More from seangoedecke.com RSS feed
Years ago I spent a lot of time reviewing coding challenges. The challenge itself was very straightforward - building a CLI tool that hit an…
With the recent flurry of US federal firings, many people are pointing and laughing at the Trump-voting federal employees who are just now…
There are two ways of assessing how much value you’re providing as an engineer. The first way is to total up all of the code you’ve shipped…
One of the most important career skills in tech is learning to recognize what work actually matters. Many engineers go through their careers…
Some things you can’t do because they’re impossible. For instance, if you’re designing a distributed system, you can’t violate the CAP…
More in AI
This complication of tales from the world of school isn’t all negative.
Machine learning for software engineers 3-7-25
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboCup German Open: 12–16 March 2025, NUREMBERG, GERMANY German Robotics Conference: 13–15 March 2025, NUREMBERG, GERMANY European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANY RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLAND ICUAS 2025: 14–17 May 2025, CHARLOTTE, NC ICRA 2025: 19–23 May 2025, ATLANTA, GA London Humanoids Summit: 29–30 May 2025, LONDON IEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN 2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TX RSS 2025: 21–25 June 2025, LOS ANGELES ETH Robotics Summer School: 21–27 June 2025, GENEVA IAS 2025: 30 June–4 July 2025, GENOA, ITALY ICRES 2025: 3–4 July 2025, PORTO, PORTUGAL IEEE World Haptics: 8–11 July 2025, SUWON, KOREA IFAC Symposium on Robotics: 15–18 July 2025, PARIS RoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL Enjoy today’s videos! Last year, we unveiled the new Atlas—faster, stronger, more compact, and less messy. We’re designing the world’s most dynamic humanoid robot to do anything and everything, but we get there one step at a time. Our first task is part sequencing, a common logistics task in automotive manufacturing. Discover why we started with sequencing, how we are solving hard problems, and how we’re delivering a humanoid robot with real value. My favorite part is 1:40, where Atlas squats down to pick a part up off the ground. [ Boston Dynamics ] I’m mostly impressed that making contact with that stick doesn’t cause the robot to fall over. [ Unitree ] Professor Patrícia Alves-Oliveira is studying authenticity of artworks co-created by an artist and a robot. Her research lab, Robot Studio, is developing methods to authenticate artwork by analyzing their entire creative process. This is accomplished by using the artist’s biometrics as well as the process of artwork creation, from the first brushstroke to the final painting. This work aims to bring ownership back to artists in the age of generative AI. [ Robot Studio ] at [ University of Michigan ] Hard to believe that RoMeLa has been developing humanoid robots for 20 (!) years. Here’s to 20 more! [ RoMeLa ] at [ University of California Los Angeles ] In this demo, Reachy 2 autonomously sorts healthy and unhealthy foods. No machine learning, no pre-trained AI—just real-time object detection! [ Pollen ] Biological snakes achieve high mobility with numerous joints, inspiring snake-like robots for rescue and inspection. However, conventional designs feature a limited number of joints. This paper presents an underactuated snake robot consisting of many passive links that can dynamically change its joint coupling configuration by repositioning motor-driven joint units along internal rack gears. Furthermore, a soft robot skin wirelessly powers the units, eliminating wire tangling and disconnection risks. [ Paper ] Thanks, Ayato! Tech United Eindhoven is working on quadrupedal soccer robots, which should be fun. [ Tech United ] Autonomous manipulation in everyday tasks requires flexible action generation to handle complex, diverse real-world environments, such as objects with varying hardness and softness. Imitation Learning (IL) enables robots to learn complex tasks from expert demonstrations. However, a lot of existing methods rely on position/unilateral control, leaving challenges in tasks that require force information/control, like carefully grasping fragile or varying-hardness objects. To address these challenges, we introduce Bilateral Control-Based Imitation Learning via Action Chunking with Transformers(Bi-ACT) and”A” “L”ow-cost “P”hysical “Ha”rdware Considering Diverse Motor Control Modes for Research in Everyday Bimanual Robotic Manipulation (ALPHA-α). [ Alpha-Biact ] Thanks, Masato! Powered by UBTECH’s revolutionary framework “BrainNet”, a team of Walker S1 humanoid robots work together to master complex tasks at Zeekr’s Smart Factory! Teamwork makes the dream of robots work. [ UBTECH ] Personal mobile robotic assistants are expected to find wide applications in industry and healthcare. However, manually steering a robot while in motion requires significant concentration from the operator, especially in tight or crowded spaces. This work presents a virtual leash with which a robot can naturally follow an operator. We successfully validate on the ANYmal platform the robustness and performance of our entire pipeline in real-world experiments. [ ETH Zurich Robotic Systems Lab ] I do not ever want to inspect a wind turbine blade from the inside. [ Flyability ] Sometimes you can learn more about a robot from an instructional unboxing video than from a fancy demo. [ DEEP Robotics ] Researchers at Penn Engineering have discovered that certain features of AI-governed robots carry security vulnerabilities and weaknesses that were previously unidentified and unknown. Funded by the National Science Foundation and the Army Research Laboratory, the research aims to address the emerging vulnerability for ensuring the safe deployment of large language models (LLMs) in robotics. [ RoboPAIR ] ReachBot is a joint project between Stanford and NASA to explore a new approach to mobility in challenging environments such as martian caves. It consists of a compact robot body with very long extending arms, based on booms used for extendable antennas. The booms unroll from a coil and can extend many meters in low gravity. In this talk I will introduce the ReachBot design and motion planning considerations, report on a field test with a single ReachBot arm in a lava tube in the Mojave Desert, and discuss future plans, which include the possibility of mounting one or more ReachBot arms equipped with wrists and grippers on a mobile platform – such as ANYMal. [ ReachBot ]
Years ago I spent a lot of time reviewing coding challenges. The challenge itself was very straightforward - building a CLI tool that hit an…