Full Width [alt+shift+f] Shortcuts [alt+shift+k]
Sign Up [alt+shift+s] Log In [alt+shift+l]
33
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLAND ICUAS 2025: 14–17 May 2025, CHARLOTTE, NC ICRA 2025: 19–23 May 2025, ATLANTA, GA London Humanoids Summit: 29–30 May 2025, LONDON IEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN 2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TX RSS 2025: 21–25 June 2025, LOS ANGELES ETH Robotics Summer School: 21–27 June 2025, GENEVA IAS 2025: 30 June–4 July 2025, GENOA, ITALY ICRES 2025: 3–4 July 2025, PORTO, PORTUGAL IEEE World Haptics: 8–11 July 2025, SUWON, KOREA IFAC Symposium on Robotics: 15–18 July 2025, PARIS RoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL RO-MAN 2025: 25–29 August 2025, EINDHOVEN, THE NETHERLANDS CLAWAR 2025: 5–7 September 2025, SHENZHEN World Robot Summit: 10–12 October...
2 months ago

Improve your reading experience

Logged in users get linked directly to articles resulting in a better reading experience. Please login for free, it takes less than 1 minute.

More from IEEE Spectrum

Why JPEGs Still Rule the Web

A version of this post originally appeared on Tedium, Ernie Smith’s newsletter, which hunts for the end of the long tail. For roughly three decades, the JPEG has been the World Wide Web’s primary image format. But it wasn’t the one the Web started with. In fact, the first mainstream graphical browser, NCSA Mosaic, didn’t initially support inline JPEG files—just inline GIFs, along with a couple of other formats forgotten to history. However, the JPEG had many advantages over the format it quickly usurped. aspect_ratio Despite not appearing together right away—it first appeared in Netscape in 1995, three years after the image standard was officially published—the JPEG and web browser fit together naturally. JPEG files degraded more gracefully than GIFs, retaining more of the picture’s initial form—and that allowed the format to scale to greater levels of success. While it wasn’t capable of animation, it progressively expanded from something a modem could pokily render to a format that was good enough for high-end professional photography. For the internet’s purposes, the degradation was the important part. But it wasn’t the only thing that made the JPEG immensely valuable to the digital world. An essential part was that it was a documented standard built by numerous stakeholders. The GIF was a de facto standard. The JPEG was an actual one How important is it that JPEG was a standard? Let me tell you a story. During a 2013 New York Times interview conducted just before he received an award honoring his creation, GIF creator Steve Wilhite stepped into a debate he unwittingly created. Simply put, nobody knew how to pronounce the acronym for the image format he had fostered, the Graphics Interchange Format. He used the moment to attempt to set the record straight—it was pronounced like the peanut butter brand: “It is a soft ‘G,’ pronounced ‘jif.’ End of story,” he said. I posted a quote from Wilhite on my popular Tumblr around that time, a period when the social media site was the center of the GIF universe. And soon afterward, my post got thousands of reblogs—nearly all of them disagreeing with Wilhite. Soon, Wilhite’s quote became a meme. The situation paints how Wilhite, who died in 2022, did not develop his format by committee. He could say it sounded like “JIF” because he built it himself. He was handed the project as a CompuServe employee in 1987; he produced the object, and that was that. The initial document describing how it works? Dead simple. 38 years later, we’re still using the GIF—but it never rose to the same prevalence of JPEG. The JPEG, which formally emerged about five years later, was very much not that situation. Far from it, in fact—it’s the difference between a de facto standard and an actual one. And that proved essential to its eventual ubiquity. We’re going to degrade the quality of this image throughout this article. At its full image size, it’s 13.7 megabytes.Irina Iriser How the JPEG format came to life Built with input from dozens of stakeholders, the Joint Photographic Experts Group ultimately aimed to create a format that fit everyone’s needs. (Reflecting its committee-led roots, there would be no confusion about the format’s name—an acronym of the organization that designed it.) And when the format was finally unleashed on the world, it was the subject of a more than 600-page book. JPEG: Still Image Data Compression Standard, written by IBM employees and JPEG organization stakeholders William B. Pennebaker and Joan L. Mitchell, describes a landscape of multimedia imagery, held back without a way to balance the need for photorealistic images and immediacy. Standardization, they believed, could fix this. “The problem was not so much the lack of algorithms for image compression (as there is a long history of technical work in this area),” the authors wrote, “but, rather, the lack of a standard algorithm—one which would allow an interchange of images between diverse applications.” And they were absolutely right. For more than 30 years, JPEG has made high-quality, high-resolution photography accessible in operating systems far and wide. Although we no longer need to compress JPEGs to within an inch of their life, having that capability helped enable the modern internet. As the book notes, Mitchell and Pennebaker were given IBM’s support to follow through this research and work with the JPEG committee, and that support led them to develop many of the JPEG format’s foundational patents. Described in patents filed by Mitchell and Pennebaker in 1988, IBM and other members of the JPEG standards committee, such as AT&T and Canon, were developing ways to use compression to make high-quality images easier to deliver in confined settings. Each member brought their own needs to the process. Canon, obviously, was more focused on printers and photography, while AT&T’s interests were tied to data transmission. Together, the companies left behind a standard that has stood the test of time. All this means, funnily enough, that the first place that a program capable of using JPEG compression appeared was not MacOS or Windows, but OS/2—a fascinating-but-failed graphical operating system created by Pennebaker and Mitchell’s employer, IBM. As early as 1990, OS/2 supported the format through the OS/2 Image Support application. At 50 percent of its initial quality, the image is down to about 2.6 MB. By dropping half of the image’s quality, we brought it down to one-fifth of the original file size. Original image: Irina Iriser What a JPEG does when you heavily compress it The thing that differentiates a JPEG file from a PNG or a GIF is how the data degrades as you compress it. The goal for a JPEG image is to still look like a photo when all is said and done, even if some compression is necessary to make it all work at a reasonable size. That way, you can display something that looks close to the original image in fewer bytes. Or, as Pennebaker and Mitchell put it, “the most effective compression is achieved by approximating the original image (rather than reproducing it exactly).” Central to this is a compression process called discrete cosine transform (DCT), a lossy form of compression encoding heavily used in all sorts of compressed formats, most notably in digital audio and signal processing. Essentially, it delivers a lower-quality product by removing details, while still keeping the heart of the original product through approximation. The stronger the cosine transformation, the more compressed the final result. The algorithm, developed by researchers in the 1970s, essentially takes a grid of data and treats it as if you’re controlling its frequency with a knob. The data rate is controlled like water from a faucet: The more data you want, the higher the setting. DCT allows a trickle of data to still come out in highly compressed situations, even if it means a slightly compromised result. In other words, you may not keep all the data when you compress it, but DCT allows you to keep the heart of it. (See this video for a more technical but still somewhat easy-to-follow description of DCT.) DCT is everywhere. If you have ever seen a streaming video or an online radio stream that degraded in quality because your bandwidth suddenly declined, you’ve witnessed DCT being utilized in real time. A JPEG file doesn’t have to leverage the DCT with just one method, as JPEG: Still Image Data Compression Standard explains: The JPEG standard describes a family of large image compression techniques, rather than a single compression technique. It provides a “tool kit” of compression techniques from which applications can select elements that satisfy their particular requirements. The toolkit has four modes: Sequential DCT, which displays the compressed image in order, like a window shade slowly being rolled down Progressive DCT, which displays the full image in the lowest-resolution format, then adds detail as more information rolls in Sequential lossless, which uses the window shade format but doesn’t compress the image Hierarchical mode, which combines the prior three modes—so maybe it starts with a progressive mode, then loads DCT compression slowly, but then reaches a lossless final result At the time the JPEG was being created, modems were extremely common. That meant images loaded slowly, making Progressive DCT the most fitting format for the early internet. Over time, the progressive DCT mode has become less common, as many computers can simply load the sequential DCT in one fell swoop. That same forest, saved at 5 percent quality. Down to about 419 kilobytes.Original image: Irina Iriser When an image is compressed with DCT, the change tends to be less noticeable in busier, more textured areas of the picture, like hair or foliage. Those areas are harder to compress, which means they keep their integrity longer. It tends to be more noticeable, however, with solid colors or in areas where the image sharply changes from one color to another—like text on a page. Ever screenshot a social media post, only for it to look noisy? Congratulations, you just made a JPEG file. Other formats, like PNG, do better with text, because their compression format is intended to be non-lossy. (Side note: PNG’s compression format, DEFLATE, was designed by Phil Katz, who also created the ZIP format. The PNG format uses it in part because it was a license-free compression format. So it turns out the brilliant coder with the sad life story improved the internet in multiple ways before his untimely passing.) In many ways, the JPEG is one tool in our image-making toolkit. Despite its age and maturity, it remains one of our best options for sharing photos on the internet. But it is not a tool for every setting—despite the fact that, like a wrench sometimes used as a hammer, we often leverage it that way. Forgent Networks claimed to own the JPEG’s defining algorithm The JPEG format gained popularity in the ’90s for reasons beyond the quality of the format. Patents also played a role: Starting in 1994, the tech company Unisys attempted to bill individual users who relied on GIF files, which used a patent the company owned. This made the free-to-use JPEG more popular. (This situation also led to the creation of the patent-free PNG format.) While the JPEG was standards-based, it could still have faced the same fate as the GIF, thanks to the quirks of the patent system. A few years before the file format came to life, a pair of Compression Labs employees filed a patent application that dealt with the compression of motion graphics. By the time anyone noticed its similarity to JPEG compression, the format was ubiquitous. Our forest, saved at 1 percent quality. This image is only about 239 KB in size, yet it’s still easily recognizable as the same photo. That’s the power of the JPEG.Original image: Irina Iriser Then in 1997, a company named Forgent Networks acquired Compression Labs. The company eventually spotted the patent and began filing lawsuits over it, a series of events it saw as a stroke of good luck. “The patent, in some respects, is a lottery ticket,” Forgent Chief Financial Officer Jay Peterson told CNET in 2005. “If you told me five years ago that ‘You have the patent for JPEG,’ I wouldn’t have believed it.” While Forgent’s claim of ownership of the JPEG compression algorithm was tenuous, it ultimately saw more success with its legal battles than Unisys did. The company earned more than $100 million from digital camera makers before the patent finally ran out of steam around 2007. The company also attempted to extract licensing fees from the PC industry. Eventually, Forgent agreed to a modest $8 million settlement. As the company took an increasingly aggressive approach to its acquired patent, it began to lose battles both in the court of public opinion and in actual courtrooms. Critics pounced on examples of prior art, while courts limited the patent’s use to motion-based uses like video. By 2007, Forgent’s compression patent expired—and its litigation-heavy approach to business went away. That year, the company became Asure Software, which now specializes in payroll and HR solutions. Talk about a reboot. Why the JPEG won’t die The JPEG file format has served us well. It’s been difficult to remove the format from its perch. The JPEG 2000 format, for example, was intended to supplant it by offering more lossless options and better performance. The format is widely used by the Library of Congress and specialized sites like the Internet Archive, however, it is less popular as an end-user format. See the forest JPEG degrade from its full resolution to 1 percent quality in this GIF. Original image: Irina Iriser Other image technologies have had somewhat more luck getting past the JPEG format. The Google-supported WebP is popular with website developers (and controversial with end users). Meanwhile, the formats AVIF and HEIC, each developed by standards bodies, have largely outpaced both JPEG and JPEG 2000. Still, the JPEG will be difficult to kill at this juncture. These days, the format is similar to MP3 or ZIP files—two legacy formats too popular and widely used to kill. Other formats that compress the files better and do the same things more efficiently are out there, but it’s difficult to topple a format with a 30-year head start. Shaking off the JPEG is easier said than done. I think most people will be fine to keep it around. Ernie Smith is the editor of Tedium, a long-running newsletter that hunts for the end of the long tail.

16 hours ago 2 votes
The Birth of the University as Innovation Incubator

This article is excerpted from Every American an Innovator: How Innovation Became a Way of Life, by Matthew Wisnioski (The MIT Press, 2025). Imagine a point-to-point transportation service in which two parties communicate at a distance. A passenger in need of a ride contacts the service via phone. A complex algorithm based on time, distance, and volume informs both passenger and driver of the journey’s cost before it begins. This novel business plan promises efficient service and lower costs. It has the potential to disrupt an overregulated taxi monopoly in cities across the country. Its enhanced transparency may even reduce racial discrimination by preestablishing pickups regardless of race. aspect_ratio Every American an Innovator: How Innovation Became a Way of Life, by Matthew Wisnioski (The MIT Press, 2025).The MIT Press Carnegie Mellon University. The dial-a-ride service was designed to resurrect a defunct cab company that had once served Pittsburgh’s African American neighborhoods. National Science Foundation, the CED was envisioned as an innovation “hatchery,” intended to challenge the norms of research science and higher education, foster risk-taking, birth campus startups focused on market-based technological solutions to social problems, and remake American science to serve national needs. Are innovators born or made? During the Cold War, the model for training scientists and engineers in the United States was one of manpower in service to a linear model of innovation: Scientists pursued “basic” discovery in universities and federal laboratories; engineer–scientists conducted “applied” research elsewhere on campus; engineers developed those ideas in giant teams for companies such as Lockheed and Boeing; and research managers oversaw the whole process. This model dictated national science policy, elevated the scientist as a national hero in pursuit of truth beyond politics, and pumped hundreds of millions of dollars into higher education. In practice, the lines between basic and applied research were blurred, but the perceived hierarchy was integral to the NSF and the university research culture that it helped to foster. RELATED: Innovation Magazine and the Birth of a Buzzword The question was, how? And would the universities be willing to remake themselves to support innovation? The NSF experiments with innovation At the Utah Innovation Center, engineering students John DeJong and Douglas Kihm worked on a programmable electronics breadboard.Special Collections, J. Willard Marriott Library, The University of Utah In 1972, NSF director H. Guyford Stever established the Office of Experimental R&D Incentives to “incentivize” innovation for national needs by supporting research on “how the government [could] most effectively accelerate the transfer of new technology into productive enterprise.” Stever stressed the experimental nature of the program because many in the NSF and the scientific community resisted the idea of goal-directed research. Innovation, with its connotations of profit and social change, was even more suspect. To lead the initiative, Stever appointed C.B. Smith, a research manager at United Aircraft Corp., who in turn brought in engineers with industrial experience, including Robert Colton, an automotive engineer. Colton led the university Innovation Center experiment that gave rise to Carnegie Mellon’s CED. The NSF chose four universities that captured a range of approaches to innovation incubation. MIT targeted undergrads through formal coursework and an innovation “co-op” that assisted in turning ideas into products. The University of Oregon evaluated the ideas of garage inventors from across the country. The University of Utah emphasized an ecosystem of biotech and computer graphics startups coming out of its research labs. And Carnegie Mellon established a nonprofit corporation to support graduate student ventures, including the dial-a-ride service. Grad student Fritz Faulhaber holds one of the radio-coupled taxi meters that Carnegie Mellon students installed in Pittsburgh cabs in the 1970s.Ralph Guggenheim;Jerome McCavitt/Carnegie-Mellon Alumni News Carnegie Mellon got one of the first university incubators Carnegie Mellon had all the components that experts believed were necessary for innovation: strong engineering, a world-class business school, novel approaches to urban planning with a focus on community needs, and a tradition of industrial design and the practical arts. CMU leaders claimed that the school was smaller, younger, more interdisciplinary, and more agile than MIT. Dwight Baumann. Baumann exemplified a new kind of educator-entrepreneur. The son of North Dakota farmers, he had graduated from North Dakota State University, then headed to MIT for a Ph.D. in mechanical engineering, where he discovered a love of teaching. He also garnered a reputation as an unusually creative engineer with an interest in solving problems that addressed human needs. In the 1950s and 1960s, first as a student and then as an MIT professor, Baumann helped develop one of the first computer-aided-design programs, as well as computer interfaces for the blind and the nation’s first dial-a-ride paratransit system. Dwight Baumann, director of Carnegie Mellon’s Center for Entrepreneurial Development, believed that a modern university should provide entrepreneurial education. Carnegie Mellon University Archives The CED’s mission was to support entrepreneurs in the earliest stages of the innovation process when they needed space and seed funding. It created an environment for students to make a “sequence of nonfatal mistakes,” so they could fail and develop self-confidence for navigating the risks and uncertainties of entrepreneurial life. It targeted graduate students who already had advanced scientific and engineering training and a viable idea for a business. Carnegie Mellon’s dial-a-ride service replicated the Peoples Cab Co., which had provided taxi service to Black communities in Pittsburgh. Charles “Teenie” Harris/Carnegie Museum of Art/Getty Images A few CED students did create successful startups. The breakout hit was Compuguard, founded by electrical engineering Ph.D. students Romesh Wadhwani and Krishnahadi Pribad, who hailed from India and Indonesia, respectively. The pair spent 18 months developing a security bracelet that used wireless signals to protect vulnerable people in dangerous work environments. But after failing to convert their prototype into a working design, they pivoted to a security- and energy-monitoring system for schools, prisons, and warehouses. Wadhwani Foundation supports innovation and entrepreneurship education worldwide, particularly in emerging economies. Wharton School and elsewhere. In 1983, Baumann’s onetime partner Jack Thorne took the lead of the new Enterprise Corp., which aimed to help Pittsburgh’s entrepreneurs raise venture capital. Baumann was kicked out of his garage to make room for the initiative. Was the NSF’s experiment in innovation a success? As the university Innovation Center experiment wrapped up in the late 1970s, the NSF patted itself on the back in a series of reports, conferences, and articles. “The ultimate effect of the Innovation Centers,” it stated, would be “the regrowth of invention, innovation, and entrepreneurship in the American economic system.” The NSF claimed that the experiment produced dozens of new ventures with US $20 million in gross revenue, employed nearly 800 people, and yielded $4 million in tax revenue. Yet, by 1979, license returns from intellectual property had generated only $100,000. “Today, the legacies of the NSF experiment are visible on nearly every college campus.” Critics included Senator William Proxmire of Wisconsin, who pointed to the banana peelers, video games, and sports equipment pursued in the centers to lambast them as “wasteful federal spending” of “questionable benefit to the American taxpayer.” And so the impacts of the NSF’s Innovation Center experiment weren’t immediately obvious. Many faculty and administrators of that era were still apt to view such programs as frivolous, nonacademic, or not worth the investment.

a week ago 8 votes
The Data Reveals Top Patent Portfolios

Eight years is a long time in the world of patents. When we last published what we then called the Patent Power Scorecard, in 2017, it was a different technological and social landscape—Google had just filed a patent application on the transformer architecture, a momentous advance that spawned the generative AI revolution. China was just beginning to produce quality, affordable electric vehicles at scale. And the COVID pandemic wasn’t on anyone’s dance card. Eight years is also a long time in the world of magazines, where we regularly play around with formats for articles and infographics. We now have more readers online than we do in print, so our art team is leveraging advances in interactive design software to make complex datasets grokkable at a glance, whether you’re on your phone or flipping through the pages of the magazine. The scorecard’s return in this issue follows the return last month of The Data, which ran as our back page for several years; it’s curated by a different editor every month and edited by Editorial Director for Content Development Glenn Zorpette. As we set out to recast the scorecard for this decade, we sought to strike the right balance between comprehensiveness and clarity, especially on a mobile-phone screen. As our Digital Product Designer Erik Vrielink, Assistant Editor Gwendolyn Rak, and Community Manager Kohava Mendelsohn explained to me, they wanted something that would be eye-catching while avoiding information overload. The solution they arrived at—a dynamic sunburst visualization—lets readers grasp the essential takeaways at glance in print, while the digital version, allows readers to dive as deep as they want into the data. Working with sci-tech-focused data-mining company 1790 Analytics, which we partnered with on the original Patent Power Scorecard, the team prioritized three key metrics or characteristics: patent Pipeline Power (which goes beyond mere quantity to assess quality and impact), number of patents, and the country where companies are based. This last characteristic has become increasingly significant as geopolitical tensions reshape the global technology landscape. As 1790 Analytics cofounders Anthony Breitzman and Patrick Thomas note, the next few years could be particularly interesting as organizations adjust their patenting strategies in response to changing market access. Some trends leap out immediately. In consumer electronics, Apple dominates Pipeline Power despite having a patent portfolio one-third the size of Samsung’s—a testament to the Cupertino company’s focus on high-impact innovations. The aerospace sector has seen dramatic consolidation, with RTX (formerly Raytheon Technologies) now encompassing multiple subsidiaries that appear separately on our scorecard. And in the university rankings, Harvard has seized the top spot from traditional tech powerhouses like MIT and Stanford, driven by patents that are more often cited as prior art in other recent patents. And then there are the subtle shifts that become apparent only when you dig deeper into the data. The rise of SEL (Semiconductor Energy Laboratory) over TSMC (Taiwan Semiconductor Manufacturing Co.) in semiconductor design, despite having far fewer patents, suggests again that true innovation isn’t just about filing patents—it’s about creating technologies that others build upon. Looking ahead, the real test will be how these patent portfolios translate into actual products and services. Patents are promises of innovation; the scorecard helps us see what companies are making those promises and the R&D investments to realize them. As we enter an era when technological leadership increasingly determines economic and strategic power, understanding these patterns is more crucial than ever.

2 weeks ago 4 votes
The Data Reveals Top Patent Portfolios

Eight years is a long time in the world of patents. When we last published what we then called the Patent Power Scorecard, in 2017, it was a different technological and social landscape—Google had just filed a patent application on the transformer architecture, a momentous advance that spawned the generative AI revolution. China was just beginning to produce quality, affordable electric vehicles at scale. And the COVID pandemic wasn’t on anyone’s dance card. Eight years is also a long time in the world of magazines, where we regularly play around with formats for articles and infographics. We now have more readers online than we do in print, so our art team is leveraging advances in interactive design software to make complex datasets grokkable at a glance, whether you’re on your phone or flipping through the pages of the magazine. The scorecard’s return in this issue follows the return last month of The Data, which ran as our back page for several years; it’s curated by a different editor every month and edited by Editorial Director for Content Development Glenn Zorpette. As we set out to recast the scorecard for this decade, we sought to strike the right balance between comprehensiveness and clarity, especially on a mobile-phone screen. As our Digital Product Designer Erik Vrielink, Assistant Editor Gwendolyn Rak, and Community Manager Kohava Mendelsohn explained to me, they wanted something that would be eye-catching while avoiding information overload. The solution they arrived at—a dynamic sunburst visualization—lets readers grasp the essential takeaways at glance in print, while the digital version, allows readers to dive as deep as they want into the data. Working with sci-tech-focused data-mining company 1790 Analytics, which we partnered with on the original Patent Power Scorecard, the team prioritized three key metrics or characteristics: patent Pipeline Power (which goes beyond mere quantity to assess quality and impact), number of patents, and the country where companies are based. This last characteristic has become increasingly significant as geopolitical tensions reshape the global technology landscape. As 1790 Analytics cofounders Anthony Breitzman and Patrick Thomas note, the next few years could be particularly interesting as organizations adjust their patenting strategies in response to changing market access. Some trends leap out immediately. In consumer electronics, Apple dominates Pipeline Power despite having a patent portfolio one-third the size of Samsung’s—a testament to the Cupertino company’s focus on high-impact innovations. The aerospace sector has seen dramatic consolidation, with RTX (formerly Raytheon Technologies) now encompassing multiple subsidiaries that appear separately on our scorecard. And in the university rankings, Harvard has seized the top spot from traditional tech powerhouses like MIT and Stanford, driven by patents that are more often cited as prior art in other recent patents. And then there are the subtle shifts that become apparent only when you dig deeper into the data. The rise of SEL (Semiconductor Energy Laboratory) over TSMC (Taiwan Semiconductor Manufacturing Co.) in semiconductor design, despite having far fewer patents, suggests again that true innovation isn’t just about filing patents—it’s about creating technologies that others build upon. Looking ahead, the real test will be how these patent portfolios translate into actual products and services. Patents are promises of innovation; the scorecard helps us see what companies are making those promises and the R&D investments to realize them. As we enter an era when technological leadership increasingly determines economic and strategic power, understanding these patterns is more crucial than ever.

2 weeks ago 4 votes
This Little Mars Rover Stayed Home

Sojourner sent back photos of the Martian surface during the summer of 1997. I was not alone. The servers at NASA’s Jet Propulsion Lab slowed to a crawl when they got more than 47 million hits (a record number!) from people attempting to download those early images of the Red Planet. To be fair, it was the late 1990s, the Internet was still young, and most people were using dial-up modems. By the end of the 83-day mission, Sojourner had sent back 550 photos and performed more than 15 chemical analyses of Martian rocks and soil. Sojourner, of course, remains on Mars. Pictured here is Marie Curie, its twin. Functionally identical, either one of the rovers could have made the voyage to Mars, but one of them was bound to become the famous face of the mission, while the other was destined to be left behind in obscurity. Did I write this piece because I feel a little bad for Marie Curie? Maybe. But it also gave me a chance to revisit this pioneering Mars mission, which established that robots could effectively explore the surface of planets and captivate the public imagination. Sojourner’s sojourn on Mars On 4 July 1997, the Mars Pathfinder parachuted through the Martian atmosphere and bounced about 15 times on glorified airbags before finally coming to a rest. The lander, renamed the Carl Sagan Memorial Station, carried precious cargo stowed inside. The next day, after the airbags retracted, the solar-powered Sojourner eased its way down the ramp, the first human-made vehicle to roll around on the surface of another planet. (It wasn’t the first extraterrestrial body, though. The Soviet Lunokhod rovers conducted two successful missions on the moon in 1970 and 1973. The Soviets had also landed a rover on Mars back in 1971, but communication was lost before the PROP-M ever deployed.) This giant sandbox at JPL provided Marie Curie with an approximation of Martian terrain. Mike Nelson/AFP/Getty Images Sojourner was equipped with three low-resolution cameras (two on the front for black-and-white images and a color camera on the rear), a laser hazard–avoidance system, an alpha-proton X-ray spectrometer, experiments for testing wheel abrasion and material adherence, and several accelerometers. The robot also demonstrated the value of the six-wheeled “rocker-bogie” suspension system that became NASA’s go-to design for all later Mars rovers. Sojourner never roamed more than about 12 meters from the lander due to the limited range of its radio. Pathfinder had landed in Ares Vallis, an assumed ancient floodplain chosen because of the wide variety of rocks present. Scientists hoped to confirm the past existence of water on the surface of Mars. Sojourner did discover rounded pebbles that suggested running water, and later missions confirmed it. A highlight of Sojourner’s 83-day mission on Mars was its encounter with a rock nicknamed Barnacle Bill [to the rover’s left]. JPL/NASA Sojourner rolled forward 36 centimeters and encountered a rock, dubbed Barnacle Bill due to its rough surface. The rover spent about 10 hours analyzing the rock, using its spectrometer to determine the elemental composition. Over the next few weeks, while the lander collected atmospheric information and took photos, the rover studied rocks in detail and tested the Martian soil. Marie Curie’s sojourn…in a JPL sandbox Meanwhile back on Earth, engineers at JPL used Marie Curie to mimic Sojourner’s movements in a Mars-like setting. During the original design and testing of the rovers, the team had set up giant sandboxes, each holding thousands of kilograms of playground sand, in the Space Flight Operations Facility at JPL. They exhaustively practiced the remote operation of Sojourner, including an 11-minute delay in communications between Mars and Earth. (The actual delay can vary from 7 to 20 minutes.) Even after Sojourner landed, Marie Curie continued to help them strategize. Initially, Sojourner was remotely operated from Earth, which was tricky given the lengthy communication delay. Mike Nelson/AFP/Getty Images Sojourner was maneuvered by an Earth-based operator wearing 3D goggles and using a funky input device called a Spaceball 2003. Images pieced together from both the lander and the rover guided the operator. It was like a very, very slow video game—the rover sometimes moved only a few centimeters a day. NASA then turned on Sojourner’s hazard-avoidance system, which allowed the rover some autonomy to explore its world. A human would suggest a path for that day’s exploration, and then the rover had to autonomously avoid any obstacles in its way, such as a big rock, a cliff, or a steep slope. Sojourner to operate for a week. But the little rover that could kept chugging along for 83 Martian days before NASA finally lost contact, on 7 October 1997. The lander had conked out on 27 September. In all, the mission collected 1.2 gigabytes of data (which at the time was a lot) and sent back 10,000 images of the planet’s surface. Marie Curie with the hopes of sending it on another mission to Mars. For a while, it was slated to be part of the Mars 2001 set of missions, but that didn’t happen. In 2015, JPL transferred the rover to the Smithsonian’s National Air and Space Museum. When NASA Embraced Faster, Better, Cheaper The Pathfinder mission was the second one in NASA administrator Daniel S. Goldin’s Discovery Program, which embodied his “faster, better, cheaper” philosophy of making NASA more nimble and efficient. (The first Discovery mission was to the asteroid Eros.) In the financial climate of the early 1990s, the space agency couldn’t risk a billion-dollar loss if a major mission failed. Goldin opted for smaller projects; the Pathfinder mission’s overall budget, including flight and operations, was capped at US $300 million. RELATED: How NASA Built Its Mars Rovers In his 2014 book Curiosity: An Inside Look at the Mars Rover Mission and the People Who Made It Happen (Prometheus), science writer Rod Pyle interviews Rob Manning, chief engineer for the Pathfinder mission and subsequent Mars rovers. Manning recalled that one of the best things about the mission was its relatively minimal requirements. The team was responsible for landing on Mars, delivering the rover, and transmitting images—technically challenging, to be sure, but beyond that the team had no constraints. Sojourner was succeeded by the rovers Spirit, Opportunity, and Curiosity. Shown here are four mission spares, including Marie Curie [foreground]. JPL-Caltech/NASA Sojourner’s electronics warm enough to operate were leftover spares from the Galileo mission to Jupiter, so they were “free.” Pathfinder mission successful but it captured the hearts of Americans and reinvigorated an interest in exploring Mars. In the process, it set the foundation for the future missions that allowed the rovers Spirit, Opportunity, and Curiosity (which, incredibly, is still operating nearly 13 years after it landed) to explore even more of the Red Planet. How the rovers Sojourner and Marie Curie got their names To name its first Mars rovers, NASA launched a student contest in March 1994, with the specific guidance of choosing a “heroine.” Entry essays were judged on their quality and creativity, the appropriateness of the name for a rover, and the student’s knowledge of the woman to be honored as well as the mission’s goals. Students from all over the world entered. Sojourner Truth, while 18-year-old Deepti Rohatgi of Rockville, Md., came in second for hers on Marie Curie. Truth was a Black woman born into slavery at the end of the 18th century. She escaped with her infant daughter and two years later won freedom for her son through legal action. She became a vocal advocate for civil rights, women’s rights, and alcohol temperance. Curie was a Polish-French physicist and chemist famous for her studies of radioactivity, a term she coined. She was the first woman to win a Nobel Prize, as well as the first person to win a second Nobel. Nancy Grace Roman, the space agency’s first chief of astronomy. In May 2020, NASA announced it would name the Wide Field Infrared Survey Telescope after Roman; the space telescope is set to launch as early as October 2026, although the Trump administration has repeatedly said it wants to cancel the project. A Trillion Rogue Planets and Not One Sun to Shine on Them its naming policy in December 2022 after allegations came to light that James Webb, for whom the James Webb Space Telescope is named, had fired LGBTQ+ employees at NASA and, before that, the State Department. A NASA investigation couldn’t substantiate the allegations, and so the telescope retained Webb’s name. But the bar is now much higher for NASA projects to memorialize anyone, deserving or otherwise. (The agency did allow the hopping lunar robot IM-2 Micro Nova Hopper, built by Intuitive Machines, to be named for computer-software pioneer Grace Hopper.) Marie Curie and Sojourner will remain part of a rarefied clique. Sojourner, inducted into the Robot Hall of Fame in 2003, will always be the celebrity of the pair. And Marie Curie will always remain on the sidelines. But think about it this way: Marie Curie is now on exhibit at one of the most popular museums in the world, where millions of visitors can see the rover up close. That’s not too shabby a legacy either. Part of a continuing series looking at historical artifacts that embrace the boundless potential of technology. An abridged version of this article appears in the June 2025 print issue. References Curator Matthew Shindell of the National Air and Space Museum first suggested I feature Marie Curie. I found additional information from the museum’s collections website, an article by David Kindy in Smithsonian magazine, and the book After Sputnik: 50 Years of the Space Age (Smithsonian Books/HarperCollins, 2007) by Smithsonian curator Martin Collins. NASA has numerous resources documenting the Mars Pathfinder mission, such as the mission website, fact sheet, and many lovely photos (including some of Barnacle Bill and a composite of Marie Curie during a prelaunch test). Curiosity: An Inside Look at the Mars Rover Mission and the People Who Made It Happen (Prometheus, 2014) by Rod Pyle and Roving Mars: Spirit, Opportunity, and the Exploration of the Red Planet (Hyperion, 2005) by planetary scientist Steve Squyres are both about later Mars missions and their rovers, but they include foundational information about Sojourner.

2 weeks ago 8 votes

More in AI

Notes on Japan
17 hours ago 4 votes
Weekly ML for SWEs #12: The easiest way to keep up with ML and AI research papers

An AI reading list curated to make you a better engineer: 6-17-25

17 hours ago 1 votes
AI Roundup 122: Economies of Scale

June 13, 2025.

5 days ago 4 votes
How to afford Machine Learning for Software Engineers

How I'm planning to make ML for SWEs more helpful while remaining affordable

6 days ago 5 votes
The State of AI Engineering (2025)

Big ideas from the 2025 World's Fair.

a week ago 7 votes