly to an SQL system the moment you need an index. You can pay down a lot of exploratory design work in a prototype before you need an index, which n is small, full scans are fine. But you don’t make it very far into production before one of your values of n crosses something around a thousand and you long for an index. With a clear exit strategy for avoiding big messes, that means the JSON file as database is still a valid technique for prototyping. And having spent a couple of days remembering what a misery it is to write a unit test for software that uses postgresql (mocks? docker?? for a database program I first ran on a computer with less power than my 2024 wrist watch?) and struggling figuring out how to make my cgo sqlite cross-compile to Windows, I’m firmly back to thinking a JSON file can be a perfectly adequate database for a 200-line toy. Before you jump into this and discover it won’t work, or just as bad, dismiss the small and unscaling as always a bad idea, consider the requirements of your software. Using a JSON file as a database means your software: Programming is the art of tradeoffs. You have to decide what matters and what does not. Some of those decisions need to be made early, usually with imperfect information. You may very well need a powerful SQL DBMS from the moment you start programming, depending on the kind of program you’re writing! An implementation of jsonfile (which Brad called JSONMutexDB, which is cooler because it has an x in it, but requires more typing) can fit in about 70 lines of Go. But there are a couple of lessons we ran into in the early days of Tailscale that can be paid down relatively easily, growing the implementation to 85 lines. (More with comments!) I think it’s worth describing the interesting things we ran into, both in code and here. You can find the implementation of jsonfile here: . The interface is:https://github.com/crawshaw/jsonfile/blob/main/jsonfile.go There is some experience behind this design. In no particular order: One of the early pain points in the transition was figuring out the equivalent of when to , , and . The first version exposed the mutex directly (which was later converted into a RWMutex).BEGINCOMMITROLLBACK There is no advantage to paying this transition cost later. It is easy to box up read/write transactions with a callback. This API does that, and provides a great point to include other safety mechanisms. There are two forms of this. The first is if the write fn fails half-way through, having edited the db object in some way. To avoid this, the implementation first creates an entirely new copy of the DB before applying the edit, so the entire change set can be thrown away on error. Yes, this is inefficient. No, it doesn’t matter. Inefficiency in this design is dominated by the I/O required to write the entire database on every edit. If you are concerned about the duplicate-on-write cost, you are not modeling I/O cost appropriately (which is important, because if I/O matters, switch to SQL). The second is from a full disk. The easy to write a file in Go is to call os.WriteFile, which the first implementation did. But that means: A failure can occur in any of those system calls, resulting in a corrupt DB. So this implementation creates a new file, loads the DB into it, and when that has all succeeded, uses . It is not a panacea, our operating systems do not make all the promises we wish they would about rename. But it is much better than the default.rename(2) A nasty issue I have run into twice is aliasing memory. This involves doing something like: An intermediate version of this code kept the previous database file on write. But there’s an easier and even more robust strategy: never rename the file back to the original. Always create a new file, . On starting, load the most recent file. Then when your data is worth backing up (if ever), have a separate program prune down the number of files and send them somewhere robust.Backups.mydb.json.<timestamp> Not in this implementation but you may want to consider, is removing the risk of a Read function editing memory. You can do that with View* types generated by the tool. It’s neat, but more than quadruples the complexity of JSONFileDB, complicates the build system, and initially isn’t very important in the sorts of programs I write. I have found several memory aliasing bugs in all the code I’ve written on top of a JSON file, but have yet to accidentally write when reading. Still, for large code bases Views are quite pleasant and well-worth considering about the point when a project should move to a real SQL.Constant memory.viewer There is some room for performance improvements too (using cloner instead of unmarshalling a fresh copy of the data for writing), though I must point out again that needing more performance is a good sign it is time to move on to SQLite, or something bigger. It’s a tiny library. Copy and edit as needed. It is an all-new implementation so I will be fixing bugs as I find them. (As a bonus: this was my first time using a Go generic! 👴 It went fine. Parametric polymorphism is ok.) Why go out of my way to devise an inadequate replacement for a database? Most projects fail before they start. They fail because the is too high. Our dreams are big and usually too much, as dreams should be.activation energy But software is not building a house or traveling the world. You can realize a dream with the tools you have on you now, in a few spare hours. This is the great joy of it, you are free from physical and economic constraint. If you start. Be willing to compromise almost everything to start. Doesn’t have a lot of data. Keep it to a few megabytes. The data structure is boring enough not to require indexes. You don’t need something interesting like full-text search. You do plenty of reads, but writes are infrequent. Ideally no more than one every few seconds. Truncating the database file Making multiple system calls to .write(2) Calling .close(2) type JSONFile[Data any] struct { … } func New[Data any](path string) (*JSONFile[Data], error) func Load[Data any](path string) (*JSONFile[Data], error) func (p *JSONFile[Data]) Read(fn func(data *Data)) func (p *JSONFile[Data]) Write(fn func(*Data) error) error list := []int{1, 2, 3} db.Write(func() { db.List = list }) list[0] = 10 // editing the database! Transactions Database corruption through partial writes Memory aliasing Some changes you may want to consider

a year ago 20 votes
new year, same plan

new year, same plan 2022-12-31 Some months ago, the bill from GCE for hosting this blog jumped from nearly nothing to far too much for what it is, so I moved provider and needed to write a blog post to test it all. I could have figured out why my current provider hiked the price. Presumably I was Holding It Wrong and with just a few grip adjustments I could get the price dropped. But if someone mysteriously starts charging you more money, and there are other people who offer the same service, why would you stay? This has not been a particularly easy year, for a variety of reasons. But here I am at the end of it, and beyond a few painful mistakes that in retrospect I did not have enough information to get right, I made mostly the same decisions I would again. There were a handful of truly wonderful moments. So the plan for 2023 is the same: keep the kids intact, and make programming more fun. There is also the question of Twitter. It took me a few years to develop the skin to handle the generally unpleasant environment. (I can certainly see why almost no old Twitter employees used their product.) The experience recently has degraded, there are still plenty of funny tweets, but far less moments of interesting content. Here is a recent exception, but it is notable because it's the first time in weeks I learned anything from twitter: . I now find more new ideas hiding in HN comments than on Twitter.https://twitter.com/lrocket/status/1608883621980704768 Many people I know have sort-of moved to Mastodon, but it has a pretty horrible UX that is just enough work that I, on the whole, don't enjoy it much. And the fascinating insights don't seem to be there yet, but I'm still reading and waiting. On the writing side, it might be a good idea to lower the standards (and length) of my blog posts to replace writing tweets. But maybe there isn't much value in me writing short notes anyway, are my contributions as fascinating as the ones I used to sift through Twitter to read? Not really. So maybe the answer is to give up the format entirely. That might be something new for 2023. Here is something to think about for the new year: http://www.shoppbs.pbs.org/now/transcript/transcriptNOW140_full.html DAVID BRANCACCIO: There's a little sweet moment, I've got to say, in a very intense book– your latest– in which you're heading out the door and your wife says what are you doing? I think you say– I'm getting– I'm going to buy an envelope. KURT VONNEGUT: Yeah. DAVID BRANCACCIO: What happens then? KURT VONNEGUT: Oh, she says well, you're not a poor man. You know, why don't you go online and buy a hundred envelopes and put them in the closet? And so I pretend not to hear her. And go out to get an envelope because I'm going to have a hell of a good time in the process of buying one envelope. I meet a lot of people. And, see some great looking babes. And a fire engine goes by. And I give them the thumbs up. And, and ask a woman what kind of dog that is. And, and I don't know. The moral of the story is, is we're here on Earth to fart around. And, of course, the computers will do us out of that. And, what the computer people don't realize, or they don't care, is we're dancing animals. You know, we love to move around. And, we're not supposed to dance at all anymore.

over a year ago 19 votes
log4j: between a rock and a hard place

log4j: between a rock and a hard place 2021-12-11 What does backwards compatibility mean to me? Backwards compatibility should not have forced log4j to keep LDAP/JNDI URLs The other side of compatibility: being cautious adding features There is more than enough written on the mechanics of and mitigations for the recent . On prevention, this is the most interesting widely-reshared I have seen:severe RCE in log4jinsight This is making the rounds because highly-profitable companies are using infrastructure they do not pay for. That is a worthy topic, but not the most interesting thing in this particular case because it would not clearly have contributed to preventing this bug. It is the second statement in this tweet that is worthy of attention: the long ago, but could not because of the backwards compatibility promises they are held to.maintainers of log4j would have loved to remove this bad feature I am often heard to say that I love backwards compatibility, and that it is underrated. But what exactly do I mean? I don't mean that whenever I upgrade a dependency, I expect zero side effects. If a library function gets two times faster in an upgrade, that is a change in behavior that might break my software! But obviously the exact timings of functions can change between versions. In some extreme cases I need libraries to promise the algorithmic complexity of run time or memory usage, where I am providing extremely large inputs, or need constant-time algorithms to avoid timing attacks. But I don't need that from a logging library. So let me back up and describe what is important. The ideal version of this is I run my package manager's upgrade command, execute the tests, commit the output, and not think about it any more. This means the API/ABI stays similar enough that the compiler won't break, the behavior of the library routines is similar enough the tests will pass, and no other constraints, such as total binary size limits, are exceeded. This is impossible in the general case. The only way to achieve it is to not make any changes at all. When we write down a promise, we leave lots of definitional holes in the promise. E.g. take the (generally excellent) :Go compatibility promise Here "correctly" means according to the Go language specification and the API documentation. The spec and the docs do not cover run time, memory use, or binary size. The next version of Go can be 10x slower and be compatible! But I can assure you if that were the case I would fail my goal of not spending much time upgrading a dependency. But the Go team know this, and work to the spirit of their promise. Very occasionally they break things, for security reasons, and when they do I have to spend time upgrading a dependency for a really good reason: my program needs it.very If I want my program to work correctly I should write tests for all the behaviors I care about. But like all programmers, I am short on hours in the day to do all that needs doing, and never have enough tests. So whenever a change in behavior happens in an upstream library that my tests don't catch but makes it into production, my instinct is to blame upstream. This is of course unfair, the burden for releasing good programs is borne by the person pressing the release button. But it is an expression of a programming social contract that has taken hold: a good software project tries to break downstream as little as possible, and when we do break downstream, we should do our best to make the breakage obvious and easy to fix. No compatibility promise I have seen covers the spirit of minimizing breakage and moving it to the right part of the process. As far as I can tell, engineers aren't taught this in school, and many have never heard the concept articulated. So much of best practice in releasing libraries is learned on the job and not well communicated (yet). Good upstream dependencies are maintained by people who have figured this out the hard way and do their best by their users. As a user, it is extremely hard to know what kind of library you are getting when you first consider a dependency, unless it is a very old and well established project. This is where software goes wrong the most for me. I want, year after year, to come back to a tool and be able to apply the knowledge I acquired the last time I used it, to new things I learn, and build on it. I want to hone my craft by growing a deep understanding of the tools I use. Some new features are additive. If I buy a new for framing, and it has a notch on it my old one didn't that I can use as a shortcut in marking up a beam, its presence does not invalidate my old knowledge. If the new interior notch replaces a marking that was on the outside of the square, then when I go to find my trusty marking I remember from years ago, and it's missing, I need to stop and figure out a new way to solve this old problem. Maybe I will notice the new feature, or, more likely, I'll pull out the tape measure measure I know how to use and find my mark that (slower) way. If someone who knew what they were doing saw me they could correct me! But like programming, I'm usually making a mess with wood alone in a few spare hours on a Saturday.speed square When software "upgrades" invalidate my old knowledge, it makes me a worse programmer. I can spend time getting back to where I was, but that's time I am not spending improving on where I was. To give a concrete example: I will never be an expert at developing for macOS or iOS. I bounce into and out of projects for Apple devices, spending no more than 10% of my hours on their platform. Their APIs change constantly. The buttons in Xcode move so quickly I sometimes wonder if it's happening before my eyes. Try looking up some Swift syntax on stack overflow and you'll find the answers are constantly edited for the latest version of Swift. At this point, I assume every time I come back to macOS/iOS, that I know nothing and I am learning the platform for the first time. Compare the shifting sands of Swift with the stability of awk. I have spent not a tenth of the time learning awk that I have spent relearning Swift, and yet I am about as capable in each language. An awk one-liner I learned 20 years ago still works today! When I see someone use awk to solve a problem, I'm enthusiastic to learn how they did it, because I know that 20 years from now the trick will work. By what backwards compatibility means to me, a project like log4j will break fewer people by removing a feature like the JNDI URLs than by marking an old API method with some mechanical deprecation notice that causes a build process's equivalent of to fail and moving it to a new name. They will in practice, break fewer people removing this feature than they would by slowing down a critical path by 10%, which is the sort of thing that can trivially slip into a release unnoticed.-Wall But the spirit of compatibility promises appears to be poorly understood across our industry (as software updates demonstrate to me every week), and so we lean on the pseudo-legalistic wording of project documentation to write strongly worded emails or snarky tweets any time a project makes work for us (because most projects don't get it, so surely every example of a breakage must be a project that doesn't get it, not a good reason), and upstream maintainers become defensive and overly conservative. The result is now everyone's Java software is broken! We as a profession misunderstand and misuse the concept of backwards compatibility, both upstream and downstream, by focusing on narrow legalistic definitions instead of outcomes. This is a harder, longer topic that maybe I'll find enough clarity to write properly about one day. It should be easy to hack up code and share it! We should also be cautious about adding burdensome features. This particular bug feels impossibly strange to me, because my idea of a logging API is file descriptor number 2 with the system call. None of the bells and whistles are necessary and we should be conservative about our core libraries. Indeed libraries like these are why I have been growing ever-more skeptical of using any depdendencies, and now force myself to read a big chunk of any library before adding it to a project.write But I have also written my share of misfeatures, as much as I would like to forget them. I am thankful my code I don't like has never achieved the success or wide use of log4j, and I cannot fault diligent (and unpaid!) maintainers doing their best under those circumstances. Log4j maintainers have been working sleeplessly on mitigation measures; fixes, docs, CVE, replies to inquiries, etc. Yet nothing is stopping people to bash us, for work we aren't paid for, for a feature we all dislike yet needed to keep due to backward compatibility concerns. It is intended that programs written to the Go 1 specification will continue to compile and run correctly, unchanged, over the lifetime of that specification. I want to not spend much time upgrading a dependency I want any problems caused by the upgrade to be caught early, not in production. I want to be able to build knowledge of the library over a long time, to hone my craft

over a year ago 22 votes
Software I’m thankful for

Software I’m thankful for 2021-11-25 A few of the things that come to mind, this thanksgiving. Most Unix-ish APIs, from files to sockets are a bit of a mess today. Endless poorly documented sockopts, unexpected changes in write semantics across FSs and OSes, good luck trying to figure out . But despite the mess, I can generally wrap my head around open/read/write/close. I can strace a binary and figure out the sequence and decipher what’s going on. Sprinkle in some printfs and state is quickly debuggable. Stack traces are useful!mtimes Enormous effort has been spent on many projects to replace this style of I/O programming, for efficiency or aesthetics, often with an asynchronous bent. I am thankful for this old reliable standby of synchronous open/read/write/close, and hope to see it revived and reinvented throughout my career to be cleaner and simpler. Goroutines are coroutines with compiler/runtime optimized yielding, to make them behave like threads. This breathes new life into the previous technology I’m thankful for: simple blocking I/O. With goroutines it becomes cheap to write large-scale blocking servers without running out of OS resources (like heavy threads, on OSes where they’re heavy, or FDs). It also makes it possible to use blocking interfaces between “threads” within a process without paying the ever-growing price of a context switch in the post- world.spectre This is the first year where the team working on Tailscale has outgrown and eclipsed me to the point where I can be thankful for Tailscale without feeling like I’m thanking myself. Many of the wonderful new features that let me easily wire machines together wherever they are, like userspace networking or MagicDNS, are not my doing. I’m thankful for the product, and the opportunity to work with the best engineering team I’ve ever had the privilege of being part of. Much like open/read/write/close, SQLite is an island of stability in a constantly changing technical landscape. Techniques I learned 10 or 15 years ago using SQLite work today. As a bonus, it does so much more than then: WAL mode for highly-concurrent servers, advanced SQL like window functions, excellent ATTACH semantics. It has done all of this while keeping the number of, in the projects own language, “goofy design” decisions to a minimum and holding true to its mission of being “lite”. I aspire to write such wonderful software. JSON is the worst form of encoding — except for all the others that have been tried. It’s complicated, but not too complicated. It’s not easily read by humans, but it can be read by humans. It is possible to extend it in intuitive ways. When it gets printed onto your terminal, you can figure out what’s going on without going and finding the magic decoder ring of the week. It makes some things that are extremely hard with XML or INI easy, without introducing accidental Turing completeness or turning . Writing software is better for it, and shows the immense effect carefully describing something can do for programming. JSON was everywhere in our JavaScript before the term was defined, the definition let us see it and use it elsewhere.country codes into booleans WireGuard is a great demonstration of why the total complexity of the implementation ends up affecting the UX of the product. In theory I could have been making tunnels between my devices for years with IPSec or TLS, in practice I’d completely given it up until something came along that made it easier. It didn’t make it easier by putting a slick UI over complex technology, it made the underlying technology simpler, so even I could (eventually) figure out the configuration. Most importantly, by not eating my entire complexity budget with its own internals, I could suddenly see it as a building block in larger projects. Complexity makes more things possible, and fewer things possible, simultaneously. WireGuard is a beautiful example of simplicity and I’m thankful for it. Before Go became popular, the fast programming language compilers of the 90s had mostly fallen by the wayside, to be replaced with a bimodal world of interpreters/JITs on one side and creaky slow compilers attempting to produce extremely optimal code on the other. The main Go toolchain found, or rediscovered, a new optimal point in the plane of tradeoffs for programming languages to sit: ahead of time compiled, but with a fast less-than-optimal compiler. It has managed to continue to hold that interesting, unstable equilibrium for a decade now, which is incredibly impressive. (E.g. I personally would love to improve its inliner, but know that it’s nearly impossible to get too far into that project without sacrificing a lot of the compiler’s speed.) I’ve always been cranky about GCC: I find its codebase nearly impossible to modify, it’s slow, the associated ducks I need to line up to make it useful (binutils, libc, etc) blow out the complexity budget on any project I try to start before I get far, and it is associated with GNU, which I used to view as an oddity and now view as a millstone around the neck of an otherwise excellent software project. But these are all the sorts of complaints you only make when using something truly invaluable. GCC is invaluable. I would never have learned to program if a free C compiler hadn’t been available in the 90s, so I owe it my career. To this day, it vies neck-and-neck with LLVM for best performing object code. Without the competition between them, compiler technology would stagnate. And while LLVM now benefits from $10s or $100s of millions a year in Silicon Valley salaries working on it, GCC does it all with far less investment. I’m thankful it keeps on going. I keep trying to quit vim. I keep ending up inside a terminal, inside vim, writing code. Like SQLite, vim is an island of stability over my career. While I wish IDEs were better, I am extremely thankful for tools that work and respect the effort I have taken to learn them, decade after decade. SSH gets me from here to there, and has done since ~1999. There is a lot about ssh that needs reinventing, but I am thankful for stable, reliable tools. It takes a lot of work to keep something like ssh working and secure, and if the maintainers are ever looking for someone to buy them a round they know where to find me. How would I get anything done without all the wonderful information on the public web and search engines to find it? What an amazing achievement. Thanks everyone, for making computers so great. open/read/write/close goroutines Tailscale SQLite JSON WireGuard The speed of the Go compiler GCC vim ssh The public web and search engines

over a year ago 23 votes

More in programming

My first year since coming back to Linux

<![CDATA[It has been a year since I set up my System76 Merkaat with Linux Mint. In July of 2024 I migrated from ChromeOS and the Merkaat has been my daily driver on the desktop. A year later I have nothing major to report, which is the point. Despite the occasional unplanned reinstallation I have been enjoying the stability of Linux and just using the PC. This stability finally enabled me to burn bridges with mainstream operating systems and fully embrace Linux and open systems. I'm ready to handle the worst and get back to work. Just a few years ago the frustration of troubleshooting a broken system would have made me seriously consider the switch to a proprietary solution. But a year of regular use, with an ordinary mix of quiet moments and glitches, gave me the confidence to stop worrying and learn to love Linux. linux a href="https://remark.as/p/journal.paoloamoroso.com/my-first-year-since-coming-back-to-linux"Discuss.../a Email | Reply @amoroso@oldbytes.space !--emailsub--]]>

23 hours ago 4 votes
What can agents actually do?

There’s a lot of excitement about what AI (specifically the latest wave of LLM-anchored AI) can do, and how AI-first companies are different from the prior generations of companies. There are a lot of important and real opportunities at hand, but I find that many of these conversations occur at such an abstract altitude that they’re a bit too abstract. Sort of like saying that your company could be much better if you merely adopted software. That’s certainly true, but it’s not a particularly helpful claim. This post is an attempt to concisely summarize how AI agents work, apply that summary to a handful of real-world use cases for AI, and make the case that the potential of AI agents is equivalent to the potential of this generation of AI. By the end of this writeup, my hope is that you’ll be well-armed to have a concrete discussion about how LLMs and agents could change the shape of your company. How do agents work? At its core, using an LLM is an API call that includes a prompt. For example, you might call Anthropic’s /v1/message with a prompt: How should I adopt LLMs in my company? That prompt is used to fill the LLM’s context window, which conditions the model to generate certain kinds of responses. This is the first important thing that agents can do: use an LLM to evaluate a context window and get a result. Prompt engineering, or context engineering as it’s being called now, is deciding what to put into the context window to best generate the responses you’re looking for. For example, In-Context Learning (ICL) is one form of context engineering, where you supply a bunch of similar examples before asking a question. If I want to determine if a transaction is fraudulent, then I might supply a bunch of prior transactions and whether they were, or were not, fraudulent as ICL examples. Those examples make generating the correct answer more likely. However, composing the perfect context window is very time intensive, benefiting from techniques like metaprompting to improve your context. Indeed, the human (or automation) creating the initial context might not know enough to do a good job of providing relevant context. For example, if you prompt, Who is going to become the next mayor of New York City?, then you are unsuited to include the answer to that question in your prompt. To do that, you would need to already know the answer, which is why you’re asking the question to begin with! This is where we see model chat experiences from OpenAI and Anthropic use web search to pull in context that you likely don’t have. If you ask a question about the new mayor of New York, they use a tool to retrieve web search results, then add the content of those searches to your context window. This is the second important thing that agents can do: use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response. However, it’s important to clarify how “tool usage” actually works. An LLM does not actually call a tool. (You can skim OpenAI’s function calling documentation if you want to see a specific real-world example of this.) Instead there is a five-step process to calling tools that can be a bit counter-intuitive: The program designer that calls the LLM API must also define a set of tools that the LLM is allowed to suggest using. Every API call to the LLM includes that defined set of tools as options that the LLM is allowed to recommend The response from the API call with defined functions is either: Generated text as any other call to an LLM might provide A recommendation to call a specific tool with a specific set of parameters, e.g. an LLM that knows about a get_weather tool, when prompted about the weather in Paris, might return this response: [{ "type": "function_call", "name": "get_weather", "arguments": "{\"location\":\"Paris, France\"}" }] The program that calls the LLM API then decides whether and how to honor that requested tool use. The program might decide to reject the requested tool because it’s been used too frequently recently (e.g. rate limiting), it might check if the associated user has permission to use the tool (e.g. maybe it’s a premium only tool), it might check if the parameters match the user’s role-based permissions as well (e.g. the user can check weather, but only admin users are allowed to check weather in France). If the program does decide to call the tool, it invokes the tool, then calls the LLM API with the output of the tool appended to the prior call’s context window. The important thing about this loop is that the LLM itself can still only do one interesting thing: taking a context window and returning generated text. It is the broader program, which we can start to call an agent at this point, that calls tools and sends the tools’ output to the LLM to generate more context. What’s magical is that LLMs plus tools start to really improve how you can generate context windows. Instead of having to have a very well-defined initial context window, you can use tools to inject relevant context to improve the initial context. This brings us to the third important thing that agents can do: they manage flow control for tool usage. Let’s think about three different scenarios: Flow control via rules has concrete rules about how tools can be used. Some examples: it might only allow a given tool to be used once in a given workflow (or a usage limit of a tool for each user, etc) it might require that a human-in-the-loop approves parameters over a certain value (e.g. refunds more than $100 require human approval) it might run a generated Python program and return the output to analyze a dataset (or provide error messages if it fails) apply a permission system to tool use, restricting who can use which tools and which parameters a given user is able to use (e.g. you can only retrieve your own personal data) a tool to escalate to a human representative can only be called after five back and forths with the LLM agent Flow control via statistics can use statistics to identify and act on abnormal behavior: if the size of a refund is higher than 99% of other refunds for the order size, you might want to escalate to a human if a user has used a tool more than 99% of other users, then you might want to reject usage for the rest of the day it might escalate to a human representative if tool parameters are more similar to prior parameters that required escalation to a human agent LLMs themselves absolutely cannot be trusted. Anytime you rely on an LLM to enforce something important, you will fail. Using agents to manage flow control is the mechanism that makes it possible to build safe, reliable systems with LLMs. Whenever you find yourself dealing with an unreliable LLM-based system, you can always find a way to shift the complexity to a tool to avoid that issue. As an example, if you want to do algebra with an LLM, the solution is not asking the LLM to directly perform algebra, but instead providing a tool capable of algebra to the LLM, and then relying on the LLM to call that tool with the proper parameters. At this point, there is one final important thing that agents do: they are software programs. This means they can do anything software can do to build better context windows to pass on to LLMs for generation. This is an infinite category of tasks, but generally these include: Building general context to add to context window, sometimes thought of as maintaining memory Initiating a workflow based on an incoming ticket in a ticket tracker, customer support system, etc Periodically initiating workflows at a certain time, such as hourly review of incoming tickets Alright, we’ve now summarized what AI agents can do down to four general capabilities. Recapping a bit, those capabilities are: Use an LLM to evaluate a context window and get a result Use an LLM to suggest tools relevant to the context window, then enrich the context window with the tool’s response Manage flow control for tool usage via rules or statistical analysis Agents are software programs, and can do anything other software programs do Armed with these four capabilities, we’ll be able to think about the ways we can, and cannot, apply AI agents to a number of opportunities. Use Case 1: Customer Support Agent One of the first scenarios that people often talk about deploying AI agents is customer support, so let’s start there. A typical customer support process will have multiple tiers of agents who handle increasingly complex customer problems. So let’s set a goal of taking over the easiest tier first, with the goal of moving up tiers over time as we show impact. Our approach might be: Allow tickets (or support chats) to flow into an AI agent Provide a variety of tools to the agent to support: Retrieving information about the user: recent customer support tickets, account history, account state, and so on Escalating to next tier of customer support Refund a purchase (almost certainly implemented as “refund purchase” referencing a specific purchase by the user, rather than “refund amount” to prevent scenarios where the agent can be fooled into refunding too much) Closing the user account on request Include customer support guidelines in the context window, describe customer problems, map those problems to specific tools that should be used to solve the problems Flow control rules that ensure all calls escalate to a human if not resolved within a certain time period, number of back-and-forth exchanges, if they run into an error in the agent, and so on. These rules should be both rules-based and statistics-based, ensuring that gaps in your rules are neither exploitable nor create a terrible customer experience Review agent-customer interactions for quality control, making improvements to the support guidelines provided to AI agents. Initially you would want to review every interaction, then move to interactions that lead to unusual outcomes (e.g. escalations to human) and some degree of random sampling Review hourly, then daily, and then weekly metrics of agent performance Based on your learnings from the metric reviews, you should set baselines for alerts which require more immediate response. For example, if a new topic comes up frequently, it probably means a serious regression in your product or process, and it requires immediate review rather than periodical review. Note that even when you’ve moved “Customer Support to AI agents”, you still have: a tier of human agents dealing with the most complex calls humans reviewing the periodic performance statistics humans performing quality control on AI agent-customer interactions You absolutely can replace each of those downstream steps (reviewing performance statistics, etc) with its own AI agent, but doing that requires going through the development of an AI product for each of those flows. There is a recursive process here, where over time you can eliminate many human components of your business, in exchange for increased fragility as you have more tiers of complexity. The most interesting part of complex systems isn’t how they work, it’s how they fail, and agent-driven systems will fail occasionally, as all systems do, very much including human-driven ones. Applied with care, the above series of actions will work successfully. However, it’s important to recognize that this is building an entire software pipeline, and then learning to operate that software pipeline in production. These are both very doable things, but they are meaningful work, turning customer support leadership into product managers and requiring an engineering team building and operating the customer support agent. Use Case 2: Triaging incoming bug reports When an incident is raised within your company, or when you receive a bug report, the first problem of the day is determining how severe the issue might be. If it’s potentially quite severe, then you want on-call engineers immediately investigating; if it’s certainly not severe, then you want to triage it in a less urgent process of some sort. It’s interesting to think about how an AI agent might support this triaging workflow. The process might work as follows: Pipe all created incidents and all created tickets to this agent for review. Expose these tools to the agent: Open an incident Retrieve current incidents Retrieve recently created tickets Retrieve production metrics Retrieve deployment logs Retrieve feature flag change logs Toggle known-safe feature flags Propose merging an incident with another for human approval Propose merging a ticket with another ticket for human approval Redundant LLM providers for critical workflows. If the LLM provider’s API is unavailable, retry three times over ten seconds, then resort to using a second model provider (e.g. Anthropic first, if unavailable try OpenAI), and then finally create an incident that the triaging mechanism is unavailable. For critical workflows, we can’t simply assume the APIs will be available, because in practice all major providers seem to have monthly availability issues. Merge duplicates. When a ticket comes in, first check ongoing incidents and recently created tickets for potential duplicates. If there is a probable duplicate, suggest merging the ticket or incident with the existing issue and exit the workflow. Assess impact. If production statistics are severely impacted, or if there is a new kind of error in production, then this is likely an issue that merits quick human review. If it’s high priority, open an incident. If it’s low priority, create a ticket. Propose cause. Now that the incident has been sized, switch to analyzing the potential causes of the incident. Look at the code commits in recent deploys and suggest potential issues that might have caused the current error. In some cases this will be obvious (e.g. spiking errors with a traceback of a line of code that changed recently), and in other cases it will only be proximity in time. Apply known-safe feature flags. Establish an allow list of known safe feature flags that the system is allowed to activate itself. For example, if there are expensive features that are safe to disable, it could be allowed to disable them, e.g. restricting paginating through deeper search results when under load might be a reasonable tradeoff between stability and user experience. Defer to humans. At this point, rely on humans to drive incident, or ticket, remediation to completion. Draft initial incident report. If an incident was opened, the agent should draft an initial incident report including the timeline, related changes, and the human activities taken over the course of the incident. This report should then be finalized by the human involved in the incident. Run incident review. Your existing incident review process should take the incident review and determine how to modify your systems, including the triaging agent, to increase reliability over time. Safeguard to reenable feature flags. Since we now have an agent disabling feature flags, we also need to add a periodic check (agent-driven or otherwise) to reenable the “known safe” feature flags if there isn’t an ongoing incident to avoid accidentally disabling them for long periods of time. This is another AI agent that will absolutely work as long as you treat it as a software product. In this case, engineering is likely the product owner, but it will still require thoughtful iteration to improve its behavior over time. Some of the ongoing validation to make this flow work includes: The role of humans in incident response and review will remain significant, merely aided by this agent. This is especially true in the review process, where an agent cannot solve the review process because it’s about actively learning what to change based on the incident. You can make a reasonable argument that an agent could decide what to change and then hand that specification off to another agent to implement it. Even today, you can easily imagine low risk changes (e.g. a copy change) being automatically added to a ticket for human approval. Doing this for more complex, or riskier changes, is possible but requires an extraordinary degree of care and nuance: it is the polar opposite of the idea of “just add agents and things get easy.” Instead, enabling that sort of automation will require immense care in constraining changes to systems that cannot expose unsafe behavior. For example, one startup I know has represented their domain logic in a domain-specific language (DSL) that can be safely generated by an LLM, and are able to represent many customer-specific features solely through that DSL. Expanding the list of known-safe feature flags to make incidents remediable. To do this widely will require enforcing very specific requirements for how software is developed. Even doing this narrowly will require changes to ensure the known-safe feature flags remain safe as software is developed. Periodically reviewing incident statistics over time to ensure mean-time-to-resolution (MTTR) is decreasing. If the agent is truly working, this should decrease. If the agent isn’t driving a reduction in MTTR, then something is rotten in the details of the implementation. Even a very effective agent doesn’t relieve the responsibility of careful system design. Rather, agents are a multiplier on the quality of your system design: done well, agents can make you significantly more effective. Done poorly, they’ll only amplify your problems even more widely. Do AI Agents Represent Entirety of this Generation of AI? If you accept my definition that AI agents are any combination of LLMs and software, then I think it’s true that there’s not much this generation of AI can express that doesn’t fit this definition. I’d readily accept the argument that LLM is too narrow a term, and that perhaps foundational model would be a better term. My sense is that this is a place where frontier definitions and colloquial usage have deviated a bit. Closing thoughts LLMs and agents are powerful mechanisms. I think they will truly change how products are designed and how products work. An entire generation of software makers, and company executives, are in the midst of learning how these tools work. Software isn’t magic, it’s very logical, but what it can accomplish is magical. The same goes for agents and LLMs. The more we can accelerate that learning curve, the better for our industry.

20 hours ago 4 votes
Overanalyzing a minor quirk of Espressif’s reset circuit

The mystery In the previous article, I briefly mentioned a slight difference between the ESP-Prog and the reproduced circuit, when it comes to EN: Focusing on EN, it looks like the voltage level goes back to 3.3V much faster on the ESP-Prog than on the breadboard circuit. The grid is horizontally spaced at 2ms, so … Continue reading Overanalyzing a minor quirk of Espressif’s reset circuit → The post Overanalyzing a minor quirk of Espressif’s reset circuit appeared first on Quentin Santos.

23 hours ago 2 votes
Buying a house in Karuizawa, Japan

After 18 months of living in Karuizawa, a resort town about an hour away from Tokyo via the Shinkansen, I have bought a house here. This article describes my experience of purchasing a house, and contains tips that are useful both if you’re considering buying in Karuizawa specifically, and in Japan more generally. In this article, I’ll cover: My personal journey to Karuizawa Why you might choose to live in Karuizawa My process of buying a house Tips for potential homebuyers in Japan From Tokyo to Karuizawa: my own journey In April 2020 I was living in central Tokyo. Three days after my one-year-old son entered daycare, a state of emergency was declared because of COVID-19. The daycare was closed, so my wife and I took turns looking after him while working remotely from our apartment. The small park next to our apartment was also closed due to the state of emergency, and so my time with my son included such fun activities as walking up and down the stairs, and looking at ants in the parking lot. After a week or two, we’d had enough. We moved in with my in-laws, who were living in a house in a small commuter town in Saitama. Our lives improved dramatically. The nearby parks were not closed. The grandparents could help look after my son. I could enjoy excellent cycling in the nearby mountains. We kept our apartment in Tokyo, as we didn’t know how long we’d stay, but let my brother-in-law use it. It was more spacious than his own, and gave him a better place to work remotely from. Leaving Tokyo for good In June of 2020 the state of emergency was lifted, yet we decided not to move back to Tokyo. Before having a kid, Tokyo had been a wonderful place to live. There was always something new to try, and opportunities to make new professional connections abounded. But as a father, my lifestyle had changed dramatically, even before COVID. No longer was I attending multiple events per week, but at most one per month. I basically stopped drinking alcohol, as maximizing the quality of what little sleep I could get was too important. With a stroller, getting around by train was no longer easy. My life had become much more routine: excitement came from watching my son grow, not my own activities. Though we’d enjoyed living in an area that was suburban bordering on rural, we didn’t want to live with my in-laws indefinitely. Still, seeing how useful it was to have them around with a small child, we decided to look for a house to rent nearby. We found a relatively modern one in the next town over, about a 10-minute drive from my in-laws. The rent was about half of what our Tokyo apartment’s had been, yet this house was twice as big, and even had a small garden. Living there was a wonderful change of pace. When my second child was born a year later, having the in-laws nearby became even more helpful. But as the COVID restrictions began rolling back, we started to think about where we wanted to settle down permanently. Choosing Karuizawa There were some definite downsides to the town we were living in. Practically all our neighbours were retirees. There were few restaurants that were worth going to. The equipment at the playgrounds was falling apart, and there was no sign it would be replaced. The summers were brutally hot, making it unpleasant to be outside. There wasn’t anything for kids to do inside. We’d visited Karuizawa before, and it seemed like it had the access to nature we appreciated, while also offering more options for dining out and other cultural activities. The cooler climate was also a big motivating factor. So in June 2022, we started looking at places. Most of the rental options were incredibly expensive seasonal properties, and so buying a house seemed like the most realistic option. But the market moved extremely quickly, and any property that seemed like a good deal was snatched up before we even had a chance to look at it. After about half a year of searching, we gave up. We then considered buying a house in Gotenba, a town at the base of Mount Fuji. We’d visited there in the past, and though it didn’t seem quite as nice an option as Karuizawa, we were able to find a decent house that was cheap enough that buying it was a relatively small risk. We placed a lowball offer on the property, and were rejected. Frustrated, I took a look at the rental options for Karuizawa again. This time we saw two houses for rent that were good candidates! We heard from the real estate agent that one of the properties already had someone coming to view the next afternoon, and so we went the next morning. Visiting the house, it seemed like exactly what we were looking for. We immediately put in a rental application, and moved in the next month. Why Karuizawa? I’ve already covered some of the reasons why we chose Karuizawa, but I’ll go into more detail about them, along with other unexpected good points. Mild summers According to historical data, the average temperature in Karuizawa in August is 20.8°C. While daytime temperatures get hotter than that, you’re unlikely to risk heat stroke by being active outside, something that isn’t true for much of Japan. That being said, climate change is inescapable, and summers in Karuizawa are getting hotter than historical data would suggest. This is an issue because while it cools down at night, many of the houses are built only with the cold winters in mind. For instance, despite the house I rented being built in 2019, it only had a single AC unit. This meant that many days in July and August were unbearably hot inside, and I had trouble sleeping at night as it wouldn’t cool down until well past midnight. Cold but cheerful winters While summers are cooler, this also means winters are cold. The average temperature in January is -3.3°C. However, much like Tokyo, winters here tend to be quite sunny, and there have only been a few heavy snowfalls per year while I’ve lived here. That’s enough that you can enjoy the snow without having to worry about shovelling it daily. Proximity to Tokyo The Shinkansen makes it quicker for me to get into central Tokyo than when I was living in suburban Saitama. It’s about a 70-minute ride from Karuizawa station to Tokyo station. While this is not something I’d want to do daily, I now typically go into Tokyo only a couple of times per month, which is reasonable. Greenery and nature As a resort community, Karuizawa places a lot of emphasis on greenery. Throughout the town, there are plenty of areas where residential and commercial spaces mingle with forest. Many houses have nice gardens. Shade exists everywhere. Wilder nature is close by, too. While you can do day hikes from Tokyo, they involve an hour plus on the train, followed by a climb where you’re usually surrounded by other people. In Karuizawa, I can walk 15 minutes to a trailhead where I’ll see at most a couple of groups per hour. Cheaper than Tokyo, but not significantly so Money spent on housing goes a lot further in Karuizawa than in Tokyo. For the same price as a used Tokyo apartment, you can get a nice used house on a relatively large plot of land in Karuizawa. However, it’s hard to find truly affordable housing. For starters, Karuizawa’s plots tend to be large by Japanese standards, so even if the per-unit price of the land is cheaper, the overall cost isn’t so cheap. For instance, a centrally located 100 tsubo (330 m²) plot in Nakakaruizawa, which is on the small side of what you can find, will currently sell for at least 30 million yen. It may be possible to get a deal on a more remote piece of land, but true steals are hard to come by. Dining out is another area where it’s easy to spend lots of money. Prices are on par with Tokyo, and there are few cheap options, with Sukiya, McDonald’s, and a couple of ramen shops being practically the only sub-1,000 yen choices. Groceries, at least, are cheaper. While the Tsuruya grocery store does sell a lot of high-end items, the basics like milk, eggs, vegetables, and chicken are significantly cheaper than in Tokyo or even suburban Saitama. All this means that many residents of Karuizawa are wealthy compared to Japan’s overall population. Sometimes that makes them take for granted that others might struggle financially. For instance, when my son graduated from public daycare, the PTA organized a graduation party. We paid 16,000 yen for myself, my wife, and two children to attend. Since that’s equivalent to two eight-hour days at minimum wage, I think it was too expensive. I noticed that some of the children didn’t attend, while others came with just one parent, perhaps because of the prohibitive cost. Liquid housing market While we were living in suburban Saitama, we considered buying a house, and even looked at a couple of places. It was very affordable, with even mansions (in the traditional English usage of the word) being cheaper than Tokyo mansions (in the Japanese sense). But the reason they were so cheap was because there wasn’t a secondary market for them. So even if we could get a good deal, we were worried that should we ever want to sell it again, it might not even be possible to give it away. Karuizawa’s real estate market moves fast. This sucks as a buyer but is great for sellers. Furthermore, because it’s perceived as a place to have a second home by wealthy Tokyoites, houses that are by our standards very nice are nowhere near the top of the market. This reduces the risk of buying a property and not being able to sell it later. Great public facilities If you have young children, Karuizawa offers many free or cheap public facilities. This includes nice playgrounds, children’s halls stocked with toys and activities, a beautiful library with a decent selection of English picture books, and a recreation centre with a gym, training room, pool, indoor and outdoor skating rinks, and a curling rink (built for 1998 Winter Olympics). A welcoming and international community Some areas of Japan have a reputation for being insular and not friendly toward newcomers. Perhaps because much of Karuizawa’s population has moved here from elsewhere, the people I’ve met have been quite welcoming. I’m also always happy to meet new residents, and pass on the helpful tips I’ve picked up. In addition, I’ve discovered that many residents have some sort of international background. While non-Japanese residents are very much the minority, a large percentage of the Japanese parents I’ve spoken with have either studied or worked abroad. There is also an International Association of Karuizawa, whose members include many long-term non-Japanese residents. Their Facebook group makes it easy to ask for advice in English. You can get around without a car Most days I don’t use a car, and get around by walking or bicycling. The lack of heavy snow makes it possible to do this year round (though I’m one of the few people who still uses a bicycle when it is -10°C out). Mostly I’m able to get around without a car because I live in a relatively central area, so it’s not feasible for every resident. It can be quite helpful, though, as traffic becomes absolutely horrible during the peak seasons. For instance, the house I was renting was a kilometer away from the one I bought. It was less than a 5-minute drive normally, but during Golden Week it took 30 minutes. That being said, it’s practically required to use a car sometimes. For instance, there’s a great pediatrician, but they’re only accessible by car. Similarly, I use our car to take my kids to the pool, pick up things from the home centre, and so on. My process for buying a house After a year of renting in Karuizawa, we decided we wanted to continue living there indefinitely. Continuing to rent the same house wasn’t an option: the owners were temporarily abroad and so we had a fixed-term contract. While we could have looked for another place to rent, we figured we’d be settling down, and so wanted to buy a house. Starting the search On September 1st, 2024, we started our search and immediately found our first candidate: a recently-built house near Asama Fureai Park. That park is the nicest one for young children in Karuizawa, as it has a good playground but is never too crowded. The property was listed with Royal Resort, which has the most listings for Karuizawa. Rather than contacting Royal Resort directly, though, we asked Masaru Takeyama of Resort Innovation to do so on our behalf. In Japan, there is a buyer’s agent and seller’s agent. Often the seller’s agent wants to act as the buyer’s agent as well, as it earns them double the commission, despite the obvious conflicts of interest. Of the agents we’d contacted previously, Masaru seemed the most trustworthy. I may have also been a bit biased, as he speaks English, whereas the other agents only spoke Japanese. He set up a viewing for us, but we discovered it wasn’t quite our ideal house. While the house was well built, the layout wasn’t our preference. It also was on a road with many large, noisy trucks, so it was kind of unpleasant to be outside. Making the first offer Over the next three months, we’d look at new listings online practically every day. I set up automated alerts for when the websites of different real estate agents were updated. We considered dozens of properties, and actually visited four plots and three used houses. None of them were a good match. On December 3rd, 2024, I found a great-looking property. It was being advertised as 5.1 km from Nakakaruiza station, which would have made it inconvenient, but it was also listed as 中部小学校近隣戸建 (Chubu Elementary Neighborhood Detached House). As the elementary school isn’t that far from the station, I assumed there was an error. The “house” was more of an old cabin, but it was priced cheaply for just the land itself. I sent Masaru an email asking him to give us the address. Meanwhile, my wife and I had gotten pretty good at identifying the locations of properties based on clues in the listing. The startup of a fellow Karuizawa international resident has a good tool for searching lots. My wife managed to identify this one, and so the following morning we looked at it. It wasn’t perfect, but it was a great location and a good deal, so before Masaru had even responded to us with the address, we sent another email saying we’d like to buy it. Masaru responded later that morning that he had a concern: the access to the house was a private road divided into two parcels, one owned by a real estate company, and the other by a pair of individuals. We’d need to negotiate with those parties about things like usage rights, waterworks, and so on. While he wasn’t worried about dealing with the real estate company, as it should just be a question of compensating them, the individuals owning the other parcel might theoretically be unwilling to negotiate. Based on his analysis, the following day (December 5th) we submitted a non-binding purchase application, with the condition that the road issue be resolved. That evening Masaru told us that he had discovered that the seller was a woman in her nineties. Because things like dementia are common among people that old, he added another condition, which was that a judicial scrivener testify to her mental capacity to enter into a contract. He warned that if we didn’t do that, and later the seller was to be found to be mentally unfit, the sale could be reversed, even if we had already proceeded with the construction of a new house. Given the cost of building a new home, this seemed like a prudent measure to take. A few days later we heard that the seller’s son was discussing the sale with his mother, and that they’d be having a family meeting the following weekend to decide whether to make the sale. To try to encourage them to sell to us, my wife wrote a letter (in Japanese) to them, and attached some photos of our family in Karuizawa. On December 16th, we received word that there was actually another potential buyer for the property who’d made an identical offer. In Japan, once someone submits a purchase application, it is normally handled on a first-come, first-served basis. However I noted that the seller didn’t mark the property as “under negotiation” on their website. I suspect we were the first to make an offer, as we did it literally the day after it was published. Apparently the seller’s son wanted to do business with us, but the daughter preferred the other family. We were not told why the daughter wanted to go with the other potential buyers, but it may have been because of our request to have the seller’s mental capacity tested. Dropping that requirement seemed too risky, though. On December 18th, we were informed that the seller had chosen the other buyer. This was quite a disappointing turn of events. We’d initially thought it was a sure thing because we were so fast to submit the offer and were giving them what they’d asked for. We’d even talked with a couple of home builders already. Furthermore, as winter had arrived, it seemed like the real estate market had also frozen. Whereas we’d previously seen new properties appear almost daily, now we spotted one or two a week at most. Making a successful offer Over the holidays, we looked at a couple more plots. On January 6th, we identified a used house in Nakakaruizawa that seemed to meet our criteria. It was by no means perfect, but close enough to be a candidate, so on January 10th we visited it. The house was pretty much as expected. Our one concern was the heating situation. It had previously had central heating that was based on a kerosene boiler, but that had been replaced with central air conditioning. While visiting the house, we turned it on, but it didn’t seem to make much difference. After some back and forth, we got the seller to run the AC constantly for a couple of days, and then on the morning of January 14th, we visited the house again. It was a grey and cold day, with little sunlight—basically the worst conditions possible for keeping the house warm, which I suppose was a good test. It was about 1°C outside and 10°C inside. We heard that the house had previously been rented out, and that the prior tenants had needed to use extra kerosene heaters to stay warm. This wasn’t ideal, but we also saw that with some renovations, we could improve the insulation. We considered making a lowball offer, but Masaru thought it was unlikely that it would be accepted. Instead, on January 17th, we made an offer at the asking price, conditional on it passing a home inspection and us getting an estimate for renovation costs. We heard that, once again, there was another potential buyer. They were “preparing” to submit an offer, but hadn’t done so yet. This time, the seller followed the standard process of considering our offer first, and accepting it in a non-binding manner. We learned that the seller itself was also a real estate company, whose main business seemed to be developing hotels and golf courses. The sale of this property was a relatively minor deal for them, and their main concern was that everything went smoothly. On January 23rd, we had a housing inspection carried out. The inspector found several issues, but they were all cosmetic or otherwise minor, so we said we’d proceed with the contract. Signing the contract The seller’s agent didn’t appear to be in a hurry to finalize the contract. It took a while for them to present us with the paperwork, and after that there were some minor changes to it, so it wasn’t until March 19th that we finally signed. One reason for the delay was that we’d suggested we sign the contract electronically, something the buyer had never done before. Signing a contract electronically was not only simpler from our perspective, but also avoided the need to affix a revenue stamp on the contract, saving some money. But even though Masaru was experienced with electronic contracts, it seemed to take the seller some time to confirm that everything was okay. When we signed the contract, we agreed to immediately make a 10 percent down payment, with the outstanding amount to be transferred by May 16th. We’d already gotten pre-approval on a housing loan, but needed the extra time for the final approval. Obtaining the loan On January 22nd, we visited Hachijuni Bank, which is headquartered in Nagano and has a branch in Karuizawa, and started the loan pre-approval process. This involved submitting a fair amount of paperwork, especially as I was the director of a company as opposed to a regular employee. The whole process took about two weeks. In parallel, we started the pre-approval process for PayPay Bank. The application involved minimal paperwork, and we were able to quickly get pre-approved by them too. To receive the actual approval for the loan, though, we needed to have already signed the purchase contract, so we couldn’t begin until March 19th. This time, the situation was reversed, and PayPay Bank required much more documentation than Hachijuni Bank. On April 9th, we met again with Hachijuni Bank. There was a problem with our application: my middle names hadn’t been properly entered into the contract, and so we’d have to go through the approval process again. The representative said he’d make sure they reviewed it quickly because it was his fault. That evening, we got the result of our application to PayPay Bank: rejected! No reason was given, but as they offer quite low rates, I’m guessing they only accept the lowest-risk loans. Maybe the reason was the house itself, maybe it was that I was the director of a small private company, maybe it was something else. While the Hachijuni Bank representative seemed positive about our application, I was worried. On April 15th we got the result from Hachijuni Bank: approved! Two days later we signed the paperwork with the bank and scheduled the handover for April 30th. Toilet troubles When the previous tenants had moved out of the house, the seller had decided to drain the water. Karuizawa temperatures are cold enough that if the house isn’t being heated, the pipes can freeze and burst. This meant that when we had the housing inspection performed, the inspector couldn’t confirm anything about the plumbing. Given that by mid-April temperatures were no longer below zero, we asked that the seller put the water back in. They agreed, and on April 23rd we heard that there was a problem with the toilets—some sort of leak. Likely some of the rubber sealing had dried out while the water had been removed. The seller offered to replace the toilets or pay us the cost of replacing them with equivalent ones. My understanding was that because they hadn’t declared any issues with the toilets in the original purchase agreement, they were obligated to do so. My wife and I had already talked about upgrading the toilets, but I wasn’t convinced that it’d be worth it. With the seller offering to pay two-thirds of the cost of the more premium toilets we wanted, though, it seemed like a stroke of luck. Handover On April 30th, the handover went smoothly. A representative from the seller’s company met with myself, the real estate agents, and a judicial scrivener. Technically I didn’t need to be there for it, but as the representative had come from Hiroshima I thought I should be present just in case anything happened. Nothing went awry, however, and they gave me the keys and some omiyage. Renovations We had already decided to do some renovations before moving in. With the toilets not working, that became an immediate necessity. One of the challenges of buying a used house is deciding how extensively to renovate. We settled on doing the minimum: replacing the toilets, putting up a wall to split the kids’ bedroom in two (it already had two separate doors and was designed to be split), switching the lights in the bedroom from fluorescent tubes to LEDs, and adding inner windows (内窓, uchi mado) to improve the insulation. We’d kicked off the process shortly after completing the home inspection, and had already had contractors visit to give estimates in advance. Still, we weren’t able to finalize any plans until we’d decided the exact handover date. After some negotiating, we got an agreement to wrap up the renovations by the beginning of June, and set a move-in date of June 5th. Moving in We managed to move in as scheduled, almost half a year after we first saw the house, and 10 months after we began our initial search. We weren’t exactly in a rush with the whole process, but it did take a lot of our time. Tips for potential homebuyers in Japan Here’s what I’d recommend if you’re looking to buy a house in Japan. Don’t rely on real estate agents to find properties for you My impression of real estate agents in Karuizawa is that they’re quite passive. I think this is a combination of the market being hot, and the fact that many inquiries they get are from people who dream about living here but will never make it a reality. I’d suggest being proactive about the search yourself. All of the best properties we found because we discovered the listings ourselves, not because an agent sent them to us. Find an agent you can trust The main value I got out of using a real estate agent was not because he introduced specific properties, but because he could point out potential issues with them. Checking the ownership of the road leading up to the property, or whether a contract could be reversed if the signer was years later deemed to be mentally incompetent, weren’t issues that had ever even occurred to me. Every property I considered purchasing had some unapparent problems. While there are some legal obligations placed upon the buyer’s agent, my understanding is that those don’t extend to every possible situation. What’s more, real estate seems to attract unscrupulous people, and some agents aren’t averse to behaving unethically or even illegally if it helps them close more deals. Because of this, I think the most important quality in an agent is trustworthiness. That can be hard to evaluate, but go with your gut. You don’t need your company to be profitable three years in a row I’d previously heard that it’s challenging to get a loan as the director of a company, and that the last three years of a business needed to be profitable to receive approval. That made me apprehensive, as TokyoDev was only incorporated in 2022, and 2024 was an unprofitable year for us due to it being the first year we had a decrease in the number of hires. However, when Hachijuni Bank reviewed TokyoDev’s finances, they said it was a great business. I was the sole employee of the business and it was only unprofitable because I had set my director’s compensation too aggressively. We’d had previous profitable years, and the company didn’t have any debts. In other words, one bad year for your company isn’t going to tank your chances of getting a loan. Go through the final approval process with multiple banks Some will advise you not to go through the final approval process of multiple banks at the same time. Since there’s a central database that allows banks to see that you’re doing this, it apparently increases your risk of rejection. If you’re only applying at a few banks, though, the risk remains fairly low. I guess PayPay Bank theoretically could have rejected us for this reason, but I doubt it. If we had initially applied only with them, however, and had waited to be rejected before applying with Hachijuni Bank, we would have risked not having the final approval go through before the payment deadline. Get a housing inspection If you’re buying a used house of any significant value, I highly recommend getting an inspection. We used Sakura Home Inspection, the biggest inspection company in Japan. While the base price for the inspection was only 66,000 yen, we ended up paying about 240,000 yen due to additional options, the size of the house, and transportation fees. While that’s not exactly cheap, it was less than one percent of the total purchase price, and seemed worth it to mitigate the risk of serious issues that might appear after the purchase. Rent locally before buying Our plan of first renting, then buying worked out quite well for us. Not only did it give me confidence that Karuizawa was somewhere I wanted to live for the long haul, it was much easier visiting potential properties when I lived a 10-minute bicycle ride away from them, instead of a 3-hour drive. If you’re considering buying a house in Karuizawa… Please get in touch with me! I’m happy to answer any questions you might have. In my previous article on coworking spaces in Karuizawa, I invited people to get in touch, and already have made several new connections through it. I’d love to continue to grow my community, and help transform Karuizawa from a resort town to one that’s focused on its full-time residents.

2 hours ago 2 votes
Do You Even Personalize, Bro?

There’s a video on YouTube from “Technology Connections” — who I’ve never heard of or watched until now — called Algorithms are breaking how we think. I learned of this video from Gedeon Maheux of The Iconfactory fame. Speaking in the context of why they made Tapestry, he said the ideas in this video would be their manifesto. So I gave it a watch. Generally speaking, the video asks: Does anyone care to have a self-directed experience online, or with a computer more generally? I'm not sure how infrequently we’re actually deciding for ourselves these days [how we decide what we want to see, watch, and do on the internet] Ironically we spend more time than ever on computing devices, but less time than ever curating our own experiences with them. Which — again ironically — is the inverse of many things in our lives. Generally speaking, the more time we spend with something, the more we invest in making it our own — customizing it to our own idiosyncrasies. But how much time do you spend curating, customizing, and personalizing your digital experience? (If you’re reading this in an RSS reader, high five!) I’m not talking about “I liked that post, or saved that video, so the algorithm is personalizing things for me”. Do you know what to get yourself more of? Do you know where to find it? Do you even ask yourself these questions? “That sounds like too much work” you might say. And you’re right, it is work. As the guy in the video says: I'm one of those weirdos who think the most rewarding things in life take effort Me too. Email · Mastodon · Bluesky

12 hours ago 2 votes