Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
54
I wanted to gain better insights into the Salton Sea level, evaporation, inflows and outflows. Step one was to gather publicly available data about its level, and collate it into a single graph. Here we see that despite the continual formation of Salton Sea advisory committees, the water level increased about 12′ after 1950, flooding many coastal resort towns, and then began a precipitous drop in about 2000. [Edit: If you enjoy this kind of thing, you may find a career at my company, Terraform Industries, rewarding. We’re hiring smart ambitious people in Los Angeles to bridge the gap between solar energy …
6 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from Casey Handmer's blog

Why am I searched every time I go to Australia?

The Australian Border Force won’t stop searching me and my personal devices when I visit Australia. Despite being an Australian citizen, under Australian law, I have zero recourse to this continued flagrant invasion of my privacy. After two years of harassment I am publicizing this as a considered next step in an effort to make it stop.  This is somewhat different from my usual articles about space, energy, and technology – we will return to that theme shortly. As far as possible, I will relate only facts and keep editorializing to a minimum. I will update this post as the …

2 months ago 11 votes
To Conquer the Primary Energy Consumption Layer of Our Entire Civilization

[Originally posted on the Terraform blog April 3, 2025.] Three years ago we set out to make cheap synthetic natural gas from sunlight and air. At the time I didn’t fully appreciate that we had kicked off the process of recompiling the foundation layer of our entire industrial stack.  Last year, we made cheap pipeline grade natural gas from sunlight and air and expanded our hydrocarbon fuel road map to include methanol, a versatile liquid fuel and chemical precursor for practically every other kind of oil-derived chemical on the market. Unlimited synthetic methane and methanol underpinning global energy supply is a good start, but …

2 months ago 33 votes
Long duration propellant stability in Starship

Some ideas on preventing cryogenic propellant boiloff in Starship during long duration cruise or while operating orbital fuel depots. The usual caveats apply! One of the major concerns with using Starship for the Human Landing System is that propellant (cryogenically liquid methane and oxygen) need to a) be transferred in orbit and b) maintained for the duration of the mission, which could be weeks, months, or years. In particular, no astronaut wants to board their Starship after a successful 6 week sortie on the Moon only to find the fuel’s boiled off and they’re stuck.  The trick lies in using energy …

3 months ago 35 votes
California’s path to redemption

California is by far the richest and most powerful polity led by Progressive ideals, and it has taken a beating of late. In this post, I discuss a practical roadmap by which California must reclaim its mantle as the shining city on the hill, an embodiment of the positive attributes of Progressive ideals and material optimism, and once again become a target of aspirational upward mobility. This will not be an easy road. Decades of complacency have squandered enviable resources and potential. But I believe a strength of America is syncretism, with the marketplace of ideas providing robust competition for …

4 months ago 33 votes
What can we send to Mars on the first Starships?

As of today, it is 601 days until October 17, 2026, when the mass-optimal launch window to Mars opens next.  While I don’t have any privileged information, it’s fun to speculate about what SpaceX could choose to send on its first Starship flights to Mars. (Spoiler alert: Rods from the gods…) Over the next 600 days, SpaceX has a number of key technologies to demonstrate; orbit, reuse, refill, and chill. It’s hard to make predictions, particularly about the future. I’m optimistic that SpaceX will have multiple fully fueled Starships ready to go in October next year, to be followed by …

4 months ago 52 votes

More in science

This 1945 TV Console Showed Two Programs at Once

As I try to write this article, my friend and I have six different screens attached to three types of devices. We’re working in the same room but on our own projects—separate yet together, a comfortable companionship. I had never really thought of the proliferation of screens as a peacekeeping tool until I stumbled across one of Allen B. DuMont’s 1950s dual-screen television sets. DuMont’s idea was to let two people in the same room watch different programs. It reminded me of my early childhood and my family’s one TV set, and the endless arguments with my sisters and parents over what to watch. Dad always won, and his choice was rarely mine. The DuMont Duoscopic Was 2 TVs in 1 Allen B. DuMont was a pioneer of commercial television in the United States. His eponymous company manufactured cathode-ray tubes and in 1938 introduced one of the earliest electronic TV sets. He understood how human nature and a shortage of TV screens could divide couples, siblings, and friends. Accordingly, he built at least two prototype TVs that could play two shows at once. In the 1945 prototype shown at top, DuMont retrofitted a maple-finished cabinet that originally held a single 15-inch Plymouth TV receiver to house two black-and-white 12-inch receivers. Separate audio could be played with or without earpieces. Viewers used a 10-turn dial to tune into TV channel 1 (which went off the air in 1948) and VHF channels 2 through 13. As radio was still much more popular than television, the dial also included FM from 88 to 108 megahertz, plus a few channels used for weather and aviation. The lower left drawer held a phonograph. It was an all-in-one entertainment center. To view their desired programs on the DuMont Duoscopic TV set, this family wore polarized glasses and listened through earpieces.Allen DuMont/National Museum of American History/Smithsonian In 1954, DuMont introduced a different approach. With the DuMont Duoscopic, two different channels were broadcast on a single screen. To the naked eye, the images appeared superimposed on one another. But a viewer who wore polarized glasses or looked at the screen through a polarized panel saw just one of the images. Duoscopic viewers could use an earpiece to listen to the audio of their choice. You could also use the TV set to watch a single program by selecting only one channel and playing the audio through one speaker. DuMont seemed committed to the idea that family members should spend time together, even if they were engaged in different activities. An image of the Duoscopic sent out by the Associated Press Wirephoto Service heralded “No more lonely nights for the missus.” According to the caption, she could join “Hubby,” who was already relaxing in his comfy armchair enjoying his favorite show, but now watch something of her own choosing. “Would you believe it?” a Duoscopic brochure asks. “While HE sees and hears the fights, SHE sees and hears her play…. Separate viewing and solo sound allows your family a choice.” The technology to separate and isolate the images and audio was key. The Duoscopic had two CRTs, each with its own feed, set at right angles to each other. A half-silvered mirror superimposed the two images onto a single screen, which could then be filtered with polarized glasses or screens. TV pioneer Allen B. DuMont designed and manufactured cathode ray tubes and TV sets and launched an early TV network.Science History Images/Alamy A separate box could be conveniently placed nearby to control the volume of each program. Users could toggle between the two programs with the flick of a switch. Each set came with eight earpieces with long cords. A short note in the March 1954 issue of Electrical Engineering praises the engineers who crafted the sound system to eliminate sound bleed from the speakers. It notes that a viewer “very easily could watch one television program and listen to the audio content of a second.” Or, as a United Press piece published in the Panama City News Herald suggested, part of the family could use the earpieces to watch and listen to the TV while others in the room could “read, play bridge, or just sit and brood.” I suspect the brooders were the children who still didn’t get to watch their favorite show. Of course, choice was a relative matter. In the 1950s, many U.S. television markets were lucky to have even two channels. Only in major metropolitan areas were there more programming options. The only known example of DuMont’s side-by-side version resides at the South Carolina State Museum, in Columbia. But sources indicate that DuMont planned to manufacture about 30 Duoscopics for demonstration purposes, although it’s unclear how many were actually made. (The Smithsonian’s National Museum of American History has a Duoscopic in its collections.) Alas, neither version ever went into mainstream production. Perhaps that’s because the economics didn’t make sense: Even in the early 1950s, it would have been easier and cheaper for families to simply purchase two television sets and watch them in different rooms. Who Was Early TV Pioneer Allen DuMont? DuMont is an interesting figure in the history of television because he was actively engaged in the full spectrum of the industry. Not only did he develop and manufacture receivers, he also conducted broadcasting experiments, published papers on transmission and reception, ran a television network, and produced programming. After graduating from Rensselaer Polytechnic Institute in 1924 with a degree in electrical engineering, DuMont worked in a plant that manufactured vacuum tubes. Four years later, he joined the De Forest Radio Co. as chief engineer. With Lee de Forest, DuMont helped design an experimental mechanical television station, but he was unconvinced by the technology and advocated for all-electric TV for its crisper image. RELATED: In 1926, TV Was Mechanical When the Radio Corporation of America acquired De Forest Radio in 1931, DuMont started his own laboratory in his basement, where he worked on improving cathode ray tubes. In 1932 he invented the “magic eye,” a vacuum tube that was a visual tuning aid in radio receivers. He sold the rights to RCA. In 1935, DuMont moved the operation to a former pickle factory in Passaic, N.J., and incorporated it as the Allen B. DuMont Laboratories. The company produced cathode ray oscilloscopes, which helped finance his experiments with television. He debuted the all-electronic DuMont 180 TV set in June 1938. It cost US $395, or almost $9,000 today—so not exactly an everyday purchase for most people. Although DuMont was quick to market, RCA and the Television Corp. of America were right on his tail. RELATED: RCA’s Lucite Phantom Teleceiver Introduced the Idea of TV Of course, if companies were going to sell televisions, consumers had to have programs to watch. So in 1939, DuMont launched his own television network, starting with station W2XWV, broadcasting from Passaic. The Federal Communications Commission licensed W2XWV as an experimental station for television research. DuMont received a commercial license and changed its call sign to WABD on 2 May 1944, three years after NBC’s and CBS’s commercial stations went into operation in New York City. Due to wartime restrictions and debates over industry standards, television remained mostly experimental during World War II. As of September 1944, there were only six stations operating—three in New York City and one each in Chicago, Los Angeles, and Philadelphia. There were approximately 7,000 TV sets in personal use. The DuMont Television Network’s variety show hosted by Jackie Gleason [left, hands raised] featured a recurring skit that later gave rise to “The Honeymooners.”Left: CBS/Getty Images; Right: Garry Winogrand/Picture Post/Hulton Archive/Getty Images While other networks focused on sports, movies, or remote broadcasts, the DuMont Television Network made its mark with live studio broadcasts. In April 1946, WABD moved its studios to the Wanamaker Department Store in Manhattan. DuMont converted the 14,200-cubic-meter (500,000-cubic-foot) auditorium into the world’s largest television studio. The network’s notable programming included “The Original Amateur Hour,” which started as a radio program; “The Johns Hopkins Science Review,” which had a surprisingly progressive take on women’s health; “Life Is Worth Living,” a devotional show hosted by Catholic Bishop Fulton Sheen (that garnered DuMont’s only Emmy Award); “Cavalcade of Stars,” a variety show hosted by Jackie Gleason that birthed “The Honeymooners”; and “Captain Video and His Video Rangers,” a children’s science fiction series, the first of its genre. My grandmother, who loved ballroom dancing, was a big fan of “The Arthur Murray Party,” a dance show hosted by Arthur’s wife, Kathryn; my mom fondly recalls Kathryn’s twirling skirts. While NBC, CBS, and the other major television players built their TV networks on their existing radio networks, DuMont was starting fresh. To raise capital for his broadcast station, he sold a half-interest in his company to Paramount Pictures in 1938. The partnership was contentious from the start. There were disputes over money, the direction of the venture, and stock. But perhaps the biggest conflict was when Paramount and some of its subsidiaries began applying for FCC licenses in the same markets as Dumont’s. This ate into the DuMont network’s advertising and revenue and its plans to expand. In August 1955, Paramount gained full control over the DuMont network and proceeded to shut it down. DuMont continued to manufacture television receivers until 1958, when he sold the business to the Emerson Radio & Phonograph Corp. Two years later, the remainder of DuMont Labs merged with the Fairchild Camera and Instrument Corp. (whose founder, Sherman Fairchild, had in 1957 helped a group of ambitious young scientists and engineers known as the “Traitorous Eight” set up Fairchild Semiconductor). Allen DuMont served as general manager of the DuMont division for a year and then became a technical consultant to Fairchild. He died in 1965. One Thing Allen DuMont Missed My family eventually got a second and then a third television, but my dad always had priority. He watched the biggest set from his recliner in the family room, while my mom made do with the smaller sets in the kitchen and bedroom. He was relaxing, while she was usually doing chores. As a family, we would watch different shows in separate places. An ad for the DuMont Duoscopic touted it as a device for household harmony: “While HE sees and hears the fights, SHE sees and hears her play.” National Museum of American History/Smithsonian These days, with so many screens on so many devices and so many programming options, we may have finally achieved DuMont’s vision of separate but together. While I was writing this piece, my friend was watching the French Open on the main TV, muted so she didn’t disturb me. She streamed the same channel on her tablet and routed the audio to her headset. We both worked on our respective laptops and procrastinated by checking messages on our phones. But there’s one aspect of human nature that DuMont’s prototypes and promotional materials failed to address—that moment when someone sees something so exciting that they just have to share it. Sarah and I were barely getting any work done in this separate-but-together setting because we kept interrupting each other with questions, comments, and the occasional tennis update. We’ve been friends too long; we can’t help but chitchat. The only way for me to actually finish this article will be to go to a room by myself with no other screens or people to distract me. Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology. An abridged version of this article appears in the July 2025 print issue as “The 2-in-1 TV.” References I first learned about the Duoscopic in a short article in the March 1954 issue of Electrical Engineering, a precursor publication to Spectrum. My online research turned up several brochures and newspaper articles from the Early Television Museum, which surprisingly led me to the dual-screen DuMont at the South Carolina State Museum in my hometown of Columbia, S.C. Museum objects are primary sources, and I was fortunate to be able to visit this amazing artifact and examine it with Director of Collections Robyn Thiesbrummel. I also consulted the museum’s accession file, which gave additional information about the receiver from the time of acquisition. I took a look at Gary Newton Hess’s 1960 dissertation, An Historical Study of the Du Mont Television Network, as well as several of Allen B. DuMont’s papers published in the Proceedings of the IRE and Electrical Engineering.

20 hours ago 5 votes
The end of lead

How a single taxi ride saved millions of lives

21 hours ago 3 votes
How Smell Guides Our Inner World

A better understanding of human smell is emerging as scientists interrogate its fundamental elements: the odor molecules that enter your nose and the individual neurons that translate them into perception in your brain. The post How Smell Guides Our Inner World first appeared on Quanta Magazine

20 hours ago 2 votes
Meta Said A.I. Could Help Tackle Warming. An Early Experiment Underwhelmed

Last year Meta identified 135 materials that could potentially be used to draw down carbon dioxide, work it described as "groundbreaking." But when scientists tried to reproduce the results, they found that none of the materials could perform as promised and that some did not even exist. Read more on E360 →

23 hours ago 2 votes
Physicists Start To Pin Down How Stars Forge Heavy Atoms

The precursors of heavy elements might arise in the plasma underbellies of swollen stars or in smoldering stellar corpses. They definitely exist in East Lansing, Michigan. The post Physicists Start To Pin Down How Stars Forge Heavy Atoms first appeared on Quanta Magazine

2 days ago 3 votes