More from Ognjen Regoje • ognjen.io
Many (most?) engineers go from university to a sizable company significantly distancing them from the actual value their code creates. They labour under the delusion that they’re paid to write code. In fact, they’re paid to make money, and writing code is probably the most expensive way that they can do that. They will often say things like “We should scrap this entirely and re-write it, it will only take 8 months” – often about code that generates 8 figures in revenue and employs several dozen people. Code that pays for their smartwatches. But, of course: Engineers are hired to create business value, not to program things – Don’t Call Yourself A Programmer, And Other Career Advice In my estimate it takes about a decade of experience before engineers start to really internalize this. This can be significantly sped up by having a shorter feedback loop between the code written and the value realized by the engineer. There are two ways to do this: Freelancing Founding Freelancing By freelancing, and doing it well, the reward, is very directly tied to the code written. The best way to do freelance, for the sake of learning, would be to work on fixed cost contracts – which isn’t great freelancing advice, but is excellent for the longterm career. Delivering to someone elses specs makes engineers focused on delivery only the necessary and sufficient code to make that happen. All the correct decisions result in an improvement of the engineers earnings per hour and all mistakes in a reduction. That feedback loop very quickly teaches: The importance of quality and automated testing Architecture and keeping options open Communication and requirements gathering, asking the right questions All of these are factors that come into play once an engineer is breaking the barrier from Senior to management or Staff. Founding a company Founding a company, where the code that you produced secures your salary, teaches those lessons, plus a few others: Understanding the importance tradeoffs that companies make betwen velocity and tech debt It is also an opportunity to learn how to make those tradeoffs well, something engineers aren’t always great at Experience creating the most value possible with the least code Very few enginers pre-emtively suggest ways to test product hyptheses using cheaper appoaches Pragmatism and bias towards shipping and avoidingg gold-plating functionality that is immature Plus you very quickly start to understand why “We should re-write it” is almost never the right business decision. All software engineers should freelance or found a business was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 18, 2025.
In The Innovator’s Dilemma Christensen talks about how when acquiring a company you might either be acquiring its product or its processes. Depending on which it is, you need to handle the integration differently. I’ve realized that hiring a new manager follows a similar pattern: either they’re expected to integrate into the organization, or be independent and create some change. That expectation depends on whether the team, and possibly the wider organization, function well. If the team is high-performing, why would adding or overhauling processes make sense over fine-tuning existing ones? But new managers often join and immediately start suggesting ways to fix things. In many of these cases, they aren’t suggesting some best practices but are simply trying to have the new company function in a similar way to their previous one. But they never have enough context to justify these changes. What they should do is take a step back and understand why they were hired and what already works. Are they there to run the team as it is and perhaps look for marginal gains in efficiency and effectiveness? Or are they there because things are fundamentally broken and they need to overhaul the organization? In 9 out of 10 cases, it’s the first one. They’re there to ensure the continuity of the team. Therefore in 9 out of 10 cases the objective should be to integrate into the processes as quickly as possible and help iterate. Why are you here, manager? was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 18, 2025.
I love Ben Brode’s Design Lessons from Improv talk. It presents techniques that we could all use more frequently. I particularly took the “Yes, and…“ to heart. It is an excellent technique, or attitude really, that keeps the conversation going. Conversations often start slow but get progressively more interesting the deeper you go. And “Yes, and…” makes it possible to get there. One of my favorite uses of “Yes, and…” is when someone sends you an article that you’ve already read or a video you’ve already watched. The typical response might be 👍 seen it (A whole site is named after the fact that you’ve already read it) If the other person is interested in having a conversation, you’ve just stopped it in its tracks expecting them to put in all the effort to keep it going. A “Yes, and…” response such as “Yes, I’ve read it, and something you found interesting” opens up the conversation. Even if the other person just wanted to share something they thought you might find interesting, you’ve: a) created an opportunity to exchange opinions and b) put in slightly above the bare minimum of effort to acknowledge that what they shared with you was indeed interesting At work At work, specifically, it is useful in all manner of discussions. Conversations about product, or code, or architecture, or team activities, or customer service all get better when you don’t dismiss but build on top of each other. The value of "Yes, and..." was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 17, 2025.
One of the best pieces of advice I’ve ever gotten is to take a minute, or a week, after you’ve had a difficult conversation. By and large, people are not unreasonable. They’re not out to get you. They’re not trying to make your life miserable. They’re probably trying to do what they think is right. But tough conversations happen and when they do it’s important to take time to process the information and formulate a more nuanced opinion. To take a work example: picture a conversation where you’re being some particularly heavy feedback You’re confused, you’re sad, you’re angry. You disagree. You want to protest, defend yourself, argue, explain. Doing so, however, would accomplish nothing in the immediate, and probably set you back in the long-term. The other person is probably also upset and stressed about having to have the conversation. Getting defensive would get make them to do the same and the conversation would quickly devolve into one run by emotions. Instead, listen and gather as much information as possible. If possible, try to write as much as you can down. Don’t say much except ask questions and then politely ask for a follow-up meeting in a few days. That will give you the time to process all the information and figure out if they were right, if it might not have been a big deal at all, if there is nuance in the situation or if you were indeed right. Or, as is most likely, some combination of all of the above. You’ll be able to formulate a cohesive model of the situation in your head, which will help you make a better decision or counter-argument if needed. It’ll also give you, and the others, time to cool down and prevent anyone from reacting too emotionally. Come to the follow-up meeting with humility and a willingness to compromise. Recap the previous meeting and make sure that everyone is on the same page. Then explain your understanding of the situation and present your opinion. The end result should be a much more amicable outcome without the need for a third meeting. And while my example is in the context of work, the same is true for personal conversations. So, take a minute. Or a week. It’ll help you make better decisions. During a difficult conversation, remember to take a minute was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 17, 2025.
There is nothing as inevitable as a re-org when a new VP joins. When a new executive joins they’re often overwhelmed by the amount of context they need to absorb to start being effective. The more seasoned ones aren’t pertrubed by this: they understand that gathering this context is their full-time job for the next several weeks or months. There’s even a book about this period. The less savvy ones, on the other hand, often reach for one of the following coping strategies, depending on the type of role they occupy. This organization makes no sense, we must re-organize it immediately Spoken by a newly joined VP who needs to assess the organization and understand why it is set up the way it is. It results in several workshops about boundaries, Conway’s law and team topologies result in a slightly different, but not materially significant organization. And a VP with a much better understanding of their people, the culture, the product and the challenges. We must document/map it Spoken by a product manager getting to grips with the features they’ll be working on before having read the abundant sales, technical and product reference materials. This usually results in several workshops where there is a lot of “discovery” and “mapping”. In reality, the product manager is getting an in-person crash course. It rarely results in any new discoveries or documentation or maps being produced but always results in a much more confident product manager. We must have a process for that Spoken by a new engineering manager who’s not yet familiar with the existing processes and ways of working. This usually results in the engineering manager starting to write a Confluence page on how the process should work, until one of the team members sends them an existing, but finished, Confluence page on exactly that, but with slight differences. The new page gets a link to the existing ones and is promptly forgotten. Does this process really work for anyone? A sub-category of the above then the process in place is different from their previous employer. This code is so bad, we must re-write it entirely Spoken by a senior but not yet quite staff engineer who’s just getting to grips with a new codebase – often about code that generates 7 or 8 digits in revenue. It results in the engineer spending several hours on an alternative architecture and running it by their team several times. Eventually, they understand that what they’re suggesting is quite similar to what is actually in place, that there is some refactoring and improvements to be done, but it’s nowhere near as tragic as they imagined it to be. Why does this happen? A week or two after joining, depending on how generous the company is, the engineer gets a ticket to work on, the PM is asked about the backlog priority and the EM why their bug injection rate is so high and what they’re doing about it. And they naturally feel lost. The problem is that most companies don’t set an expected timeline for having a person become effective in their position. How to do better? The amount of context required to be effective increases with seniority. But everyone needs a couple of weeks outside of the default onboarding programme to read through their team’s wiki space, to look through the backlog, to pair with their colleagues, to get an understanding of the work the team is doing, to be present at the retrospectives to listen and not have to lead and facilitate. Only after they get the lay of the land can they start contributing in a meaningful way. The managerial fear of the unknown was originally published by Ognjen Regoje at Ognjen Regoje • ognjen.io on April 17, 2025.
More in programming
I realize that for all I've talked about Logic for Programmers in this newsletter, I never once explained basic logical quantifiers. They're both simple and incredibly useful, so let's do that this week! Sets and quantifiers A set is a collection of unordered, unique elements. {1, 2, 3, …} is a set, as are "every programming language", "every programming language's Wikipedia page", and "every function ever defined in any programming language's standard library". You can put whatever you want in a set, with some very specific limitations to avoid certain paradoxes.2 Once we have a set, we can ask "is something true for all elements of the set" and "is something true for at least one element of the set?" IE, is it true that every programming language has a set collection type in the core language? We would write it like this: # all of them all l in ProgrammingLanguages: HasSetType(l) # at least one some l in ProgrammingLanguages: HasSetType(l) This is the notation I use in the book because it's easy to read, type, and search for. Mathematicians historically had a few different formats; the one I grew up with was ∀x ∈ set: P(x) to mean all x in set, and ∃ to mean some. I use these when writing for just myself, but find them confusing to programmers when communicating. "All" and "some" are respectively referred to as "universal" and "existential" quantifiers. Some cool properties We can simplify expressions with quantifiers, in the same way that we can simplify !(x && y) to !x || !y. First of all, quantifiers are commutative with themselves. some x: some y: P(x,y) is the same as some y: some x: P(x, y). For this reason we can write some x, y: P(x,y) as shorthand. We can even do this when quantifying over different sets, writing some x, x' in X, y in Y instead of some x, x' in X: some y in Y. We can not do this with "alternating quantifiers": all p in Person: some m in Person: Mother(m, p) says that every person has a mother. some m in Person: all p in Person: Mother(m, p) says that someone is every person's mother. Second, existentials distribute over || while universals distribute over &&. "There is some url which returns a 403 or 404" is the same as "there is some url which returns a 403 or some url that returns a 404", and "all PRs pass the linter and the test suites" is the same as "all PRs pass the linter and all PRs pass the test suites". Finally, some and all are duals: some x: P(x) == !(all x: !P(x)), and vice-versa. Intuitively: if some file is malicious, it's not true that all files are benign. All these rules together mean we can manipulate quantifiers almost as easily as we can manipulate regular booleans, putting them in whatever form is easiest to use in programming. Speaking of which, how do we use this in in programming? How we use this in programming First of all, people clearly have a need for directly using quantifiers in code. If we have something of the form: for x in list: if P(x): return true return false That's just some x in list: P(x). And this is a prevalent pattern, as you can see by using GitHub code search. It finds over 500k examples of this pattern in Python alone! That can be simplified via using the language's built-in quantifiers: the Python would be any(P(x) for x in list). (Note this is not quantifying over sets but iterables. But the idea translates cleanly enough.) More generally, quantifiers are a key way we express higher-level properties of software. What does it mean for a list to be sorted in ascending order? That all i, j in 0..<len(l): if i < j then l[i] <= l[j]. When should a ratchet test fail? When some f in functions - exceptions: Uses(f, bad_function). Should the image classifier work upside down? all i in images: classify(i) == classify(rotate(i, 180)). These are the properties we verify with tests and types and MISU and whatnot;1 it helps to be able to make them explicit! One cool use case that'll be in the book's next version: database invariants are universal statements over the set of all records, like all a in accounts: a.balance > 0. That's enforceable with a CHECK constraint. But what about something like all i, i' in intervals: NoOverlap(i, i')? That isn't covered by CHECK, since it spans two rows. Quantifier duality to the rescue! The invariant is equivalent to !(some i, i' in intervals: Overlap(i, i')), so is preserved if the query SELECT COUNT(*) FROM intervals CROSS JOIN intervals … returns 0 rows. This means we can test it via a database trigger.3 There are a lot more use cases for quantifiers, but this is enough to introduce the ideas! Next week's the one year anniversary of the book entering early access, so I'll be writing a bit about that experience and how the book changed. It's crazy how crude v0.1 was compared to the current version. MISU ("make illegal states unrepresentable") means using data representations that rule out invalid values. For example, if you have a location -> Optional(item) lookup and want to make sure that each item is in exactly one location, consider instead changing the map to item -> location. This is a means of implementing the property all i in item, l, l' in location: if ItemIn(i, l) && l != l' then !ItemIn(i, l'). ↩ Specifically, a set can't be an element of itself, which rules out constructing things like "the set of all sets" or "the set of sets that don't contain themselves". ↩ Though note that when you're inserting or updating an interval, you already have that row's fields in the trigger's NEW keyword. So you can just query !(some i in intervals: Overlap(new, i')), which is more efficient. ↩
In the previous article, we peeked at the reset circuit of ESP-Prog with an oscilloscope, and reproduced it with basic components. We observed that it did not behave quite as expected. In this article, we’ll look into the missing pieces. An incomplete circuit For a hint, we’ll first look a bit more closely at the … Continue reading The missing part of Espressif’s reset circuit → The post The missing part of Espressif’s reset circuit appeared first on Quentin Santos.
After shipping my work transforming HTML with Netlify’s edge functions I realized I have a little bug: the order of the icons specified in the URL doesn’t match the order in which they are displayed on screen. Why’s this happening? I have a bunch of links in my HTML document, like this: <icon-list> <a href="/1/">…</a> <a href="/2/">…</a> <a href="/3/">…</a> <!-- 2000+ more --> </icon-list> I use html-rewriter in my edge function to strip out the HTML for icons not specified in the URL. So for a request to: /lookup?id=1&id=2 My HTML will be transformed like so: <icon-list> <!-- Parser keeps these two --> <a href="/1/">…</a> <a href="/2/">…</a> <!-- But removes this one --> <a href="/3/">…</a> </icon-list> Resulting in less HTML over the wire to the client. But what about the order of the IDs in the URL? What if the request is to: /lookup?id=2&id=1 Instead of: /lookup?id=1&id=2 In the source HTML document containing all the icons, they’re marked up in reverse chronological order. But the request for this page may specify a different order for icons in the URL. So how do I rewrite the HTML to match the URL’s ordering? The problem is that html-rewriter doesn’t give me a fully-parsed DOM to work with. I can’t do things like “move this node to the top” or “move this node to position x”. With html-rewriter, you only “see” each element as it streams past. Once it passes by, your chance at modifying it is gone. (It seems that’s just the way these edge function tools are designed to work, keeps them lean and performant and I can’t shoot myself in the foot). So how do I change the icon’s display order to match what’s in the URL if I can’t modify the order of the elements in the HTML? CSS to the rescue! Because my markup is just a bunch of <a> tags inside a custom element and I’m using CSS grid for layout, I can use the order property in CSS! All the IDs are in the URL, and their position as parameters has meaning, so I assign their ordering to each element as it passes by html-rewriter. Here’s some pseudo code: // Get all the IDs in the URL const ids = url.searchParams.getAll("id"); // Select all the icons in the HTML rewriter.on("icon-list a", { element: (element) => { // Get the ID const id = element.getAttribute('id'); // If it's in our list, set it's order // position from the URL if (ids.includes(id)) { const order = ids.indexOf(id); element.setAttribute( "style", `order: ${order}` ); // Otherwise, remove it } else { element.remove(); } }, }); Boom! I didn’t have to change the order in the source HTML document, but I can still get the displaying ordering to match what’s in the URL. I love shifty little workarounds like this! Email · Mastodon · Bluesky
Here are a few tangentially-related ideas vaguely near the theme of comparison operators. comparison style clamp style clamp is median clamp in range range style style clash? comparison style Some languages such as BCPL, Icon, Python have chained comparison operators, like if min <= x <= max: ... In languages without chained comparison, I like to write comparisons as if they were chained, like, if min <= x && x <= max { // ... } A rule of thumb is to prefer less than (or equal) operators and avoid greater than. In a sequence of comparisons, order values from (expected) least to greatest. clamp style The clamp() function ensures a value is between some min and max, def clamp(min, x, max): if x < min: return min if max < x: return max return x I like to order its arguments matching the expected order of the values, following my rule of thumb for comparisons. (I used that flavour of clamp() in my article about GCRA.) But I seem to be unusual in this preference, based on a few examples I have seen recently. clamp is median Last month, Fabian Giesen pointed out a way to resolve this difference of opinion: A function that returns the median of three values is equivalent to a clamp() function that doesn’t care about the order of its arguments. This version is written so that it returns NaN if any of its arguments is NaN. (When an argument is NaN, both of its comparisons will be false.) fn med3(a: f64, b: f64, c: f64) -> f64 { match (a <= b, b <= c, c <= a) { (false, false, false) => f64::NAN, (false, false, true) => b, // a > b > c (false, true, false) => a, // c > a > b (false, true, true) => c, // b <= c <= a (true, false, false) => c, // b > c > a (true, false, true) => a, // c <= a <= b (true, true, false) => b, // a <= b <= c (true, true, true) => b, // a == b == c } } When two of its arguments are constant, med3() should compile to the same code as a simple clamp(); but med3()’s misuse-resistance comes at a small cost when the arguments are not known at compile time. clamp in range If your language has proper range types, there is a nicer way to make clamp() resistant to misuse: fn clamp(x: f64, r: RangeInclusive<f64>) -> f64 { let (&min,&max) = (r.start(), r.end()); if x < min { return min } if max < x { return max } return x; } let x = clamp(x, MIN..=MAX); range style For a long time I have been fond of the idea of a simple counting for loop that matches the syntax of chained comparisons, like for min <= x <= max: ... By itself this is silly: too cute and too ad-hoc. I’m also dissatisfied with the range or slice syntax in basically every programming language I’ve seen. I thought it might be nice if the cute comparison and iteration syntaxes were aspects of a more generally useful range syntax, but I couldn’t make it work. Until recently when I realised I could make use of prefix or mixfix syntax, instead of confining myself to infix. So now my fantasy pet range syntax looks like >= min < max // half-open >= min <= max // inclusive And you might use it in a pattern match if x is >= min < max { // ... } Or as an iterator for x in >= min < max { // ... } Or to take a slice xs[>= min < max] style clash? It’s kind of ironic that these range examples don’t follow the left-to-right, lesser-to-greater rule of thumb that this post started off with. (x is not lexically between min and max!) But that rule of thumb is really intended for languages such as C that don’t have ranges. Careful stylistic conventions can help to avoid mistakes in nontrivial conditional expressions. It’s much better if language and library features reduce the need for nontrivial conditions and catch mistakes automatically.
SumatraPDF is a medium size (120k+ loc, not counting dependencies) Windows GUI (win32) C++ code base started by me and written by mostly 2 people. The goals of SumatraPDF are to be: fast small packed with features and yet with thoughtfully minimal UI It’s not just a matter of pride in craftsmanship of writing code. I believe being fast and small are a big reason for SumatraPDF’s success. People notice when an app starts in an instant because that’s sadly not the norm in modern software. The engineering goals of SumatraPDF are: reliable (no crashes) fast compilation to enable fast iteration SumatraPDF has been successful achieving those objectives so I’m writing up my C++ implementation decisions. I know those decisions are controversial. Maybe not Terry Davis level of controversial but still. You probably won’t adopt them. Even if you wanted to, you probably couldn’t. There’s no way code like this would pass Google review. Not because it’s bad but becaues it’s different. Diverging from mainstream this much is only feasible if you have total control: it’s your company or your own open-source project. If my ideas were just like everyone else’s ideas, there would be little point in writing about them, would it? Use UTF8 strings internally My app only runs on Windows and a string native to Windows is WCHAR* where each character consumes 2 bytes. Despite that I mostly use char* assumed to be utf8-encoded. I only decided on that after lots of code was written so it was a refactoring oddysey that is still ongoing. My initial impetus was to be able to compile non-GUI parts under Linux and Mac. I abandoned that goal but I think that’s a good idea anyway. WCHAR* strings are 2x larger than char*. That’s more memory used which also makes the app slower. Binaries are bigger if string constants are WCHAR*. The implementation rule is simple: I only convert to WCHAR* when calling Windows API. When Windows API returns WCHA* I convert it to utf-8. No exceptions Do you want to hear a joke? “Zero-cost exceptions”. Throwing and catching exceptions generate bloated code. Exceptions are a non-local control flow that makes it hard to reason about program. Every memory allocation becomes a potential leak. But RAII, you protest. RAII is a “solution” to a problem created by exceptions. How about I don’t create the problem in the first place. Hard core #include discipline I wrote about it in depth. My objects are not shy I don’t bother with private and protected. struct is just class with guts exposed by default, so I use that. While intellectually I understand the reasoning behind hiding implementation details in practices it becomes busy work of typing noise and then even more typing when you change your mind about visibility. I’m the only person working on the code so I don’t need to force those of lesser intellect to write the code properly. My objects are shy At the same time I minimize what goes into a class, especially methods. The smaller the class, the faster the build. A common problem is adding too many methods to a class. You have a StrVec class for array of strings. A lesser programmer is tempted to add Join(const char* sep) method to StrVec. A wise programmer makes it a stand-alone function: Join(const StrVec& v, const char* sep). This is enabled by making everything in a class public. If you limit visibility you then have to use friendto allow Join() function access what it needs. Another example of “solution” to self-inflicted problems. Minimize #ifdef #ifdef is problematic because it creates code paths that I don’t always build. I provide arm64, intel 32-bit and 64-bit builds but typically only develop with 64-bit intel build. Every #ifdef that branches on architecture introduces potential for compilation error which I’ll only know about when my daily ci build fails. Consider 2 possible implementations of IsProcess64Bit(): Bad: bool IsProcess64Bit() { #ifdef _WIN64 return true; #else return false; #endif } Good: bool IsProcess64Bit() { return sizeof(uintptr_t) == 8; } The bad version has a bug: it was correct when I was only doing intel builds but became buggy when I added arm64 builds. This conflicts with the goal of smallest possible size but it’s worth it. Stress testing SumatraPDF supports a lot of very complex document and image formats. Complex format require complex code that is likely to have bugs. I also have lots of files in those formats. I’ve added stress testing functionality where I point SumatraPDF to a folder with files and tell it to render all of them. For greater coverage, I also simulate some of the possible UI actions users can take like searching, switching view modes etc. Crash reporting I wrote about it in depth. Heavy use of CrashIf() C/C++ programmers are familiar with assert() macro. CrashIf() is my version of that, tailored to my needs. The purpose of assert / CrashIf is to add checks to detect incorrect use of APIs or invalid states in the program. For example, if the code tries to access an element of an array at an invalid index (negative or larger than size of the array), it indicates a bug in the program. I want to be notified about such bugs both when I test SumatraPDF and when it runs on user’s computers. As the name implies, it’ll crash (by de-referencing null pointer) and therefore generate a crash report. It’s enabled in debug and pre-release builds but not in release builds. Release builds have many, many users so I worry about too many crash reports. premake to generate Visual Studio solution Visual Studio uses XML files as a list of files in the project and build format. The format is impossible to work with in a text editor so you have no choice but to use Visual Studio to edit the project / solution. To add a new file: find the right UI element, click here, click there, pick a file using file picker, click again. To change a compilation setting of a project or a file? Find the right UI element, click here, click there, type this, confirm that. You accidentally changed compilation settings of 1 file out of a hundred? Good luck figuring out which one. Go over all files in UI one by one. In other words: managing project files using Visual Studio UI is a nightmare. Premake is a solution. It’s a meta-build system. You define your build using lua scripts, which look like test configuration files. Premake then can generate Visual Studio projects, XCode project, makefiles etc. That’s the meta part. It was truly a life server on project with lots of files (SumatraPDF’s own are over 300, many times more for third party libraries). Using /analyze and cppcheck cppcheck and /analyze flag in cl.exe are tools to find bugs in C++ code via static analysis. They are like a C++ compiler but instead of generating code, they analyze control flow in a program to find potential programs. It’s a cheap way to find some bugs, so there’s no excuse to not run them from time to time on your code. Using asan builds Address Sanitizer (asan) is a compiler flag /fsanitize=address that instruments the code with checks for common memory-related bugs like using an object after freeing it, over-writing values on the stack, freeing an object twice, writing past allocated memory. The downside of this instrumentation is that the code is much slower due to overhead of instrumentation. I’ve created a project for release build with asan and run it occasionally, especially in stress test. Write for the debugger Programmers love to code golf i.e. put us much code on one line as possible. As if lines of code were expensive. Many would write: Bad: // ... return (char*)(start + offset); I write: Good: // ... char* s = (char*)(start + offset); return s; Why? Imagine you’re in a debugger stepping through a debug build of your code. The second version makes it trivial to set a breakpoint at return s line and look at the value of s. The first doesn’t. I don’t optimize for smallest number of lines of code but for how easy it is to inspect the state of the program in the debugger. In practice it means that I intentionally create intermediary variables like s in the example above. Do it yourself standard library I’m not using STL. Yes, I wrote my own string and vector class. There are several reasons for that. Historical reason When I started SumatraPDF over 15 years ago STL was crappy. Bad APIs Today STL is still crappy. STL implementations improved greatly but the APIs still suck. There’s no API to insert something in the middle of a string or a vector. I understand the intent of separation of data structures and algorithms but I’m a pragmatist and to my pragmatist eyes v.insert (v.begin(), myarray, myarray+3); is just stupid compared to v.inert(3, el). Code bloat STL is bloated. Heavy use of templates leads to lots of generated code i.e. surprisingly large binaries for supposedly low-level language. That bloat is invisible i.e. you won’t know unless you inspect generated binaries, which no one does. The bloat is out of my control. Even if I notice, I can’t fix STL classes. All I can do is to write my non-bloaty alternative, which is what I did. Slow compilation times Compilation of C code is not fast but it feels zippy compared to compilation of C++ code. Heavy use of templates is big part of it. STL implementations are over-templetized and need to provide all the C++ support code (operators, iterators etc.). As a pragmatist, I only implement the absolute minimum functionality I use in my code. I minimize use of templates. For example Str and WStr could be a single template but are 2 implementations. I don’t understand C++ I understand the subset of C++ I use but the whole of C++ is impossibly complicated. For example I’ve read a bunch about std::move() and I’m not confident I know how to use it correctly and that’s just one of many complicated things in C++. C++ is too subtle and I don’t want my code to be a puzzle. Possibility of optimized implementations I wrote a StrVec class that is optimized for storing vector of strings. It’s more efficient than std::vector<std::string> by a large margin and I use it extensively. Temporary allocator and pool allocators I use temporary allocators heavily. They make the code faster and smaller. Technically STL has support for non-standard allocators but the API is so bad that I would rather not. My temporary allocator and pool allocators are very small and simple and I can add support for them only when beneficial. Minimize unsigned int STL and standard C library like to use size_t and other unsigned integers. I think it was a mistake. Go shows that you can just use int. Having two types leads to cast-apalooza. I don’t like visual noise in my code. Unsigned are also more dangerous. When you substract you can end up with a bigger value. Indexing from end is subtle, for (int i = n; i >= 0; i--) is buggy because i >= 0 is always true for unsigned. Sadly I only realized this recently so there’s a lot of code still to refactor to change use of size_t to int. Mostly raw pointers No std::unique_ptr for me. Warnings are errors C++ makes a distinction between compilation errors and compilation warnings. I don’t like sloppy code and polluting build output with warning messages so for my own code I use a compiler flag that turns warnings into errors, which forces me to fix the warnings.