More from Jaz's Blog
Often when designing systems, we aim for perfection in things like consistency of data, availability, latency, and more. The hardest part of system design is that it’s difficult (if not impossible) to design systems that have perfect consistency, perfect availability, incredibly low latency, and incredibly high throughput, all at the same time. Instead, when we approach system design, it’s best to treat each of these properties as points on different axes that we balance to find the “right fit” for the application we’re supporting. I recently made some major tradeoffs in the design of Bluesky’s Following Feed/Timeline to improve the performance of writes at the cost of consistency in a way that doesn’t negatively affect users but reduced P99s by over 96%. Timeline Fanout When you make a post on Bluesky, your post is indexed by our systems and persisted to a database where we can fetch it to hydrate and serve in API responses. Additionally, a reference to your post is “fanned out” to your followers so they can see it in their Timelines. This process involves looking up all of your followers, then inserting a new row into each of their Timeline tables in reverse chronological order with a reference to your post. When a user loads their Timeline, we fetch a page of post references and then hydrate the posts/actors concurrently to quickly build an API response and let them see the latest content from people they follow. The Timelines table is sharded by user. This means each user gets their own Timeline partition, randomly distributed among shards of our horizontally scalable database (ScyllaDB), replicated across multiple shards for high availability. Timelines are regularly trimmed when written to, keeping them near a target length and dropping older post references to conserve space. Hot Shards in Your Area Bluesky currently has around 32 Million Users and our Timelines database is broken into hundreds of shards. To support millions of partitions on such a small number of shards, each user’s Timeline partition is colocated with tens of thousands of other users’ Timelines. Under normal circumstances with all users behaving well, this doesn’t present a problem as the work of an individual Timeline is small enough that a shard can handle the work of tens of thousands of them without being heavily taxed. Unfortunately, with a large number of users, some of them will do abnormal things like… well… following hundreds of thousands of other users. Generally, this can be dealt with via policy and moderation to prevent abusive users from causing outsized load on systems, but these processes take time and can be imperfect. When a user follows hundreds of thousands of others, their Timeline becomes hyperactive with writes and trimming occurring at massively elevated rates. This load slows down the individual operations to the user’s Timeline, which is fine for the bad behaving user, but causes problems to the tens of thousands of other users sharing a shard with them. We typically call this situation a “Hot Shard”: where some resident of a shard has “hot” data that is being written to or read from at much higher rates than others. Since the data on the shard is only replicated a few times, we can’t effectively leverage the horizontal scale of our database to process all this additional work. Instead, the “Hot Shard” ends up spending so much time doing work for a single partition that operations to the colocated partitions slow down as well. Stacking Latencies Returning to our Fanout process, let’s consider the case of Fanout for a user followed by 2,000,000 other users. Under normal circumstances, writing to a single Timeline takes an average of ~600 microseconds. If we sequentially write to the Timelines of our user’s followers, we’ll be sitting around for 20 minutes at best to Fanout this post. If instead we concurrently Fanout to 1,000 Timelines at once, we can complete this Fanout job in ~1.2 seconds. That sounds great, except it oversimplifies an important property of systems: tail latencies. The average latency of a write is ~600 microseconds, but some writes take much less time and some take much more. In fact, the P99 latency of writes to the Timelines cluster can be as high as 15 milliseconds! What does this mean for our Fanout? Well, if we concurrently write to 1,000 Timelines at once, statistically we’ll see 10 writes as slow as or slower than 15 milliseconds. In the case of timelines, each “page” of followers is 10,000 users large and each “page” must be fanned out before we fetch the next page. This means that our slowest writes will hold up the fetching and Fanout of the next page. How does this affect our expected Fanout time? Each “page” will have ~100 writes as slow as or slower than the P99 latency. If we get unlucky, they could all stack up on a single routine and end up slowing down a single page of Fanout to 1.5 seconds. In the worst case, for our 2,000,000 Follower celebrity, their post Fanout could end up taking as long as 5 minutes! That’s not even considering P99.9 and P99.99 latencies which could end up being >1 second, which could leave us waiting tens of minutes for our Fanout job. Now imagine how bad this would be for a user with 20,000,000+ Followers! So, how do we fix the problem? By embracing imperfection, of course! Lossy Timelines Imagine a user who follows hundreds of thousands of others. Their Timeline is being written to hundreds of times a second, moving so fast it would be humanly impossible to keep up with the entirety of their Timeline even if it was their full-time job. For a given user, there’s a threshold beyond which it is unreasonable for them to be able to keep up with their Timeline. Beyond this point, they likely consume content through various other feeds and do not primarily use their Following Feed. Additionally, beyond this point, it is reasonable for us to not necessarily have a perfect chronology of everything posted by the many thousands of users they follow, but provide enough content that the Timeline always has something new. Note in this case I’m using the term “reasonable” to loosely convey that as a social media service, there must be a limit to the amount of work we are expected to do for a single user. What if we introduce a mechanism to reduce the correctness of a Timeline such that there is a limit to the amount of work a single Timeline can place on a DB shard. We can assert a reasonable limit for the number of follows a user should have to have a healthy and active Timeline, then increase the “lossiness” of their Timeline the further past that limit they go. A loss_factor can be defined as min(reasonable_limit/num_follows, 1) and can be used to probabilistically drop writes to a Timeline to prevent hot shards. Just before writing a page in Fanout, we can generate a random float between 0 and 1, then compare it to the loss_factor of each user in the page. If the user’s loss_factor is smaller than the generated float, we filter the user out of the page and don’t write to their Timeline. Now, users all have the same number of “follows worth” of Fanout. For example with a reasonable_limit of 2,000, a user who follows 4,000 others will have a loss_factor of 0.5 meaning half the writes to their Timeline will get dropped. For a user following 8,000 others, their loss factor of 0.25 will drop 75% of writes to their Timeline. Thus, each user has a effective ceiling on the amount of Fanout work done for their Timeline. By specifying the limits of reasonable user behavior and embracing imperfection for users who go beyond it, we can continue to provide service that meets the expectations of users without sacrificing scalability of the system. Aside on Caching We write to Timelines at a rate of more than one million times a second during the busy parts of the day. Looking up the number of follows of a given user before fanning out to them would require more than one million additional reads per second to our primary database cluster. This additional load would not be well received by our database and the additional cost wouldn’t be worth the payoff for faster Timeline Fanout. Instead, we implemented an approach that caches high-follow accounts in a Redis sorted set, then each instance of our Fanout service loads an updated version of the set into memory every 30 seconds. This allows us to perform lookups of follow counts for high-follow accounts millions of times per second per Fanount service instance. By caching values which don’t need to be perfect to function correctly in this case, we can once again embrace imperfection in the system to improve performance and scalability without compromising the function of the service. Results We implemented Lossy Timelines a few weeks ago on our production systems and saw a dramatic reduction in hot shards on the Timelines database clusters. In fact, there now appear to be no hot shards in the cluster at all, and the P99 of a page of Fanout work has been reduced by over 90%. Additionally, with the reduction in write P99s, the P99 duration for a full post Fanout has been reduced by over 96%. Jobs that used to take 5-10 minutes for large accounts now take <10 seconds. Knowing where it’s okay to be imperfect lets you trade consistency for other desirable aspects of your systems and scale ever higher. There are plenty of other places for improvement in our Timelines architecture, but this step was a big one towards improving throughput and scalability of Bluesky’s Timelines. If you’re interested in these sorts of problems and would like to help us build the core data services that power Bluesky, check out this job listing. If you’re interested in other open positions at Bluesky, you can find them here.
Bluesky recently saw a massive spike in activity in response to Brazil’s ban of Twitter. As a result, the AT Proto event firehose provided by Bluesky’s Relay at bsky.network has increased in volume by a huge amount. The average event rate during this surge increased by ~1,300%. Before this new surge in activity, the firehose would produce around 24 GB/day of traffic. After the surge, this volume jumped to over 232 GB/day! Keeping up with the full, verified firehose quickly became less practical on cheap cloud infrastructure with metered bandwidth. To help reduce the burden of operating bots, feed generators, labelers, and other non-verifying AT Proto services, I built Jetstream as an alternative, lightweight, filterable JSON firehose for AT Proto. How the Firehose Works The AT Proto firehose is a mechanism used to keep verified, fully synced copies of the repos of all users. Since repos are represented as Merkle Search Trees, each firehose event contains an update to the user’s MST which includes all the changed blocks (nodes in the path from the root to the modified leaf). The root of this path is signed by the repo owner, and a consumer can keep their copy of the repo’s MST up-to-date by applying the diff in the event. For a more in-depth explanation of how Merkle Trees are constructed, check out this explainer. Practically, this means that for every small JSON record added to a repo, we also send along some number of MST blocks (which are content-addressed hashes and thus very information-dense) that are mostly useful for consumers attempting to keep a fully synced, verified copy of the repo. You can think of this as the difference between cloning a git repo v.s. just grabbing the latest version of the files without the .git folder. In this case, the firehose effectively streams the diffs for the repository with commits, signatures, and metadata, which is inherently heavier than a point-in-time checkout of the repo. Because firehose events with repo updates are signed by the repo owner, they allow a consumer to process events from any operator without having to trust the messenger. This is the “Authenticated” part of the Authenticated Transfer (AT) Protocol and is crucial to the correct functioning of the network. That being said, of the hundreds of consumers of Bluesky’s production Relay, >90% of them are building feeds, bots, and other tools that don’t keep full copies of the entire network and don’t verify MST operations at all. For these consumers, all they actually process is the JSON records created, updated, and deleted in each event. If consumers already trust the provider to do validation on their end, they could get by with a much more lightweight data stream. How Jetstream Works Jetstream is a streaming service that consumes an AT Proto com.atproto.sync.subscribeRepos stream and converts it into lightweight, friendly JSON. If you want to try it out yourself, you can connect to my public Jetstream instance and view all posts on Bluesky in realtime: $ websocat "wss://jetstream2.us-east.bsky.network/subscribe?wantedCollections=app.bsky.feed.post" Note: the above instance is operated by Bluesky PBC and is free to use, more instances are listed in the official repo Readme Jetstream converts the CBOR-encoded MST blocks produced by the AT Proto firehose and translates them into JSON objects that are easier to interface with using standard tooling available in programming languages. Since Repo MSTs only contain records in their leaf nodes, this means Jetstream can drop all of the blocks in an event except for those of the leaf nodes, typically leaving only one block per event. In reality, this means that Jetstream’s JSON firehose is nearly 1/10 the size of the full protocol firehose for the same events, but lacks the verifiability and signatures included in the protocol-level firehose. Jetstream events end up looking something like: { "did": "did:plc:eygmaihciaxprqvxpfvl6flk", "time_us": 1725911162329308, "type": "com", "commit": { "rev": "3l3qo2vutsw2b", "type": "c", "collection": "app.bsky.feed.like", "rkey": "3l3qo2vuowo2b", "record": { "$type": "app.bsky.feed.like", "createdAt": "2024-09-09T19:46:02.102Z", "subject": { "cid": "bafyreidc6sydkkbchcyg62v77wbhzvb2mvytlmsychqgwf2xojjtirmzj4", "uri": "at://did:plc:wa7b35aakoll7hugkrjtf3xf/app.bsky.feed.post/3l3pte3p2e325" } }, "cid": "bafyreidwaivazkwu67xztlmuobx35hs2lnfh3kolmgfmucldvhd3sgzcqi" } } Each event lets you know the DID of the repo it applies to, when it was seen by Jetstream (a time-based cursor), and up to one updated repo record as serialized JSON. Check out this 10 second CPU profile of Jetstream serving 200k evt/sec to a local consumer: By dropping the MST and verification overhead by consuming from relay we trust, we’ve reduced the size of a firehose of all events on the network from 232 GB/day to ~41GB/day, but we can do better. Jetstream and zstd I recently read a great engineering blog from Discord about their use of zstd to compress websocket traffic to/from their Gateway service and client applications. Since Jetstream emits marshalled JSON through the websocket for developer-friendliness, I figured it might be a neat idea to see if we could get further bandwidth reduction by employing zstd to compress events we send to consumers. zstd has two basic operating modes, “simple” mode and “streaming” mode. Streaming Compression At first glance, streaming mode seems like it’d be a great fit. We’ve got a websocket connection with a consumer and streaming mode allows the compression to get more efficient over the lifetime of the connection. I went and implemented a streaming compression version of Jetstream where a consumer can request compression when connecting and will get zstd compressed JSON sent as binary messages over the socket instead of plaintext. Unfortunately, this had a massive impact on Jetstream’s server-side CPU utilization. We were effectively compressing every message once per consumer as part of their streaming session. This was not a scalable approach to offering compression on Jetstream. Additionally, Jetstream stores a buffer of the past 24 hours (configurable) of events on disk in PebbleDB to allow consumers to replay events before getting transitioned into live-tailing mode. Jetstream stores serialized JSON in the DB, so playback is just shuffling the bytes into the websocket without having to round-trip the data into a Go struct. When we layer in streaming compression, playback becomes significantly more expensive because we have to compress outgoing events on-the-fly for a consumer that’s catching up. In real numbers, this increased CPU usage of Jetstream by 23% while lowering the throughput of playback from ~200k evt/sec to ~28k evt/sec for a single local consumer. When in streaming mode, we can’t leverage the bytes we compress for one consumer and reuse them for another consumer because zstd’s streaming context window may not be in sync between the two consumers. They haven’t received exactly the same data in the session so the clients on the other end don’t have their state machines in the same state. Since streaming mode’s primary advantage is giving us eventually better efficiency as the encoder learns about the data, what if we just taught the encoder about the data at the start and compress each message statelessly? Dictionary Mode zstd offers a mechanism for initializing an encoder/decoder with pre-optimized settings by providing a dictionary trained on a sample of the data you’ll be encoding/decoding. Using this dictionary, zstd essentially uses it’s smallest encoded representations for the most frequently seen patterns in the sample data. In our case, where we’re compressing serialized JSON with a common event shape and lots of common property names, training a dictionary on a large number of real events should allow us to represent the common elements among messages in the smallest number of bytes. For take two of Jetstream with zstd, let’s to use a single encoder for the whole service that utilizes a custom dictionary trained on 100,000 real events. We can use this encoder to compress every event as we see it, before persisting and emitting it to consumers. Now we end up with two copies of every event, one that’s just serialized JSON, and one that’s statelessly compressed to zstd using our dictionary. Any consumers that want compression can have a copy of the dictionary on their end to initialize a decoder, then when we broadcast the shared compressed event, all consumers can read it without any state or context issues. This requires the consumers and server to have a pre-shared dictionary, which is a major drawback of this implementation but good enough for our purposes. That leaves the problem of event playback for compression-enabled clients. An easy solution here is to just store the compressed events as well! Since we’re only sticking the JSON records into our PebbleDB, the actual size of the 24 hour playback window is <8GB with sstable compression. If we store a copy of the JSON serialized event and a copy of the zstd compressed event, this will, at most, double our storage requirements. Then during playback, if the consumer requests compression, we can just shuffle bytes out of the compressed version of the DB into their socket instead of having to move it through a zstd encoder. Savings Running with a custom dictionary, I was able to get the average Jetstream event down from 482 bytes to just 211 bytes (~0.44 compression ratio). Jetstream allows us to live tail all posts on Bluesky as they’re posted for as little as ~850 MB/day, and we could keep up with all events moving through the firehose during the Brazil Twitter Exodus weekend for 18GB/day (down from 232GB/day). With this scheme, Jetstream is required to compress each event only once before persisting it to disk and emitting it to connected consumers. The CPU impact of these changes is significant in proportion to Jetstream’s incredibly light load but it’s a flat cost we pay once no matter how many consumers we have. (CPU profile from a 30 second pprof sample with 12 consumers live-tailing Jetstream) Additionally, with Jetstream’s shared buffer broadcast architecture, we keep memory allocations incredibly low and the cost per consumer on CPU and RAM is trivial. In the allocation profile below, more than 80% of the allocations are used to consume the full protocol firehose. The total resident memory of Jetstream sits below 16MB, 25% of which is actually consumed by the new zstd dictionary. To bring it all home, here’s a screenshot from the dashboard of my public Jetstream instance serving 12 consumers all with various filters and compression settings, running on a $5/mo OVH VPS. At our new baseline firehose activity, a consumer of the protocol-level firehose would require downloading ~3.16TB/mo to keep up. A Jetstream consumer getting all created, updated, and deleted records without compression enabled would require downloading ~400GB/mo to keep up. A Jetstream consumer that only cares about posts and has zstd compression enabled can get by on as little as ~25.5GB/mo, <99% of the full weight firehose. Feel free to join the conversation about Jetstream and zstd on Bluesky.
Over the past few weeks, I’ve been building out server-side short video support for Bluesky. The major aim of this feature is to support short (90 second max) video streaming at a quality that doesn’t cost an arm and a leg for us to provide for free. In order to stay within these constraints, we’re considering making use of a video CDN that can bear the brunt of the bandwidth required to support Video-on-Demand streaming. While the CDN is a pretty fully-featured product, we want to avoid too much vendor lock-in and provide some enhancements to our streaming platform that requires extending their offering and getting creative with video streaming protocols. Some of the things we’d like to be able to do that don’t work out-of-the-box are: Track view counts, viewer sessions, and duration viewed to provide better feedback for video performance. Provide dynamic closed-caption support with the flexibility to automate them in the future. Store a transcoded version of source files somewhere durable to provide a “source of truth” for videos when needed. Append a “trailer” to the end of video streams for some branding in a TikTok-esque 3-second snippet. In this post I’ll be focusing on the HLS-related features above, namely view/duration accounting, closed captions, and trailers. HLS is Just a Bunch of Text files HTTP Live Streaming (HLS) is a standard established by Apple in 2009 that allows for adaptive-bitrate live and Video-on-Demand (VOD) streaming. For the purposes of this blog post, I’ll restrict my explanations to how HLS VOD streaming works. A player that implements the HLS protocol is capable of dynamically adjusting the quality of a streamed video based on network conditions. Additionally, a server that implements the HLS protocol should provide one or more variants of a media stream which accommodate varying network qualities to allow for graceful degradation of stream quality without stopping playback. HLS implements this by producing a series of plaintext (.m3u8) “playlist” files that tell the player what bitrates and resolutions the server provides so that the player can decide which variant it should stream. HLS differentiates between two kinds of “playlist” files: Master Playlists, and Media Playlists. Master Playlists A Master Playlist is the first file fetched by your video player. It contains a series of variants which point to child Media Playlists. It also describes the approximate bitrate of the variant sources and the codecs and resolutions used by those sources. $ curl https://my.video.host.com/video_15/playlist.m3u8 #EXTM3U #EXT-X-VERSION:3 #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=688540,CODECS="avc1.64001e,mp4a.40.2",RESOLUTION=640x360 360p/video.m3u8 #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=1921217,CODECS="avc1.64001f,mp4a.40.2",RESOLUTION=1280x720 720p/video.m3u8 In the above file, the key things to notice are the RESOLUTION parameters and the {res}/video.m3u8 links. Your media player will generally start with the lowest resolution version before jumping up to higher resolutions once the network speed between you and the server is dialed in. The links in this file are pointers to Media Playlists, generally as relative paths from the Master Playlist such that, if we wanted to grab the 720p Media Playlist, we’d navigate to: https://my.video.host.com/video_15/720p/video.m3u8. A Master Playlist can also contain multi-track audio directives and directives for closed-captions but for now let’s move onto the Media Playlist. Media Playlists A Media Playlist is yet another plaintext file that provides your video player with two key bits of data: a list of media Segments (encoded as .ts video files) and headers for each Segment that tell the player the runtime of the media. $ curl https://my.video.host.com/video_15/720p/video.m3u8 #EXTM3U #EXT-X-VERSION:3 #EXT-X-PLAYLIST-TYPE:VOD #EXT-X-MEDIA-SEQUENCE:0 #EXT-X-TARGETDURATION:4 #EXTINF:4.000, video0.ts #EXTINF:4.000, video1.ts #EXTINF:4.000, video2.ts #EXTINF:4.000, video3.ts #EXTINF:4.000, video4.ts #EXTINF:2.800, video5.ts This Media Playlist describes a video that’s 22.8 seconds long (5 x 4-second Segments + 1 x 2.8-second Segment). The playlist describes a VOD piece of media, meaning we know this playlist contains the entirety of the media the player needs. The TARGETDURATION tells us the maximum length of each Segment so the player knows how many Segments to buffer ahead of time. During live streaming, that also lets the player know how frequently to refresh the playlist file to discover new Segments. Finally the EXTINF headers for each Segment indicate the duration of the following .ts Segment file and the relative paths of the video#.ts tell the player where to load the actual media files from. Where’s the Actual Media? At this point, the video player has loaded two .m3u8 playlist files and got lots of metadata about how to play the video but it hasn’t actually loaded any media files. The .ts files referenced in the Media Playlist are where the real media is, so if we wanted to control the playlists but let the CDN handle serving actual media, we can just redirect those video#.ts requests to our CDN. .ts files are Transport Stream MPEG-2 encoded short media files that can contain video or audio and video. Tracking Views To track views of our HLS streams, we can leverage the fact that every video player must first load the Master Playlist. When a user requests the Master Playlist, we can modify the results dynamically to provide a SessionID to each response and allow us to track the user session without cookies or headers: #EXTM3U #EXT-X-VERSION:3 #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=688540,CODECS="avc1.64001e,mp4a.40.2",RESOLUTION=640x360 360p/video.m3u8?session_id=12345 #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=1921217,CODECS="avc1.64001f,mp4a.40.2",RESOLUTION=1280x720 720p/video.m3u8?session_id=12345 Now when their video player fetches the Media Playlists, it’ll include a query-string that we can use to identify the streaming session, ensuring we don’t double-count views on the video and can track which Segments of video were loaded in the session. #EXTM3U #EXT-X-VERSION:3 #EXT-X-PLAYLIST-TYPE:VOD #EXT-X-MEDIA-SEQUENCE:0 #EXT-X-TARGETDURATION:4 #EXTINF:4.000, video0.ts?session_id=12345&duration=4 #EXTINF:4.000, video1.ts?session_id=12345&duration=4 #EXTINF:4.000, video2.ts?session_id=12345&duration=4 #EXTINF:4.000, video3.ts?session_id=12345&duration=4 #EXTINF:4.000, video4.ts?session_id=12345&duration=4 #EXTINF:2.800, video5.ts?session_id=12345&duration=2.8 Finally when the video player fetches the media Segment files, we can measure the Segment view before we redirect to our CDN with a 302, allowing us to know the amount of video-seconds loaded in the session and which Segments were loaded. This method has limitations, namely that a media player loading a segment doesn’t necessarily mean it showed that segment to the viewer, but it’s the best we can do without an instrumented media player. Adding Subtitles Subtitles are included in the Master Playlist as a variant and then are referenced in each of the video variants to let the player know where to load subs from. #EXTM3U #EXT-X-VERSION:3 #EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",NAME="en_subtitle",DEFAULT=NO,AUTOSELECT=yes,LANGUAGE="en",FORCED="no",CHARACTERISTICS="public.accessibility.transcribes-spoken-dialog",URI="subtitles/en.m3u8" #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=688540,CODECS="avc1.64001e,mp4a.40.2",RESOLUTION=640x360,SUBTITLES="subs" 360p/video.m3u8 #EXT-X-STREAM-INF:PROGRAM-ID=0,BANDWIDTH=1921217,CODECS="avc1.64001f,mp4a.40.2",RESOLUTION=1280x720,SUBTITLES="subs" 720p/video.m3u8 Just like with the video Media Playlists, we need a Media Playlist file for the subtitle track as well so that the player knows where to load the source files from and what duration of the stream they cover. $ curl https://my.video.host.com/video_15/subtitles/en.m3u8 #EXTM3U #EXT-X-VERSION:3 #EXT-X-MEDIA-SEQUENCE:0 #EXT-X-TARGETDURATION:22.8 #EXTINF:22.800, en.vtt In this case, since we’re only serving a short video, we can just provide a single Segment that points at a WebVTT subtitle file encompassing the entire duration of the video. If you crack open the en.vtt file you’ll see something like: $ curl https://my.video.host.com/video_15/subtitles/en.vtt WEBVTT 00:00.000 --> 00:02.000 According to all known laws of aviation, 00:02.000 --> 00:04.000 there is no way a bee should be able to fly. 00:04.000 --> 00:06.000 Its wings are too small to get its fat little body off the ground. ... The media player is capable of reading WebVTT and presenting the subtitles at the right time to the viewer. For longer videos you may want to break up your VTT files into more Segments and update the subtitle Media Playlist accordingly. To provide multiple languages and versions of subtitles, just add more EXT-X-MEDIA:TYPE=SUBTITLES lines to the Master Playlist and tweak the NAME, LANGUAGE (if different), and URI of the additional subtitle variant definitions. #EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",NAME="en_subtitle",DEFAULT=NO,AUTOSELECT=yes,LANGUAGE="en",FORCED="no",CHARACTERISTICS="public.accessibility.transcribes-spoken-dialog",URI="subtitles/en.m3u8" #EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",NAME="fr_subtitle",DEFAULT=NO,AUTOSELECT=yes,LANGUAGE="fr",FORCED="no",CHARACTERISTICS="public.accessibility.transcribes-spoken-dialog",URI="subtitles/fr.m3u8" #EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",NAME="ja_subtitle",DEFAULT=NO,AUTOSELECT=yes,LANGUAGE="ja",FORCED="no",CHARACTERISTICS="public.accessibility.transcribes-spoken-dialog",URI="subtitles/ja.m3u8" Appending a Trailer For branding purposes (and in other applications, for advertising purposes), it can be helpful to insert Segments of video into a playlist to change the content of the video without requiring the content be appended to and re-encoded with the source file. Thankfully, HLS allows us to easily insert Segments into the Media Playlist using this one neat trick: #EXTM3U #EXT-X-VERSION:3 #EXT-X-PLAYLIST-TYPE:VOD #EXT-X-MEDIA-SEQUENCE:0 #EXT-X-TARGETDURATION:4 #EXTINF:4.000, video0.ts #EXTINF:4.000, video1.ts #EXTINF:4.000, video2.ts #EXTINF:4.000, video3.ts #EXTINF:4.000, video4.ts #EXTINF:2.800, video5.ts #EXT-X-DISCONTINUITY #EXTINF:3.337, trailer0.ts #EXTINF:1.201, trailer1.ts #EXTINF:1.301, trailer2.ts #EXT-X-ENDLIST In this Media Playlist we use HLS’s EXT-X-DISCONTINUITY header to let the video player know that the following Segments may be in a different bitrate, resolution, and aspect-ratio than the preceding content. Once we’ve provided the discontinuity header, we can add more Segments just like normal that point at a different media source broken up into .ts files. Remember, HLS allows us to use relative or absolute paths here, so we could provide a full URL for these trailer#.ts files, or virtually route them so they can retain the path context of the currently viewed video. Note that we don’t need to provide the discontinuity header here, and we could also name the trailer files something like video{6-8}.ts if we wanted to, but for clarity and proper player behavior, it’s best to use the discontinuity header if your trailer content doesn’t match the bitrate and resolution of the other video Segments. When the video player goes to play this media, it will continue from video5.ts to trailer0.ts without missing a beat, making it appear as if the trailer is part of the original video. This approach allows us to dynamically change the contents of the trailer for all videos, heavily cache the trailer .ts Segment files for performance, and avoid having to encode the trailer onto the end of every video source file. Conclusion At the end of the day, we’ve now got a video streaming service capable of tracking views and watch session durations, dynamic closed caption support, and branded trailers to help grow the platform. HLS is not a terribly complex protocol. The vast majority of it is human-readable plaintext files and is easy to inspect in the wild to how it’s used in production. When I started this project, I knew next to nothing about the protocol but was able to download some .m3u8 files and get digging to discover how the protocol worked, then build my own implementation of a HLS server to accommodate the video streaming needs of Bluesky. To learn more about HLS, you can check out the official RFC here which describes all the features discussed above and more. I hope this post encourages you to go explore other protocols you use every day by poking at them in the wild, downloading the files your browser interprets for you, and figuring out how simple some of these apparently “complex” systems are. If you’re interested in solving problems like these, take a look at our open Job Recs. If you have any questions about HLS, Bluesky, or other distributed, @scale social media infrastructure, you can find me on Bluesky here and you can discuss this post here.
I recently shipped a new revision of Bluesky’s global AppView at the start of February and things have been going very well. The system scales and handles millions of users without breaking a sweat, the ScyllaDB-backed Data Plane service sits at under 5% DB load in the most intense production workloads, and things are going great. You know what that means, time to add some new features that absolutely don’t fit the existing scalable data model! A recent feature I’ve been working on is something we’ve referred to as “Social Proof”, the feature you see on Facebook or Twitter that shows you how many of your friends also follow this user. The Query-time Conundrum In our existing architecture, we handle graph lookups by paging over entire partitions of graph data (i.e. all the follows created by user A) or by looking for the existence of a specific graph relationship (i.e. does A follow B). That’s working pretty well for things like fanning out posts someone makes to the timelines of their followers or showing that you follow the different authors of posts in a thread. In the above examples, the “expensive” mode of loading (i.e. paging over all your follows) is done in a paginated manner or as part of an async job during timeline fanout etc. If we want to show you “people you follow who also follow user B” when you view user B’s profile, we need a fast way to query multiple potentially large sets of data on-demand at interactive speeds. You might recognize this feature as a Set Intersection problem: When user A views user B’s profile, we want to compute the intersection of the two sets shown in the image above to get the users that A follows who also follow user B so we can show a social proof of user B. The easiest way to do this is to grab the list of people that User A follows from Scylla, then walk over each of those people and check if they follow user B. We can reverse this problem and grab the list of people who follow user B and walk the list and check if user A follows them as well, but either way we’re doing a potentially large partition scan to load one of the entire sets, then potentially LOTs of one-row queries to check for the existence of specific follows. Imagine user A follows 1,000 people and user B has 50,000 followers, that’s one expensive query and then 1,000 tiny queries every time we hydrate User B’s profile for user A and those queries will be different for every user combination we need to load. A more efficient way to tackle this problem would be to load both sets (A’s follows and followers of B) and then intersect them in-memory in our service. If we store both sets in-memory as Hash Maps we can iterate over the smaller set and perform fast lookups for membership in the other set. Some programming languages (i.e. rust) even have Set data structures that natively support efficient intersection methods. But can we even fit this data in memory? How Much Memory does a Graph Take? In our network, each user is assigned a DID that looks something like did:plc:q6gjnaw2blty4crticxkmujt which you might notice is a 32 character string. Not all DIDs are this long, they can be longer or shorter but the vast majority (>99.9%) of DIDs on AT Proto are 32 character strings. The AT Proto network currently has ~160M follow records for ~5.5M users. If we were to store each of these follows in a pair of HashMaps (one to lookup by the actor, one to lookup by the subject) how much memory would we need? Keys: 32 Bytes * 5.5M Users * 2 Maps = ~352MB Values: 160M Follows * 32 Bytes * 2 Maps = ~10.24GB Just the raw keys and values total around 10.5GB with some wiggle room for HashMap provisioning overhead we’re looking at something like 12-14GB of RAM to store the follow graph. With modern computers that’s actually not too crazy and could fit in-memory on a production server no problem, but we can do one step better. If we convert each DID into a uint64 (a process referred to as “interning”), we can significantly compress the size of our graph and make it faster since our hashing functions will have fewer bytes they need to work with. UID-Lookup-Maps: (32 Bytes * 5.5M Users) + (8 Bytes * 5.5M Users) = 177MB + 44MB = ~221MB Keys: 8 Bytes * 5.5M Users * 2 Maps = 88MB Values: 160M Follows * 8 Bytes * 2 Maps = ~2.56GB Our new in-memory graph math works out to under 3GB, maybe closer to 4-5 GB including provisioning overhead. This looks even more achievable for our service! How Fast is it? To prove this concept can power production-scale features, I built an implementation in Rust that loads a CSV adjacency list of follows on startup and provides HTTP endpoints for adding new follows, unfollowing, and a few different kinds of queries. The main structure of the graph is quite simple: pub struct Graph { follows: RwLock<HashMap<u64, HashSet<u64>>>, followers: RwLock<HashMap<u64, HashSet<u64>>>, uid_to_did: RwLock<HashMap<u64, String>>, did_to_uid: RwLock<HashMap<String, u64>>, next_uid: RwLock<u64>, pending_queue: RwLock<Vec<QueueItem>>, pub is_loaded: RwLock<bool>, } We keep track of follows in two directions, from the actor side and from the subject side. Additionally we provide two lookup maps, one that turns DIDs to u64s and one that turns u64s back into DIDs. Finally we keep a variable to know which ID we will assign to the next DID we learn about, and two variables that enqueue follows while we’re loading our graph from the CSV so we don’t drop any events in the meantime. To perform our Social Proof check, we can make use of this function: // `get_following` and `get_followers` simply acquire a read lock // on their respective sets and return a copy of the HashSet pub fn intersect_following_and_followers(&self, actor: u64, target: u64) -> HashSet<u64> { self.get_following(actor) .intersection(&self.get_followers(target)) .cloned() .collect() } To test the validity of this solution, we can use K6 to execute millions of semi-random requests against the service locally. For this service, we want to test a worst-case scenario to prove it’ll hold up, so we will intersect the following set of many random users against the 500 largest follower accounts on the network. Running this test over the course of an hour at a rate of ~41.5k req/sec we see the following results: We’re consuming ~6.6GB of resident RAM to support the graph and request load, and our service is responding to these worst-case requests with a p99 latency of ~1.2ms while keeping up with writes from the event firehose and utilizing around 7.5 CPU cores. Compared to a solution that depends on Redis sets, we’re able to utilize multiple CPU cores to handle requests since we leverage RWLocks that don’t force sequential access for reads. The best part is, we don’t need to hit our Scylla database at all in order to answer these queries! We don’t need expensive concurrent fanout or to hammer Scylla partitions to keep fresh follow data in sync to perform set intersections. We can backfill and then iteratively maintain our follow graph in-memory for the cost of a little bit of startup time (~5 minutes) and a few GB of RAM. Since it’s so cheap, we could even run a couple instances of the service for higher availability and rolling updates. After this proof of concept, I went back and performed a more realistic sustained load test at 2.65k req/sec for 5 hours to see what memory usage and CPU usage look like over time. Under a realistic throughput (but worst-case query) production load we keep p99s of under 1ms and consume 0.5 CPU cores while memory utilization trends slowly upward with the growth of the follow graph (+16MiB over 5 hours). There’s further optimization left to be made by locking individual HashSets instead of the entire follows or following set, but we can leave that for a later day. If you’re interested in solving problems like these, take a look at our open Backend Developer Job Rec.
More in AI
OpenAI’s recent transparency on safety and alignment strategies has been extremely helpful and refreshing.
In a new episode of his podcast with Ben Buchanan former special adviser for artificial intelligence under Biden, entitled, The Government knows A.G.I.
And 3 ways you should be using AI to code