More from Marcus on AI
Elon Musk promised that Grok 3 would be the smartest AI ever.
What GoogleDeepMindโs latest does and doesnโt show, and what we like about it
More in AI
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboCup German Open: 12โ16 March 2025, NUREMBERG, GERMANY German Robotics Conference: 13โ15 March 2025, NUREMBERG, GERMANY European Robotics Forum: 25โ27 March 2025, STUTTGART, GERMANY RoboSoft 2025: 23โ26 April 2025, LAUSANNE, SWITZERLAND ICUAS 2025: 14โ17 May 2025, CHARLOTTE, NC ICRA 2025: 19โ23 May 2025, ATLANTA, GA London Humanoids Summit: 29โ30 May 2025, LONDON IEEE RCAR 2025: 1โ6 June 2025, TOYAMA, JAPAN 2025 Energy Drone & Robotics Summit: 16โ18 June 2025, HOUSTON, TX RSS 2025: 21โ25 June 2025, LOS ANGELES ETH Robotics Summer School: 21โ27 June 2025, GENEVA IAS 2025: 30 Juneโ4 July 2025, GENOA, ITALY ICRES 2025: 3โ4 July 2025, PORTO, PORTUGAL IEEE World Haptics: 8โ11 July 2025, SUWON, KOREA IFAC Symposium on Robotics: 15โ18 July 2025, PARIS RoboCup 2025: 15โ21 July 2025, BAHIA, BRAZIL Enjoy todayโs videos! Weโre introducing Helix, a generalist Vision-Language-Action (VLA) model that unifies perception, language understanding, and learned control to overcome multiple longstanding challenges in robotics. This is moderately impressive; my favorite part is probably the hand-offs and that extra little bit of HRI with what weโd call eye contact if these robots had faces. But keep in mind that youโre looking at close to best case for robotic manipulation, and that if the robots had been given the bag instead of well-spaced objects on a single color background, or if the fridge had a normal human amount of stuff in it, they might be having a much different time of it. Also, is it just me, or is the sound on this video very weird? Like, some things make noise, some things donโt, and the robots themselves occasionally sound more like someone just added in some โsoft actuator soundโ or something. Also also, Iโm of a suspicious nature, and when there is an abrupt cut between โrobot grasps doorโ and โrobot opens door,โ I assume the worst. [ Figure ] Researchers at EPFL have developed a highly agile flat swimming robot. This robot is smaller than a credit card, and propels on the water surface using a pair of undulating soft fins. The fins are driven at resonance by artificial muscles, allowing the robot to perform complex maneuvers. In the future, this robot can be used for monitoring water quality or help with measuring fertilizer concentrations in rice fields [ Paper ] via [ Science Robotics ] I donโt know about you, but I always dance better when getting beaten with a stick. [ Unitree Robotics ] This is big news, people: Sweet Bite Ham Ham, one of the greatest and most useless robots of all time, has a new treat. All yours for about $100, overseas shipping included. [ Ham Ham ] via [ Robotstart ] MagicLab has announced the launch of its first generation self-developed dexterous hand product, the MagicHand S01. The MagicHand S01 has 11 degrees of freedom in a single hand. The MagicHand S01 has a hand load capacity of up to 5 kilograms, and in work environments, can carry loads of over 20 kilograms. [ MagicLab ] Thanks, Ni Tao! No, Iโm not creeped out at all, why? [ Clone Robotics ] Happy 40th Birthday to the MIT Media Lab! Since 1985, the MIT Media Lab has provided a home for interdisciplinary research, transformative technologies, and innovative approaches to solving some of humanityโs greatest challenges. As we celebrate our 40th anniversary year, weโre looking ahead to decades more of imagining, designing, and inventing a future in which everyone has the opportunity to flourish. [ MIT Media Lab ] While most soft pneumatic grippers that operate with a single control parameter (such as pressure or airflow) are limited to a single grasping modality, this article introduces a new method for incorporating multiple grasping modalities into vacuum-driven soft grippers. This is achieved by combining stiffness manipulation with a bistable mechanism. Adjusting the airflow tunes the energy barrier of the bistable mechanism, enabling changes in triggering sensitivity and allowing swift transitions between grasping modes. This results in an exceptional versatile gripper, capable of handling a diverse range of objects with varying sizes, shapes, stiffness, and roughness, controlled by a single parameter, airflow, and its interaction with objects. [ Paper ] via [ BruBotics ] Thanks, Bram! In this article, we present a design concept, in which a monolithic soft body is incorporated with a vibration-driven mechanism, called Leafbot. This proposed investigation aims to build a foundation for further terradynamics study of vibration-driven soft robots in a more complicated and confined environment, with potential applications in inspection tasks. [ Paper ] via [ IEEE Transactions on Robots ] We present a hybrid aerial-ground robot that combines the versatility of a quadcopter with enhanced terrestrial mobility. The vehicle features a passive, reconfigurable single wheeled leg, enabling seamless transitions between flight and two ground modes: a stable stance and a dynamic cruising configuration. [ Robotics and Intelligent Systems Laboratory ] Iโm not sure Iโve ever seen this trick performed by a robot with soft fingers before. [ Paper ] There are a lot of robots involved in car manufacturing. Like, a lot. [ Kawasaki Robotics ] Steve Willits shows us some recent autonomous drone work being done at the AirLab at CMUโs Robotics Institute. [ Carnegie Mellon University Robotics Institute ] Somebodyโs got to test all those luxury handbags and purses. And by somebody, I mean somerobot. [ Qb Robotics ] Do not trust people named Evan. [ Tufts University Human-Robot Interaction Lab ] Meet the Mind: MIT Professor Andreea Bobu. [ MIT ]
In a previous post I made the point that having a weak manager - a manager without political clout - is really bad news if youโre anโฆ
About a year ago, Boston Dynamics released a research version of its Spot quadruped robot, which comes with a low-level application programming interface (API) that allows direct control of Spotโs joints. Even back then, the rumor was that this API unlocked some significant performance improvements on Spot, including a much faster running speed. That rumor came from the Robotics and AI (RAI) Institute, formerly The AI Institute, formerly the Boston Dynamics AI Institute, and if you were at Marc Raibertโs talk at the ICRA@40 conference in Rotterdam last fall, you already know that it turned out not to be a rumor at all. Today, weโre able to share some of the work that the RAI Institute has been doing to apply reality-grounded reinforcement learning techniques to enable much higher performance from Spot. The same techniques can also help highly dynamic robots operate robustly, and thereโs a brand new hardware platform that shows this off: an autonomous bicycle that can jump. See Spot Run This video is showing Spot running at a sustained speed of 5.2 meters per second (11.6 miles per hour). Out of the box, Spotโs top speed is 1.6 meters per second, meaning that RAIโs spot has more than tripled (!) the quadrupedโs factory speed. If Spot running this quickly looks a little strange, thatโs probably because it is strange, in the sense that the way this robot dogโs legs and body move as it runs is not very much like a real dog at all. โThe gait is not biological, but the robot isnโt biological,โ explains Farbod Farshidian, roboticist at the RAI Institute. โSpotโs actuators are different from muscles, and its kinematics are different, so a gait thatโs suitable for a dog to run fast isnโt necessarily best for this robot.โ The best Farshidian can categorize how Spot is moving is that itโs somewhat similar to a trotting gait, except with an added flight phase (with all four feet off the ground at once) that technically turns it into a run. This flight phase is necessary, Farshidian says, because the robot needs that time to successively pull its feet forward fast enough to maintain its speed. This is a โdiscovered behavior,โ in that the robot was not explicitly programmed to โrun,โ but rather was just required to find the best way of moving as fast as possible. Reinforcement Learning Versus Model Predictive Control The Spot controller that ships with the robot when you buy it from Boston Dynamics is based on model predictive control (MPC), which involves creating a software model that approximates the dynamics of the robot as best you can, and then solving an optimization problem for the tasks that you want the robot to do in real time. Itโs a very predictable and reliable method for controlling a robot, but itโs also somewhat rigid, because that original software model wonโt be close enough to reality to let you really push the limits of the robot. And if you try to say, โokay, Iโm just going to make a super detailed software model of my robot and push the limits that way,โ you get stuck because the optimization problem has to be solved for whatever you want the robot to do, in real time, and the more complex the model is, the harder it is to do that quickly enough to be useful. Reinforcement learning (RL), on the other hand, learns offline. You can use as complex of a model as you want, and then take all the time you need in simulation to train a control policy that can then be run very efficiently on the robot. Your browser does not support the video tag. In simulation, a couple of Spots (or hundreds of Spots) can be trained in parallel for robust real-world performance.Robotics and AI Institute In the example of Spotโs top speed, itโs simply not possible to model every last detail for all of the robotโs actuators within a model-based control system that would run in real time on the robot. So instead, simplified (and typically very conservative) assumptions are made about what the actuators are actually doing so that you can expect safe and reliable performance. Farshidian explains that these assumptions make it difficult to develop a useful understanding of what performance limitations actually are. โMany people in robotics know that one of the limitations of running fast is that youโre going to hit the torque and velocity maximum of your actuation system. So, people try to model that using the data sheets of the actuators. For us, the question that we wanted to answer was whether there might exist some other phenomena that was actually limiting performance.โ Searching for these other phenomena involved bringing new data into the reinforcement learning pipeline, like detailed actuator models learned from the real world performance of the robot. In Spotโs case, that provided the answer to high-speed running. It turned out that what was limiting Spotโs speed was not the actuators themselves, nor any of the robotโs kinematics: It was simply the batteries not being able to supply enough power. โThis was a surprise for me,โ Farshidian says, โbecause I thought we were going to hit the actuator limits first.โ Spotโs power system is complex enough that thereโs likely some additional wiggle room, and Farshidian says the only thing that prevented them from pushing Spotโs top speed past 5.2 m/s is that they didnโt have access to the battery voltages so they werenโt able to incorporate that real world data into their RL model. โIf we had beefier batteries on there, we could have run faster. And if you model that phenomena as well in our simulator, Iโm sure that we can push this farther.โ Farshidian emphasizes that RAIโs technique is about much more than just getting Spot to run fastโit could also be applied to making Spot move more efficiently to maximize battery life, or more quietly to work better in an office or home environment. Essentially, this is a generalizable tool that can find new ways of expanding the capabilities of any robotic system. And when real world data is used to make a simulated robot better, you can ask the simulation to do more, with confidence that those simulated skills will successfully transfer back onto the real robot. Ultra Mobility Vehicle: Teaching Robot Bikes to Jump Reinforcement learning isnโt just good for maximizing the performance of a robotโit can also make that performance more reliable. The RAI Institute has been experimenting with a completely new kind of robot that they invented in-house: a little jumping bicycle called the Ultra Mobility Vehicle, or UMV, which was trained to do parkour using essentially the same RL pipeline for balancing and driving as was used for Spotโs high speed running. Thereโs no independent physical stabilization system (like a gyroscope) keeping the UMV from falling over; itโs just a normal bike that can move forwards and backwards and turn its front wheel. As much mass as possible is then packed into the top bit, which actuators can rapidly accelerate up and down. โWeโre demonstrating two things in this video,โ says Marco Hutter, director of the RAI Instituteโs Zurich office. โOne is how reinforcement learning helps make the UMV very robust in its driving capabilities in diverse situations. And second, how understanding the robotsโ dynamic capabilities allows us to do new things, like jumping on a table which is higher than the robot itself.โ โThe key of RL in all of this is to discover new behavior and make this robust and reliable under conditions that are very hard to model. Thatโs where RL really, really shines.โ โMarco Hutter, The RAI Institute As impressive as the jumping is, for Hutter, itโs just as difficult (if not more difficult) to do maneuvers that may seem fairly simple, like riding backwards. โGoing backwards is highly unstable,โ Hutter explains. โAt least for us, it was not really possible to do that with a classical [MPC] controller, particularly over rough terrain or with disturbances.โ Getting this robot out of the lab and onto terrain to do proper bike parkour is a work in progress that the RAI Institute says theyโll be able to demonstrate in the near future, but itโs really not about what this particular hardware platform can doโitโs about what any robot can do through RL and other learning-based methods, says Hutter. โThe bigger picture here is that the hardware of such robotic systems can in theory do a lot more than we were able to achieve with our classic control algorithms. Understanding these hidden limits in hardware systems lets us improve performance and keep pushing the boundaries on control.โ Your browser does not support the video tag. Teaching the UMV to drive itself down stairs in sim results in a real robot that can handle stairs at any angle.Robotics and AI Institute Reinforcement Learning for Robots Everywhere Just a few weeks ago, The RAI Institute announced a new partnership with Boston Dynamics โto advance humanoid robots through reinforcement learning.โ Humanoids are just another kind of robotic platform, albeit a significantly more complicated one with many more degrees of freedom and things to model and simulate. But when considering the limitations of model predictive control for this level of complexity, a reinforcement learning approach seems almost inevitable, especially when such an approach is already streamlined due to its ability to generalize. โOne of the ambitions that we have as an institute is to have solutions which span across all kinds of different platforms,โ says Hutter. โItโs about building tools, about building infrastructure, building the basis for this to be done in a broader context. So not only humanoids, but driving vehicles, quadrupeds, you name it. But doing RL research and showcasing some nice first proof of concept is one thingโpushing it to work in the real world under all conditions, while pushing the boundaries in performance, is something else.โ Transferring skills into the real world has always been a challenge for robots trained in simulation, precisely because simulation is so friendly to robots. โIf you spend enough time,โ Farshidian explains, โyou can come up with a reward function where eventually the robot will do what you want. What often fails is when you want to transfer that sim behavior to the hardware, because reinforcement learning is very good at finding glitches in your simulator and leveraging them to do the task.โ Simulation has been getting much, much better, with new tools, more accurate dynamics, and lots of computing power to throw at the problem. โItโs a hugely powerful ability that we can simulate so many things, and generate so much data almost for free,โ Hutter says. But the usefulness of that data is in its connection to reality, making sure that what youโre simulating is accurate enough that a reinforcement learning approach will in fact solve for reality. Bringing physical data collected on real hardware back into the simulation, Hutter believes, is a very promising approach, whether itโs applied to running quadrupeds or jumping bicycles or humanoids. โThe combination of the twoโof simulation and realityโthatโs what I would hypothesize is the right direction.โ