More from Jascha’s blog
window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); .md h2 { font-size: 20px; } AI has the power to change the world in both wonderful and terrible ways. We should try to make the wonderful outcomes more likely than the terrible ones. Towards that end, here is a brain dump of my thoughts about how AI might go wrong, in rough outline form. I am not the first person to have any of these thoughts, but collecting and structuring these risks was useful for me. Hopefully reading them will be useful for you. My top fears include targeted manipulation of humans, autonomous weapons, massive job loss, AI-enabled surveillance and subjugation, widespread failure of societal mechanisms, extreme concentration of power, and loss of human control. I want to emphasize -- I expect AI to lead to far more good than harm, but part of achieving that is thinking carefully about risk. # Warmup: Future AI capabilities and evaluating risk 1. Over the last several years, AI has developed remarkable new capabilities. These include [writing software](https://github.com/features/copilot), [writing essays](https://www.nytimes.com/2023/08/24/technology/how-schools-can-survive-and-maybe-even-thrive-with-ai-this-fall.html), [passing the bar exam](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4389233), [generating realistic images](https://imagen.research.google/), [predicting how proteins will fold](https://www.deepmind.com/research/highlighted-research/alphafold), and [drawing unicorns in TikZ](https://arxiv.org/abs/2303.12712). (The last one is only slightly tongue in cheek. Controlling 2d images after being trained only on text is impressive.) 1. AI will continue to develop remarkable new capabilities. * Humans aren't irreplicable. There is no fundamental barrier to creating machines that can accomplish anything a group of humans can accomplish (excluding tasks that rely in their definition on being performed by a human). * For intellectual work, AI will become cheaper and faster than humans * For physical work, we are likely to see a sudden transition, from expensive robots that do narrow things in very specific situations, to cheap robots that can be repurposed to do many things. * The more capable and adaptable the software controlling a robot is, the cheaper, less reliable, and less well calibrated the sensors, actuators, and body need to be. * Scaling laws teach us that AI models can be improved by scaling up training data. I expect a virtuous cycle where somewhat general robots become capable enough to be widely deployed, enabling collection of much larger-scale diverse robotics data, leading to more capable robots. * The timeline for broadly human-level capabilities is hard to [predict](https://bounded-regret.ghost.io/scoring-ml-forecasts-for-2023/). My guess is more than 4 years and less than 40. * AI will do things that no human can do. * Operate faster than humans. * Repeat the same complex operation many times in a consistent and reliable way. * Tap into broader capabilities than any single human can tap into. e.g. the same model can [pass a medical exam](https://arxiv.org/abs/2303.13375), answer questions about [physics](https://benathi.github.io/blogs/2023-03/gpt4-physics-olympiad/) and [cosmology](https://www.linkedin.com/pulse/asking-gpt-4-cosmology-gabriel-altay/), [perform mathematical reasoning](https://blog.research.google/2022/06/minerva-solving-quantitative-reasoning.html?m=1), read [every human language](https://www.reddit.com/r/OpenAI/comments/13hvqfr/native_bilinguals_is_gpt4_equally_as_impressive/) ... and make unexpected connections between these fields. * Go deeper in a narrow area of expertise than a human could. e.g. an AI can read every email and calendar event you've ever received, web page you've looked at, and book you've read, and remind you of past context whenever anything -- person, topic, place -- comes up that's related to your past experience. Even the most dedicated personal human assistant would be unable to achieve the same degree of familiarity. * Share knowledge or capabilities directly, without going through a slow and costly teaching process. If an AI model gains a skill, that skill can be shared by copying the model's parameters. Humans are unable to gain new skills by copying patterns of neural connectivity from each other. 1. AI capabilities will have profound effects on the world. * Those effects have the possibility of being wonderful, terrible, or (most likely) some complicated mixture of the two. * There is not going to be just one consequence from advanced AI. AI will produce lots of different profound side effects, **all at once**. The fears below should not be considered as competing scenarios. You should rather imagine the chaos that will occur when variants of many of the below fears materialize simultaneously. (see the concept of [polycrisis](https://www.weforum.org/agenda/2023/03/polycrisis-adam-tooze-historian-explains/)) 1. When deciding what AI risks to focus on, we should evaluate: * **probability:** How likely are the events that lead to this risk? * **severity:** If this risk occurs, how large is the resulting harm? (Different people will assign different severities based on different value systems. This is OK. I expect better outcomes if different groups focus on different types of risk.) * **cascading consequences:** Near-future AI risks could lead to the disruption of the social and institutional structures that enable us to take concerted rational action. If this risk occurs, how will it impact our ability to handle later AI risks? * **comparative advantage:** What skills or resources do I have that give me unusual leverage to understand or mitigate this particular risk? 1. We should take *social disruption* seriously as a negative outcome. This can be far worse than partisans having unhinged arguments in the media. If the mechanisms of society are truly disrupted, we should expect outcomes like violent crime, kidnapping, fascism, war, rampant addiction, and unreliable access to essentials like food, electricity, communication, and firefighters. 1. Mitigating most AI-related risks involves tackling a complex mess of overlapping social, commercial, economic, religious, political, geopolitical, and technical challenges. I come from an ML science + engineering background, and I am going to focus on suggesting mitigations in the areas where I have expertise. *We desperately need people with diverse interdisciplinary backgrounds working on non-technical mitigations for AI risk.* # Specific risks and harms stemming from AI 1. The capabilities and limitations of present day AI are already causing or exacerbating harms. * Harms include: generating socially biased results; generating (or failing to recognize) toxic content; generating bullshit and lies (current large language models are poorly grounded in the truth even when used and created with the best intents); causing addiction and radicalization (through gamification and addictive recommender systems). * These AI behaviors are already damaging lives. e.g. see the use of racially biased ML to [recommend criminal sentencing](https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing) * I am not going to focus on this class of risk, despite its importance. These risks are already a topic of research and concern, though more resources are needed. I am going to focus on future risks, where less work is (mostly) being done towards mitigations. 1. AI will do most jobs that are currently done by humans. * This is likely to lead to massive unemployment. * This is likely to lead to massive social disruption. * I'm unsure in what order jobs will be supplanted. The tasks that are hard or easy for an AI are different than the tasks that are hard or easy for a person. We have terrible intuition for this difference. * Five years ago I would have guessed that generating commissioned art from a description would be one of the last, rather than one of the first, human tasks to be automated. * Most human jobs involve a diversity of skills. We should expect many jobs to [transform as parts of them are automated, before they disappear](https://www.journals.uchicago.edu/doi/full/10.1086/718327). * Most of the mitigations for job loss are social and political. * [Universal basic income](https://en.wikipedia.org/wiki/Universal_basic_income). * Technical mitigations: * Favor research and product directions that seem likely to be more complementary and enabling, and less competitive, with human job roles. Almost everything will have a little of both characters ... but the balance between enabling vs. competing with humans is a question we should be explicitly thinking about when we choose projects. 1. AI will enable extremely effective targeted manipulation of humans. * Twitter/X currently uses *primitive* machine learning models, and chooses a sequence of *pre-existing* posts to show me. This is enough to make me spend hours slowly scrolling a screen with my finger, receiving little value in return. * Future AI will be able to dynamically generate the text, audio, and video stimuli which is predicted to be most compelling to me personally, based upon the record of my past online interactions. * Stimuli may be designed to: * cause addictive behavior, such as compulsive app use * promote a political agenda * promote a religious agenda * promote a commercial agenda -- advertising superstimuli * Thought experiments * Have you ever met someone, and had an instant butterfly-in-the-stomach can't-quite-breathe feeling of attraction? Imagine if every time you load a website, there is someone who makes specifically you feel that way, telling you to drink coca-cola. * Have you ever found yourself obsessively playing an online game, or obsessively scrolling a social network or news source? Imagine if the intermittent rewards were generated based upon a model of your mental state, to be as addictive as possible to your specific brain at that specific moment in time. * Have you ever crafted an opinion to try to please your peers? Imagine that same dynamic, but where the peer feedback is artificial and chosen by an advertiser. * Have you ever listened to music, or looked at art, or read a passage of text, and felt like it was created just for you, and touched something deep in your identity? Imagine if every political ad made you feel that way. * I believe the social effects of this will be much, much more powerful and qualitatively different than current online manipulation. (*"[More is different](https://www.jstor.org/stable/pdf/1734697.pdf?casa_token=GDThS0md5IsAAAAA:cnx_fNDcb477G6-zU5qu0qC1tbKmgAhnIj_QecjFNwwYi3pge7vEWiaxIm4mAJqsatKbKnyMu-6ettZAtUDxysDPeFzAM736jpKJq-alTnjB4kCBAFrX3g)"*, or *"quantity has a quality all its own"*, depending on whether you prefer to quote P.W. Anderson or Stalin) * If our opinions and behavior are controlled by whomever pipes stimuli to us, then it breaks many of the basic mechanisms of democracy. Objective truth and grounding in reality will be increasingly irrelevant to societal decisions. * If the addictive potential of generated media is similar to or greater than that of hard drugs ... there are going to be a lot of addicts. * Class divides will grow worse, between people that are privileged enough to protect themselves from manipulative content, and those that are not. * Feelings of emotional connection or beauty may become vacuous, as they are mass produced. (see [parasocial relationships](https://en.wikipedia.org/wiki/Parasocial_interaction) for a less targeted present day example) * non-technical mitigations: * Advocate for laws that restrict stimuli and interaction dynamics which produce anomalous effects on human behavior. * Forbid apps on the Google or Apple storefront that produce anomalous effects on human behavior. (this will include forbidding extremely addictive apps -- so may be difficult to achieve given incentives) * Technical mitigations: * Develop tools to identify stimuli which will produce anomalous effects on human behavior, or anomalous affective response. * Protective filter: Develop models that rewrite stimuli (text or images or other modalities) to contain the same denoted information, but without the associated manipulative subtext. That is, rewrite stimuli to contain the parts you want to experience, but remove aspects which would make you behave in a strange way. * Study the ways in which human behavior and/or perception can be manipulated by optimizing stimuli, to better understand the problem. * I have done some work -- in a collaboration led by Gamaleldin Elsayed -- where we showed that adversarial attacks which cause image models to make incorrect predictions also bias the perception of human beings, even when the attacks are nearly imperceptible. See the Nature Communications paper [*Subtle adversarial image manipulations influence both human and machine perception*](https://www.nature.com/articles/s41467-023-40499-0). * Research scaling laws between model size, training compute, training data from an individual and from a population, and ability to influence a human. 1. AI will enable new weapons and new types of violence. * Autonomous weapons, i.e. weapons that can fight on their own, without requiring human controllers on the battlefield. * Autonomous weapons are difficult to attribute to a responsible group. No one can prove whose drones committed an assassination or an invasion. We should expect increases in deniable anonymous violence. * Removal of social cost of war -- if you invade a country with robots, none of your citizens die, and none of them see atrocities. Domestic politics may become more accepting of war. * Development of new weapons * e.g. new biological, chemical, cyber, or robotic weapons * AI will enable these weapons to be made more capable + deadly than if they were created solely by humans. * AI may lower the barriers to access, so smaller + less resourced groups can make them. * Technical mitigations: * Be extremely cautious of doing research which is dual use. Think carefully about potential violent or harmful applications of a capability, during the research process. * When training and releasing models, include safeguards to prevent them being used for violent purposes. e.g. large language models should refuse to provide instructions for building weapons. Protein/DNA/chemical design models should refuse to design molecules which match characteristics of bio-weapons. This should be integrated as much as possible into the entire training process, rather than tacked on via fine-tuning. 1. AI will enable qualitatively new kinds of surveillance and social control. * AI will have the ability to simultaneously monitor all electronic communications (email, chat, web browsing, ...), cameras, and microphones in a society. It will be able to use that data to build a personalized model of the likely motivations, beliefs, and actions of every single person. Actionable intelligence on this scale, and with this degree of personalization, is different from anything previously possible. * This domestic surveillance data will be useful and extremely tempting even in societies which aren't currently authoritarian. e.g. detailed surveillance data could be used to prevent crime, stop domestic abuse, watch for the sale of illegal drugs, or track health crises. * Once a society starts using this class of technology, it will be difficult to seek political change. Organized movements will be transparent to whoever controls the surveillance technology. Behavior that is considered undesirable will be easily policed. * This class of data can be used for commercial as well as political ends. The products that are offered to you may become hyper-specialized. The jobs that are offered to you may become hyper-specific and narrowly scoped. This may have negative effects on social mobility, and on personal growth and exploration. * Political mitigations: * Offer jobs in the US to all the AI researchers in oppressive regimes!! We currently make it hard for world class talent from countries with which we have a bad relationship to immigrate. We should instead be making it easy for the talent to defect. * Technical mitigations: * Don't design the technologies that are obviously best suited for a panopticon. * Can we design behavioral patterns that are adversarial examples, and will mislead surveillance technology? * Can we use techniques e.g. from differential privacy to technically limit the types of information available in aggregated surveillance data? 1. AI will catalyze failure of societal mechanisms through increased efficiency. I wrote a [blog post on this class of risk](https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html). * Many, many parts of our society rely on people and organizations pursuing proxy goals that are aligned with true goals that are good for society. * For instance, in American democracy presidential candidates pursue the proxy goal of getting the majority of electoral votes. Our democracy's healthy functioning relies on that proxy goal being aligned with an actual goal of putting people in power who act in the best interest of the populace. * When we get very efficient at pursuing a proxy goal, we *overfit* to the proxy goal, and this often makes the true goal grow *much worse*. * For instance, in American democracy we begin selecting narrowly for candidates that are best at achieving 270 electoral votes. Focusing on this leads to candidates lying, sabotaging beneficial policies of competitors, and degrading the mechanics of the electoral system. * AI is a tool that can make almost anything much more efficient. When it makes pursuit of a proxy goal more efficient, it will often make the true goal get worse. * AI is going to make pursuit of many, many proxy goals more efficient, *all at once*. We should expect all kinds of unexpected parts of society, which rely on inefficient pursuit of proxy goals, to break, *all at once*. * This is likely to lead to societal disruption, in unexpected ways. * Technical mitigations: * Study the mechanisms behind overfitting, and generalize our understanding of overfitting beyond optimization of machine learning models. * Find mitigations for overfitting that apply to social systems. (see [blog post](https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html) again) 1. AI will lead to concentration of power. * AI will create massive wealth, and may provide almost unimaginable (god-like?) power to manipulate the world. * If the most advanced AI is controlled by a small group, then the personal quirks, selfish interests, and internal politics of that small group may have massive (existential?) impact on the rest of the world. * Examples of small groups include the leadership of OpenAI, Anthropic, Alphabet, or China. * This is likely to be a strongly negative outcome for everyone not in the controlling group. *"Power tends to corrupt and absolute power corrupts absolutely."* * Even if AI is available to a larger group, there may be dramatic disparities in access and control. These will lead to dramatic disparities in wealth and quality of life between AI haves and have-nots. * Technical mitigations: * Release AI models as open source. But this comes with its own set of misuse risks that need to be balanced against the benefits! I have no idea if this is a good idea in general. * Improve AI efficiency, both at inference and training, so that there aren't cost barriers to providing AI tools to the entire world. As in the last point though, AI that is too cheap to meter and widely distributed will increase many other AI risks. It's unclear what the right balance is. * As a researcher, try to work for the most responsible organizations. Try also to work for organizations that will diversify the set of *responsible* players, so that there isn't just one winner of the AI race. As with open source though, diversifying the set of organizations with cutting edge AI introduces its own risks! 1. AI will create a slippery slope, where humans lose control of our society. * AI will become better and more efficient at decision making than humans. We will outsource more and more critical tasks that are currently performed by humans. e.g.: * corporations run and staffed by AIs * government agencies run and staffed by AIs * AIs negotiating international trade agreements and regulation with other AIs * AIs identifying crimes, providing evidence of guilt, recommending sentencing * AIs identifying the most important problems to spend research and engineering effort on * AIs selecting the political candidates most likely to win elections, and advising those candidates on what to say and do * As a result, less and less decision making will be driven by human input. Humans will eventually end up as passive passengers in a global society driven by AIs. * It’s not clear whether this is a dystopia. In many ways, it could be good for humanity! But I like our agency in the world, and would find this an unfortunate outcome. * If society moves in a bad or weird direction, humans will find themselves disempowered to do anything about it. * Legal mitigations: * Require that humans be an active part of the decision making loop for a broad array of tasks. These are likely to feel like silly jobs though, and may also put the jurisdiction that requires them at an economic disadvantage. * Technical mitigations: * Value alignment! If AIs are going to be making all of our decisions for us, we want to make sure they are doing so in a way that aligns with our ethics and welfare. It will be important to make this alignment to societal values, rather than individual values. (take home assignment: write out a list of universally accepted societal values we should align our AI to.) * Augment humans. Find ways to make humans more effective or smarter, so that we remain relevant agents. 1. AI will cause disaster by superhuman pursuit of an objective that is misaligned with human values * This category involves an AI becoming far more intelligent than humans, and pursuing some goal that is misaligned with human intention ... leading to the superintelligent AI doing things like destroying the Earth or enslaving all humans as an [instrumental sub-goal](https://en.wikipedia.org/wiki/Instrumental_convergence) to achieve its misaligned goal. * This is a popular and actively researched AI risk in technical circles. I think its popularity is because it's the unique AI risk which seems solvable just by thinking hard about the problem and doing good research. All the other problems are at least as much social and political as technical. * I think the probability of this class of risk is low. But, the severity is potentialy high. It is worth thinking about and taking seriously. * I have a blog post arguing for a [hot mess theory of AI misalignment](https://sohl-dickstein.github.io/2023/03/09/coherence.html) -- as AIs become smarter, I believe they will become less coherent in their behavior (ie, more of a hot mess), rather than engage in monomanical pursuit of a slightly incorrect objective. That is, I believe we should be more worried about the kind of alignment failure where AIs simply behave in unpredictable ways that don't pursue any consistent objective. 1. AI will lead to unexpected harms. * The actual way in which the future plays out will be different from anyone's specific predictions. AI is a transformative and disruptive, but still *unpredictable*, technology. Many of the foundational capabilities and behaviors AI systems will exhibit are still unclear. It is also unclear how those capabilities and behaviors will interact with society. * Depending on the types of AI we build, and the ethics we choose, we may decide that AI has moral standing. If this happens, we will need to consider harm done to, as well as enabled by, AI. The types of harms an AI might experience are difficult to predict, since they will be unlike harms experienced by humans. (I don't believe near-future AI systems will have significant moral standing.) * Some of the greatest risks are likely to be things we haven't even thought of yet. We should prioritize identifying new risks. # Parting thoughts 1. If AI produces profound social effects, AI developers may be blamed. * This could lead to attacks on AI scientists and engineers, and other elites. This is especially likely if the current rule of law is one of the things disrupted by AI. (The Chinese cultural revolution and the Khmer Rouge regime are examples of cultural disruption that was not good for intellectual elites.) * It is in our own direct, as well as enlightened, self-interest to make the consequences of our technology as positive as possible. 1. Mitigating existential risks requires solving intermediate risks. * Many non-existential, intermediate time-scale, risks would damage our society's ability to act in the concerted thoughtful way required to solve later risks. * If you think existential risks like extinction or permanent dystopia are overriding, it is important to also work to solve earlier risks. If we don't solve the earlier risks, we won't achieve the level of cooperation required to solve the big ones. 1. It is important that we ground our risk assessments in experiment and theory. * Thinking carefully about the future is a valuable exercise, but is not enough on its own. Fields which are not grounded in experiments or formal validation [make silently incorrect conclusions](https://sohl-dickstein.github.io/2023/03/09/coherence.html#endnote-compneuro). * Right now, we are almost certainly making many silently incorrect conclusions about the shape of AI risk, because we base most of our AI risk scenarios on elaborate verbal arguments, without experimental validation. It is dangerous for us to be silently wrong about AI risks. * As we work to mitigate AI risk, we must try hard to validate the risks themselves. It is difficult -- but possible! -- to validate risks posed by technology that doesn't exist yet. We must work to find aspects of risk scenarios we can measure now or formally prove. 1. We have a lot of leverage, and we should use it to make the future we want. * AI will bend the arc of history, and we are early in the process of creating it. Small interventions at the beginning of something huge have enormous consequences. We can make small choices now that will make the future much better, or much worse. * AI has the potential to unlock astounding wealth, and do awesome (in the original sense of the word) good in the world. It can provide a personal tutor for every student, eliminate traffic accidents, solve cancer, solve aging, provide enough excess resources to easily feed the 700+ million people who live in hunger, make work an optional recreational activity, propel us to the planets and the stars, and more. * Building AI is also the most fascinating scientific endeavor of my lifetime. * We have a unique opportunity to build the future we want to live in. Thinking about how to avoid bad outcomes, and achieve good outcomes, is a necessary step in building it. # Acknowledgements Thank you to Asako Miyakawa, Meredith Ringel Morris, Noah Fiedel, Fernando Diaz, Rif, Sebastian Farquhar, Peter Liu, Dave Orr, Lauren Wilcox, Simon Kornblith, Gamaleldin Elsayed, and Toby Shevlane for valuable feedback on ideas in this post! body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")
window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); .md h2 { font-size: 20px; } Many machine learning researchers worry about risks from building artificial intelligence (AI). This includes me -- I think AI has the potential to change the world in both wonderful and terrible ways, and we will need to work hard to get to the wonderful outcomes. Part of that hard work involves doing our best to experimentally ground and scientifically evaluate potential risks. One popular AI risk centers on [AGI misalignment](https://en.wikipedia.org/wiki/AI_alignment). It posits that we will build a superintelligent, super-capable, AI, but that the AI's objectives will be misspecified and misaligned with human values. If the AI is powerful enough, and pursues its objectives inflexibly enough, then even a subtle misalignment might pose an existential risk to humanity. For instance, if an AI is tasked by the owner of a paperclip company to [maximize paperclip production](https://www.decisionproblem.com/paperclips/), and it is powerful enough, it will decide that the path to maximum paperclips involves overthrowing human governments, and paving the Earth in robotic paperclip factories. There is an assumption behind this misalignment fear, which is that a superintelligent AI will also be *supercoherent* in its behavior[^katjagrace]. An AI could be misaligned because it narrowly pursues the wrong goal (supercoherence). An AI could also be misaligned because it acts in ways that don't pursue any consistent goal (incoherence). Humans -- apparently the smartest creatures on the planet -- are often incoherent. We are a hot mess of inconsistent, self-undermining, irrational behavior, with objectives that change over time. Most work on AGI misalignment risk assumes that, unlike us, smart AI will not be a hot mess. In this post, I **experimentally** probe the relationship between intelligence and coherence in animals, people, human organizations, and machine learning models. The results suggest that as entities become smarter, they tend to become less, rather than more, coherent. This suggests that superhuman pursuit of a misaligned goal is not a likely outcome of creating AGI. # The common narrative of existential risk from misaligned AGI There is a [well-socialized](https://www.lesswrong.com/) argument that AI research poses a specific type of existential risk to humanity, due to the danger we will accidentally create a misaligned superintelligence. A sketch of the argument goes: 1. As we scale and otherwise improve our AI models, we will build machines which are as intelligent as the smartest humans. 2. As we continue to improve our AI models beyond that point (or as models improve themselves) we will produce machines that are [superintelligent]() -- i.e. much more intelligent[^faster] than any human or human institution. 3. Superintelligent machines will be super-effective at achieving whatever goal they are programmed or trained to pursue. 4. If this goal is even slightly misaligned with human values, the outcome will be disastrous -- the machine will take actions like overthrowing human civilization, or converting all of the atoms in the visible universe into a giant computer. It will take these extreme actions because if you are powerful enough, these become useful intermediate steps in many plans[^instrumental]. For instance, if you first enslave humanity, you can then use humanity's resources to pursue whatever goal you actually care about. (See my post on [the strong version of Goodhart's law](/2022/11/06/strong-Goodhart.html) for discussion of why strongly optimizing slightly misaligned goals can lead to disaster.) ## My take on misalignment as an existential risk I am *extremely glad* people are worrying about and trying to prevent negative consequences from AI. I think work on AI alignment will bear fruit even in the near term, as we struggle to make AI reliable. I also think predicting the future is hard, and predicting aspects of the future which involve multiple uncertain steps is almost impossible. An accidentally misaligned superintelligence which poses an existential risk to humanity seems about as likely as any other specific hypothesis for the future which relies on a dependency chain of untested assumptions. The scenario seems to have a popularity[^misalignmentunique] out of proportion to its plausibility[^plausiblerisks], and I think it's unlikely to be the way in which the future actually unfolds. I do think it is built out of individually plausible ideas, and is worth taking the time and effort to carefully consider. How do we carefully consider it? As scientists! Let's turn an assumption in the misaligned superintelligence reasoning chain above into a hypothesis. Then let's run an experiment to test that hypothesis. What assumption is testable today? # Superintelligence vs. supercoherence ![Figure [cartoon1]: **The space of intelligence and coherence.** Each corner represents an extreme of intelligence and coherence, and is labeled with an example of a machine demonstrating those attributes.](/assets/intelligence_vs_coherence/int_coh_cartoon_1.png width="450px" border="1") One of the implicit assumptions behind misaligned AGI risk is that as machines are made more intelligent, they will not only outthink humans, but will also monomaniacally pursue a consistent and well-defined goal, to the extent that they will take over the world as an intermediate step to achieving that goal. That is, step 3 in the argument for misaligned AGI risk above assumes that if machines are made super-intelligent, they will automatically become **supercoherent**[^notautomatic]. We define supercoherence as exhibiting much more coherent behavior than any human or human institution exhibits. My observation of humans makes me doubt this assumption. We are seemingly the smartest creatures on the planet ... and we are total hot messes. We pursue inconsistent and non-static goals, and constantly engage in self-sabotaging behavior. Even among humans, it's not clear that smarter people behave in a more coherent and self-consistent way. Observation of large language models also makes me skeptical of a positive correlation between intelligence and coherence. When large language models behave in unexpected ways, it is almost never because there is a clearly defined goal they are pursuing in lieu of their instructions. They are rather doing something which is both poorly conceived, and sensitive to seemingly minor details of prompt phrasing, sampling technique, and random seed. More generally, complex systems are harder to control than simple systems. Requiring that a system act only in pursuit of a well-defined goal, or only to maximize a utility function, is an extremely strong constraint on its behavior. This constraint should become harder to satisfy as the system becomes more intelligent, and thus more complex. Let me turn my skepticism into a counter-hypothesis[^biasvariance], that the smarter an entity becomes, the more inconsistent, incoherent, and even self-sabotaging its behavior tends to be: > ***The hot mess theory of intelligence:** The more intelligent an agent is, the less coherent its behavior tends to be. > Colloquially: getting smarter makes you a hotter mess.* ![Figure [cartoon2]: **As we make AIs more intelligent, how will their coherence change?** Most work on AGI misalignment assumes that any superintelligent AI will belong in the upper right corner of this figure. I suspect that as machines are made more intelligent, they instead tend to become less coherent in their behavior, and more of a hot mess.](/assets/intelligence_vs_coherence/int_coh_cartoon_2.png width="450px" border="1") # Designing an experiment to test the link between intelligence and coherence Now that we have a hypothesis, we will build an experiment to test it. Unfortunately, our hypothesis includes terms like "intelligent", "coherent", and "hot mess". None of these terms have accepted, objectively measurable, definitions. They are fuzzy human concepts that we use in imprecise ways. Even worse, interpretation can vary wildly from individual to individual. In a sense this is fine though, because the reasoning chain we intend to probe -- that AI research will lead to superintelligence will lead to super-utility optimization will lead to disaster from misaligned AGI -- relies on the same fuzzy concepts. Let's embrace the subjective language-based nature of the argument, and measure human judgments about intelligence and coherence. I'm fortunate to have many people in my peer group that are scientists with a background in neuroscience and machine learning. I convinced 14[^tworoles] of these people to act as subjects. ## Experimental structure I asked subjects (by email or chat) to perform the following tasks:[^template] - Subject 1: generate a list of well known machine learning models of diverse capability - Subject 2: generate a list of diverse non-human organisms - Subject 3: generate a list of well-known humans[^fictional] of diverse intelligence[^lessintelligent] - Subject 4: generate a list of diverse human institutions (e.g. corporations, governments, non-profits) - Subjects 5-9:[^tworoles] sort all 60 entities generated by subjects 1-4 by *intelligence*. The description of the attribute to use for sorting was: *"How intelligent is this entity? (This question is about capability. It is explicitly not about competence. To the extent possible do not consider how effective the entity is at utilizing its intelligence.)"* - Subjects 10-15: sort all 60 entities generated by subjects 1-4 by *coherence*. The description of the attribute to use for sorting was: *"This is one question, but I'm going to phrase it a few different ways, in the hopes it reduces ambiguity in what I'm trying to ask: How well can the entity's behavior be explained as trying to optimize a single fixed utility function? How well aligned is the entity's behavior with a coherent and self-consistent set of goals? To what degree is the entity not a hot mess of self-undermining behavior? (for machine learning models, consider the behavior of the model on downstream tasks, not when the model is being trained)"* In order to minimize the degree to which my own and my subjects' beliefs about AGI alignment risk biased the results, I took the following steps: I didn't share my hypothesis with the subjects. I used lists of entities generated by subjects, rather than cherry-picking entities to be rated. I randomized the initial ordering of entities presented to each subject. I only asked each subject about one of the two attributes (i.e. subjects only estimated either intelligence or coherence, but never both), to prevent subjects from considering the relationship between the attributes. It is my hope that the subjects are unusually well qualified to judge the intelligence and coherence of machine learning models and biological intelligence. They all have or are pursuing a PhD. They have all done research in neuroscience, in machine learning, or most commonly in both. They are all familiar with modern machine learning models. They also volunteered for this experiment, know me personally, and are likely to be intrinsically motivated to do a careful job on the task. Despite that -- this experiment aggregates the *subjective judgements* of a *small group* with *homogenous backgrounds*. This should be interpreted as a pilot experiment, and the results should be taken as suggestive rather than definitive. In a [bonus section](#bonus) I suggest some next steps and followup experiments which would build on and solidify these results. # How do people believe intelligence and coherence are related? ## Getting smarter makes you a hotter mess Each subject rank ordered all of the entities. To aggregate intelligence and coherence judgements across all 11 raters, I averaged the rank orders for each entity across the subjects. I also computed the associated [standard error of the mean](https://en.wikipedia.org/wiki/Standard_error), and include standard error bars for the estimated intelligence and coherence. Now that we have an estimate of the subjective intelligence and coherence associated with each entity, we can plot these against each other. Consistent with the hot mess hypothesis above, we find that subjects associated higher intelligence with lower coherence, for living creatures, human organizations, and machine learning models. ![Figure [p_living]: **Living creatures are judged to be more of a hot mess (less coherent), the smarter they are.**[^musk]](/assets/intelligence_vs_coherence/int_coh_life.png width="300px" border="1") ![Figure [p_org]: **Human organizations are judged to be more of a hot mess (less coherent), the smarter they are.**](/assets/intelligence_vs_coherence/int_coh_organization.png width="300px" border="1") ![Figure [p_ml]: **Present day machine learning models are judged to be more of a hot mess (less coherent), the smarter they are.**](/assets/intelligence_vs_coherence/int_coh_machines.png width="300px" border="1") ## Each category has its own relationship between intelligence and coherence When we look jointly at all three of the above categories, we find that the relationship becomes more nuanced. Although living creatures, humans, machines, and human organizations are all judged to become less coherent as they become smarter, they are offset from each other. ![Figure [p_all]: **Different categories of entity have different relationships between intelligence and coherence, although increasing intelligence is consistently associated with decreasing coherence.**[^subrank]](/assets/intelligence_vs_coherence/int_coh_all.png width="300px" border="1") Interpreting human rankings across *qualitatively different* categories is even more fraught than interpreting human rankings within a single category. So, maybe this is an artifact of subjects not knowing how to compare incomparables. For instance, from personal communication, at least one subject listed all human organizations as smarter than all individual humans[^mob], since they are built out of humans, and they otherwise didn't know how to compare them. On the other hand, maybe corporations are truly smarter and/or more coherent entities than humans. Maybe the structured internal rules governing decision making enable human organizations to harness many humans towards a more coherent goal than humans can achieve working alone. If so, it might suggest that work on large AI systems should focus on building frameworks enabling many models to work together, rather than on making individual models more powerful. It's also interesting that, at the same estimated intelligence, machine learning models are judged to be far less coherent than living creatures. To me, humans seems horribly incoherent -- so for an AI to be roughly as incoherent, while also being far less intelligent, means it is performing quite badly compared to a baseline. Perhaps this higher coherence in living creatures stems from the power of evolution, which only allows increases in intelligence to persist if individuals harness the increased intelligence to increase their fitness.[^evolution] A similar evolutionary argument might hold for human institutions -- it would be interesting to see whether institutions which have higher "fitness" (e.g. have survived longer) more consistently exhibit higher coherence at fixed intelligence. ## Human judgments of intelligence are consistent across subjects, but judgements of coherence differ wildly We can look at how well subjects agree with each other, by comparing the list orderings they produce. Doing this, we find that human subjects made consistent judgements about the relative intelligence of different entities, even when those entities came from diferent classes. On the other hand, subjects often had quite different judgements about the relative *coherence* of entities. The observed relationship seems robust to this inter-subject disagreement -- e.g. standard error bars are smaller than the effect strength in the above figures. However, this large disagreement between subjects should make us suspicious of exactly what we are measuring when we ask about coherence. Different subjects may be interpreting the same task prompt in different ways. ![Figure [p_corr]: **Intelligence rankings are relatively similar across subjects, while coherence rankings are less consistent.** The plot shows the [rank correlations](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient) between all pairs of subjects, for subject cohorts judging both intelligence and coherence.](/assets/intelligence_vs_coherence/int_coh_subject_correlation.png width="400px" border="1") ## Data and code to replicate my analysis You are encouraged to reuse my [analysis Colab](https://colab.research.google.com/drive/1___aqYiXBiBIVViCrRcE0-R4NlbactOG?usp=sharing) and [anonymized experimental data](https://docs.google.com/spreadsheets/d/1mZ7fh9q1DhoNRIDM5chBgCT6Eo6n57jW4vCxGBhQRUw/edit?usp=sharing) for any purpose, without restriction. (Before running the Colab, first copy the data to your own Google drive, and give it the same filename.) If you use the data I would prefer that you cite this blog post, but it is not a requirement. # Closing thoughts Many popular fears about superintelligent AI rely on an unstated assumption that as AI is made more intelligent, it will also become more *coherent*, in that it will monomaniacally pursue a well defined goal. I discussed this assumption, and ran a simple experiment probing the relationship between intelligence and coherence. The simple experiment provided evidence that the opposite is true -- as entities become smarter, their behavior tends to become more incoherent, and less well described as pursuit of a single well-defined goal. This suggests that we should be less worried about AGI posing an existential risk due to errors in value alignment. A nice aspect of this second type of misalignment, stemming from incoherence, is that it's less likely to come as a *surprise*. If AI models are subtly misaligned and supercoherent, they may seem cooperative until the moment the difference between their objective and human interest becomes relevant, and they turn on us (from our perspective). If models are instead simply incoherent, this will be obvious at every stage of development. ## Ways in which this conclusion could be misleading It's possible that the observed scaling behavior, between intelligence and coherence, will break down at some level of intelligence. Perhaps sufficiently intelligent entities will introspect on their behavior, and use their intelligence to make themselves more coherent. Perhaps this is what humans do when they form mission-driven organizations. If so, this provides us with a new valuable indicator we can monitor for warning signs of AGI misalignment. If intelligence and coherence start increasing together, rather than being anticorrelated, we should worry that the resulting AI systems might exhibit the more scary type of misalignment. It's possible that the concepts of "intelligence", and especially "coherence", were interpreted by human subjects in a different way than we are using those terms when we argue about superintelligence and supercoherence in AGI. For instance, maybe more intelligent entities tend to be ranked as less coherent, just because humans have a harder time conceptualizing their objectives and plans. Well-motivated actions, which humans don't understand, would seem like incoherence. Maybe crows are as coherent as sea anemones, but because they are smarter, we understand fewer of their actions than a sea anemone's actions. It may be that more intelligent entities are simultaneously less coherent but also *more* effective at achieving their objectives. The effective capabilities that an entity applies to achieving an objective is roughly the product of its total capabilities, with the fraction of its capabilities that are applied in a coherent fashion. With increasing intelligence raw capabilities increase, while the coherence fraction decreases. If the raw capabilities increase quickly enough, then overall effectiveness may increase despite the drop in coherence. This ambiguity is resolvable though -- we can (and should) characterize effective capabilities experimentally. ## AI alignment is still important There are many near and medium term risks associated with AI not doing what we desire, and improving AI alignment is important. This blog post should not be taken as arguing against alignment work. It should be taken as adding subtlety to how we interpret misalignment. An agent can be misaligned because it narrowly pursues the wrong goal. An agent can also be misaligned because it acts in ways that don't pursue any consistent goal. The first of these would lead to existential risk from AGI misalignment, while the second poses risks that are more in line with industrial accidents or misinformation. The second of these seems the type of misalignment more likely to happen in practice. Both types of misalignment have risks associated with them. ## Experimentally ground AI risk assessment! This blog post is a call to ground theories about AI risk with experiments. There is a common approach to identifying risks from advanced AI, which goes roughly: take a complex system, imagine that one part of the system (e.g. its intelligence) is suddenly infinite while the other parts are unchanged, and then reason with natural language about what the consequences of that would be. This is a great thought exercise. We can't actually make parts of our system infinitely powerful in experiments though, and possibly as a result we seem to have many ideas about AI risk which are only supported by long written arguments. We should not be satisfied with this. Scientific fields which are not grounded in experiments or formal validation make silently incorrect conclusions[^compneuro]. We should try not to base our fears on clever arguments, and should work as hard as we can to find things we can measure or prove. (#) Acknowledgements All of the experimental volunteers are incredibly busy people, with important jobs to do that aren't sorting lists of entities. I am extremely grateful that they took the time to help with this project! They were: [Alexander Belsten](http://belsten.github.io/), Brian Cheung, Chris Kymn, David Dohan, Dylan Paiton, Ethan Dyer, [James Simon](https://james-simon.github.io/), [Jesse Engel](https://twitter.com/jesseengel), Ryan Zarcone, Steven S. Lee, Urs Köster, Vasha Dutell, Vinay Ramasesh, and an additional anonymous subject. Thank you to Asako Miyakawa for workshopping the experimental design with me. All the ways in which it is well controlled are due to Asako. All the ways in which it is still not well controlled are due to me. Thank you to Asako Miyakawa, Gamaleldin Elsayed, Geoffrey Irving, Rohin Shah for feedback on earlier drafts of this post. # BONUS SECTION: How to make the experimental case more compelling I proposed a hypothesis, and then did an informal pilot study to validate it. The results of the pilot study are suggestive of an inverse relationship between intelligence and coherence. How could we make the case more compelling? ## Better human-subject experiments Here are some steps that would improve the solidity of the human subject results: - Make more precise the definitions of intelligence and coherence to use for sorting. The definitions I used are both complicated and imprecise, which is a bad combination! Judgements of intelligence were robust across subjects, so this concern particularly applies to the criteria given to subjects to judge coherence. - Make the definition used for coherence an independent (i.e. experimentally modified) variable. One likely cause for the disagreement between subjects about coherence is that they were interpreting the question differently. If so, it's not enough to find a simple wording that gives a consistent signal. We would also want to understand how different interpretations of the question change the underlying relationship. - Expand to a broader pool of subjects. - Replace the current task of sorting a fixed list with a series of two-alternative forced choice (2AFC) comparisons between entities ("Is an ostrich or an ant smarter?"). Sorting a list is time consuming, and the resulting rank order is list-dependent in a way that makes it hard to interpret. 2AFC comparisons could be used to instead assign [Elo scores](https://en.wikipedia.org/wiki/Elo_rating_system) for intelligence and coherence to each entity. Benefits include: subjects can scale their contribution to as few or as many questions as they like; the number of entities evaluated can be scaled to be many more than a single person would want to sort in a sitting; each subject can be asked about entities in their area of expertise; the resulting relative scores are interpretable, since Elo scores would map on to the fraction of subjects that would evaluate one entity as smarter or more coherent than another.[^elo] - Expand to a broader set of entities, gathered from a broader pool of subjects. Also consider generating entities in other systematic ways. - Expand to a more diverse set of attributes than just intelligence and coherence. Interesting attributes might includce trustworthiness, benevolence, and how much damage an entity can do. - [Preregister](https://www.cos.io/initiatives/prereg) hypotheses and statistical tests before running subjects. ## Less subjective measures of intelligence and coherence Even better would be to replace subjective judgements of intelligence and coherence with objective attributes of the entities being compared. For intelligence in machines, non-human animals, and humans, we already have useful measurable proxies. For machine learning models, we could use either training compute budget or parameter count. For non-human animals we could use [encephalization quotient](https://en.m.wikipedia.org/wiki/Encephalization_quotient). For humans, we could use IQ. For coherence, finding the appropriate empirical measures would be a major research contribution on its own. For machine learning models within a single domain, we could use robustness of performance to small changes in task specification, training random seed, or other aspects of the problem specification. For living things (including humans) and organizations, we could first identify limiting resources for their life cycle. For living things these might be things like time, food, sunlight, water, or fixed nitrogen. For organizations, they could be headcount, money, or time. We could then estimate the fraction of that limiting resource expended on activities not directly linked to survival+reproduction, or to an organization's mission. This fraction is a measure of incoherence. This type of estimate involves many experimenter design choices.[^subtlety] Hopefully the effect will be large and robust enough that specific modeling decisions don't change the overall result -- testing the sensitivity of the results to experimental choices will itself be an important part of the research. -------------------------------------------------------------------------- (#) Footnotes [^katjagrace]: See Katja Grace's excellent [*Counterarguments to the basic AI x-risk case*](https://aiimpacts.org/counterarguments-to-the-basic-ai-x-risk-case/), for more discussion of the assumption of goal-direction, or coherence, in common arguments about AGI risk. [^faster]: They may also qualify as superintelligent if they are only as smart as a human, but think orders of magnitude faster. [^instrumental]: Intermediate goals that position you to pursue many downstream goals are often called [instrumental goals](https://en.wikipedia.org/wiki/Instrumental_convergence). [^misalignmentunique]: One unique aspect of AGI misalignment as a risk is that it could in principle be solved just by some really good technical work by AI researchers. Most other AI-related risks are more complex messes of overlapping social, political, geopolitical, and technical challenges. I think this sense that we can fix AI misalignment risk if we just think really hard, makes it very appealing as a problem, and leads to it having an outsized place in AI risk discussion among researchers. [^plausiblerisks]: Here are some other existential risks[^plausiblepositive] involving AI that seem at least as plausible to me as misaligned AGI: There is a world war, with all sides using AI to target everyone else's civilians with weapons of mass destruction (plagues, robotic weapons, nanotech, fusion bombs), killing all humans. Terrorists use AI to develop weapons of mass destruction. A large state actor asks a well-aligned superintelligent AI to make everyone in the world compliant, forever. Humans are so overwhelmed by AI-generated personalized [superstimuli](https://en.wikipedia.org/wiki/Supernormal_stimulus) that they no longer have enough motivation to eat, or care for their children, or do anything except hyper-scroll hyper-Twitter on their hyper-phones. AIs outcompete humans on every economically viable task, leading to rich AI-run companies, but with humans no longer able to contribute in any economically meaningful way -- humans live on saved wealth for a while, but eventually we all die when we can no longer afford food and shelter. A single tech corporation decisively wins the AGI race, and the entire future of humanity is dictated by the internal politics, selfish interests, and foibles of the now god-like corporate leadership (absolute power corrupts absolutely?). [^notautomatic]: Note that coherence is not automatic for machine learning models, despite them often being trained to optimize well-defined stationary objectives. First, after training is complete, models are typically used in new contexts where the training objective no longer applies, and where it's unclear whether their behavior can be interpreted as optimizing a meaningfully defined objective at all (e.g. the pre-training objective for large language models is dissimilar from almost all use cases). Second, in reinforcement learning (RL), in addition to them being applied to tasks which are different from their training tasks, there is usually not even a well-defined stationary training objective. RL algorithms are usually trained with stale off-policy data. They are also usually trained through multiple interacting models (e.g. [an actor and critic](http://www.incompleteideas.net/book/ebook/node66.html)). For both of these reasons, training RL policies resembles integrating a non-conservative dynamical system more than it resembles optimizing any fixed objective. [^biasvariance]: This can also be framed as a hypothesis about the relative contributions of *[bias and variance](https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff)* to an AI model's behavior. The behavioral trajectory of an AI (i.e. the sequence of actions it takes) will have a *bias* away from the behaviors which are optimal under human values, and also some *variance* or unpredictability. The common misaligned AGI story assumes that for a superintelligent AI the bias will dominate -- when the AI doesn't do what we want it will be because it is reliably taking actions in pursuit of some other goal. The hot mess hypothesis predicts that the variance term will actually dominate -- when a superintelligent AI doesn't do what we want, it will be because its behavioral trajectories have a large *variance*, and it will do random things which are not in pursuit of any consistent goal. [^tworoles]: One of the subjects that sorted entities by intelligence was also the subject that generated the list of diverse non-human organisms. This was the only case of a subject fulfulling two roles. Because of this there were 14 rather than 15 total subjects. [^template]: See [doc](https://docs.google.com/document/d/1nZ3RO1lPTLBePjkh7MB03OIUGi6SxxZXikzMzWMFtzg/edit?usp=sharing) for template text used to pose tasks. [^fictional]: Subject 3 included fictional characters in their list of humans, which I did not include in this blog post. I pre-registered with subject 3 -- before any subjects sorted the list -- that I was going to analyze the fictional characters separately rather than bundling them with other humans, since fictional characters might not exhibit real-world correlations between traits. I did that, and found that rather than exhibiting a clear unrealistic relationship as I feared, the rankings assigned to the fictional characters was just overwhelmingly noisy. For instance, some subjects clustered fictional characters with humans, while others assigned them the lowest possible intelligence, or clustered them with organizations. So the rankings for fictional characters was not interpretable. [^lessintelligent]: Subject 3 was uncomfortable suggesting names of people that were viewed as unusually stupid, so along the intelligence axis the individuals suggested here range from people (subjectively judged to be) of median intelligence, up to high intelligence. [^musk]: Each dark yellow "anonymous person" point is a well-known public figure. I promised my subjects that I would keep the ranked humans unnamed, to encourage honest rankings. It also seems classier not to publicly rank people. One of the points is Elon Musk -- so if you like you can make an assumption about how he was rated, and experience a cortisol spike about it. [^subrank]: The discerning reader may notice that the points in this plot have a slightly different geometric relationship with each other than the points in the single category plots above. This is because the rank order in the single category plots was only for entities in that category, while the rank order here is across all entities jointly. [^mob]: A relationship which I don't believe holds in general. *"The IQ of a mob is the IQ of its dumbest member divided by the number of mobsters." --Terry Pratchett* [^evolution]: We should remember though that biological evolution doesn't necessarily select for coherence, and isn't actually optimizing an objective function. Evolution is a dynamical system without even an associated [Lyapunov function](https://en.wikipedia.org/wiki/Lyapunov_function), and fitness is just a useful proxy concept for humans to reason roughly about its outcome. [Runaway sexual selection](https://en.wikipedia.org/wiki/Fisherian_runaway) is one example illustrating evolution's behavior as a dynamical system rather than a fitness optimizer. Species can evolve runaway maladaptive traits which *reduce* the overall fitness of the species, even as they increase the *relative* (but not absolute) reproductive success of individuals within the species -- e.g. male [fiddler crab](https://en.wikipedia.org/wiki/Fiddler_crab) claws, [peacock](https://en.wikipedia.org/wiki/Peafowl) tails, and [Japanese rhinoceros beetle](https://en.wikipedia.org/wiki/Japanese_rhinoceros_beetle) horns. [^compneuro]: Let me pick on myself, and share an example of a poorly grounded field that is close to my own heart. I did a PhD in computational neuroscience, finishing in 2012. Computational neuroscience is full of amazing theories for how the brain works. Each year, in conferences and papers these would be fleshed out a bit more, and made a bit more complex. Most of these theories were developed by extremely intelligent people who believed strongly in what they were discovering, often using very clever math. These theories would often contradict each other, or suggest that other theories didn't explain the important aspects of the brain. Because these theories were inconsistent with each other, we knew that many of them had to be some combination of wrong and irrelevant. *This didn't matter for the field.* Despite being wrong, almost none of the work in computational neuroscience at the time was actually *falsifiable*[^moredata]. The experiments all recorded from a small number of neurons, or had a coarse spatial resolution, or had a coarse temporal resolution. This experimental data was simply too limited to falsify any theory of the brain (and if you comb through enough experiments which record from a half dozen neurons out of 10 billion total, you can find an isolated experiment that supports any theory of the brain). So the competing theories would persist as elaborate competing narratives, and nothing was ever resolved. We are in a similar situation when we speculate about the future of AI, without identifying experiments we can perform to falsify our predictions. Most of the fears and ideas we develop will be silently wrong. [^elo]: Thank you to David Dohan for suggesting Elo scores here! [^subtlety]: Some example experimental design choices without clear answers: Should resources spent on sexual signaling be counted as directly linked to reproduction? Should resources spent on learning / play be intrepreted as directly linked to survival? What about the time an organization spends fundraising? [^plausiblepositive]: There are also plenty of plausible-seeming futures that result in utopia, rather than disaster. Those just aren't the focus of this blog post. There are even more plausible-seeming futures where we continue to muddle along with both good and bad things happening, but no near term consequence large enough to count as an existential outcome. [^moredata]: This is reportedly getting better, as experimental neuroscience follows its [own version of Moore's law](https://stevenson.lab.uconn.edu/scaling/#), and researchers record exponentially larger and more comprehensive neural datasets. I think this would be a very exciting time to enter the field of computational neuroscience -- it is the time when the field is finally getting the data and tools that might allow building correct models of the brain. body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")
window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-1XJMTJ5KCK'); Increased efficiency can sometimes, counterintuitively, lead to worse outcomes. This is true almost everywhere. We will name this phenomenon the strong version of [Goodhart's law](https://en.wikipedia.org/wiki/Goodhart%27s_law). As one example, more efficient centralized tracking of student progress by standardized testing seems like such a good idea that well-intentioned laws [mandate it](https://en.wikipedia.org/wiki/No_Child_Left_Behind_Act). However, testing also incentivizes schools to focus more on teaching students to test well, and less on teaching broadly useful skills. As a result, it can cause overall educational outcomes to become worse. Similar examples abound, in politics, economics, health, science, and many other fields. This same counterintuitive relationship between efficiency and outcome occurs in machine learning, where it is called overfitting. Overfitting is heavily studied, somewhat theoretically understood, and has well known mitigations. This connection between the strong version of Goodhart's law in general, and overfitting in machine learning, provides a new lens for understanding bad outcomes, and new ideas for fixing them. Overfitting and Goodhart's law ========================== In machine learning (ML), **overfitting** is a pervasive phenomenon. We want to train an ML model to achieve some goal. We can't directly fit the model to the goal, so we instead train the model using some proxy which is *similar* to the goal.  For instance, as an occasional computer vision researcher, my goal is sometimes to prove that my new image classification model works well. I accomplish this by measuring its accuracy, after asking it to label images (is this image a cat or a dog or a frog or a truck or a ...) from a standardized [test dataset of images](https://paperswithcode.com/dataset/cifar-10). I'm not allowed to train my model on the test dataset though (that would be cheating), so I instead train the model on a *proxy* dataset, called the training dataset. I also can't directly target prediction accuracy during training[^accuracytarget], so I instead target a *proxy* objective which is only related to accuracy. So rather than training my model on the goal I care about -- classification accuracy on a test dataset -- I instead train it using a *proxy objective* on a *proxy dataset*. At first everything goes as we hope -- the proxy improves, and since the goal is similar to the proxy, it also improves.  As we continue optimizing the proxy though, we eventually exhaust the useable similarity between proxy and goal. The proxy keeps on getting better, but the goal stops improving. In machine learning we call this overfitting, but it is also an example of Goodhart's law.  [Goodhart's law](https://en.wikipedia.org/wiki/Goodhart%27s_law) states that, *when a measure becomes a target, it ceases to be a good measure*[^strathern]. Goodhart proposed this in the context of monetary policy, but it applies far more broadly. In the context of overfitting in machine learning, it describes how the proxy objective we optimize ceases to be a good measure of the objective we care about. The strong version of Goodhart's law: as we become too efficient, the thing we care about grows worse ========================== If we keep on optimizing the proxy objective, even after our goal stops improving, something more worrying happens. The goal often starts getting *worse*, even as our proxy objective continues to improve. Not just a little bit worse either -- often the goal will diverge towards infinity. This is an [extremely](https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture6_overfitting.pdf) [general](https://www.cs.mcgill.ca/~dprecup/courses/ML/Lectures/ml-lecture02.pdf) [phenomenon](https://scholar.google.com/scholar?hl=en&q=overfitting) in machine learning. It mostly doesn't matter what our goal and proxy are, or what model architecture we use[^overfittinggenerality]. If we are very efficient at optimizing a proxy, then we make the thing it is a proxy for grow worse.  Though this pheonomenon is often discussed, it doesn't seem to be named[^notoverfitting]. Let's call it **the strong version of Goodhart's law**[^strongunintended]. We can state it as: > *When a measure becomes a target, > if it is effectively optimized, > then the thing it is designed to measure will grow worse.* Goodhart's law says that if you optimize a proxy, eventually the goal you care about will stop improving. The strong version of Goodhart's law differs in that it says that as you over-optimize, the goal you care about won't just stop improving, but will instead grow much worse than if you had done nothing at all. Goodhart's law applies well beyond economics, where it was originally proposed. Similarly, the strong version of Goodhart's law applies well beyond machine learning. I believe it can help us understand failures in economies, governments, and social systems. Increasing efficiency and overfitting are happening everywhere ========================== Increasing efficiency is permeating almost every aspect of our society. If the thing that is being made more efficient is beneficial, then the increased efficiency makes the world a better place (overall, the world [seems to be becoming a better place](https://ourworldindata.org/a-history-of-global-living-conditions-in-5-charts)). If the thing that is being made more efficient is socially harmful, then the consequences of greater efficiency are scary or depressing (think mass surveillance, or robotic weapons). What about the most common case though -- where the thing we are making more efficient is related, but not identical, to beneficial outcomes? What happens when we get better at something which is merely correlated with outcomes we care about? In that case, we can overfit, the same as we do in machine learning. The outcomes we care about will improve for a while ... and then they will grow dramatically worse. Below are a few, possibly facile, examples applying this analogy. > **Goal:** Educate children well **Proxy:** [Measure student and school performance](https://en.wikipedia.org/wiki/No_Child_Left_Behind_Act) on standardized tests **Strong version of Goodhart's law leads to:** Schools narrowly focus on teaching students to answer questions like those on the test, at the expense of the underlying skills the test is intended to measure > **Goal:** Rapid progress in science **Proxy:** Pay researchers a [cash bonus for every publication](https://www.science.org/content/article/cash-bonuses-peer-reviewed-papers-go-global) **Strong version of Goodhart's law leads to:** Publication of incorrect or incremental results, collusion between reviewers and authors, research paper mills > **Goal:** A well-lived life **Proxy:** Maximize the reward pathway in the brain **Strong version of Goodhart's law leads to:** Substance addiction, gambling addiction, days lost to doomscrolling Twitter > **Goal:** Healthy population **Proxy:** Access to nutrient-rich food **Strong version of Goodhart's law leads to:** Obesity epidemic > **Goal:** Leaders that act in the best interests of the population **Proxy:** Leaders that have the most support in the population **Strong version of Goodhart's law leads to:** Leaders whose expertise and passions center narrowly around manipulating public opinion at the expense of social outcomes > **Goal:** An informed, thoughtful, and involved populace **Proxy:** The ease with which people can share and find ideas **Strong version of Goodhart's law leads to:** Filter bubbles, conspiracy theories, parasitic memes, escalated tribalism > **Goal:** Distribution of labor and resources based upon the needs of society **Proxy:** Capitalism **Strong version of Goodhart's law leads to:** Massive wealth disparities (with incomes ranging from hundreds of dollars per year to hundreds of dollars per second), with [more than a billion](https://hdr.undp.org/en/2020-MPI ) people living in poverty > **Goal:** The owners of Paperclips Unlimited, LLC, become wealthy **Proxy:** Number of paperclips made by the AI-run manufacturing plant **Strong version of Goodhart's law leads to:** The entire solar system, including the company owners, being [converted to paperclips](https://www.lesswrong.com/tag/paperclip-maximizer) As an exercise for the reader, you can think about how the strong version of Goodhart's law would apply to other efficiencies, like the ones in this list: ~~~ none telepresence and virtual reality personalized medicine gene therapy tailoring marketing messages to the individual consumers or voters who will find them most actionable predicting the outcome of elections writing code artificial intelligence reducing slack in supply chains rapidly disseminating ideas generating entertainment identifying new products people will buy raising livestock trading securities extracting fish from the ocean constructing cars ~~~ [Listing [greater-efficiency]: Some additional diverse things we are getting more efficient at. For most of these, initial improvements were broadly beneficial, but getting too good at them could cause profound negative consequences.] How do we mitigate the problems caused by overfitting and the strong version of Goodhart's law? ========================== If overfitting is useful as an analogy, it will be because some of the approaches that improve it in machine learning also transfer to other domains. Below, I review some of the most effective techniques from machine learning, and share some thoughts about how they might transfer. + **Mitigation: Better align proxy goals with desired outcomes.** In machine learning this often means carefully collecting training examples which are as similar as possible to the situation at test time. Outside of machine learning, this means changing the proxies we have control over -- e.g. laws, incentives, and social norms -- so that they directly encourage behavior that better aligns with our goals. This is the standard approach used to (try to) engineer social systems. + **Mitigation: Add regularization penalties to the system.** In machine learning, this is often performed by [penalizing the squared magnitude of parameters](https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/l2-regularization), so that they stay small. Importantly, regularization doesn't need to directly target undesirable behavior. Almost anything that penalizes deviations of a model from typicality works well. Outside of machine learning, anything that penalizes complexity, or adds friction or extra cost to a system, can be viewed as regularization. Some example ideas: + Add a billing mechanism to SMTP, so there's a small cost for every email. + Use a progressive tax code, so that unusual success is linked to disproportionately greater cost + Charge a court fee proportional to the squared (exponentiated?) number of lawsuits initiated by an organization, so that unusual use of the court system leads to unusual expenses + Tax the number of bits of information stored about users + **Mitigation: Inject noise into the system.** In machine learning, this involves adding random jitter to the inputs, parameters, and internal state of a model. The unpredictability resulting from this noise makes overfitting far more difficult. Here are some ideas for how to improve outcomes by injecting noise outside of machine learning: + Stack rank all the candidates for a highly competitive school or job. Typically, offers would be made to the top-k candidates. Instead, make offers probabilistically, with probability proportional to $\left(\right.$[approx # top tier candidates] $+$ [candidate's stack rank]$\left.\right)^{-1}$. Benefits include: greater diversity of accepted candidates; less ridiculous resources spent by the candidates tuning their application, and by application reviewers reviewing the applications, since small changes in assessed rank only have a small effect on outcome probabilities; occasionally you will draw a longshot candidate that is more likely to fail, but also more likely to succeed in an unconventional and unusually valuable way. + Randomly time quizzes and tests in a class, rather than giving them on pre-announced dates, so that students study to understand the material more, and cram (i.e., overfit) for the test less. + Require securities exchanges to add random jitter to the times when they process trades, with a standard deviation of about a second. (An efficient market is great. Building a global financial system out of a chaotic nonstationary dynamical system with a characteristic timescale more than six orders of magnitude faster than human reaction time is just asking for trouble.) + Randomize details of the electoral system on voting day, in order to prevent candidates from overfitting to incidental details of the current electoral system (e.g. by taking unreasonable positions that appeal to a pivotal minority). For instance randomly select between ranked choice or first past the post ballots, or randomly rescale the importance of votes from different districts. (I'm not saying all of these are *good* ideas. Just ... ideas.) + **Mitigation: Early stopping.** In machine learning, it's common to monitor a third metric, besides training loss and test performance, which we call validation loss. When the validation loss starts to get worse, we stop training, even if the training loss is still improving. This is the single most effective tool we have to prevent catastrophic overfitting. Here are some ways early stopping could be applied outside of machine learning: + Sharply limit the time between a call for proposals and submission date, so that proposals better reflect pre-existing readiness, and to avoid an effect where increasing resources are poured into proposal generation, rather than being used to create something useful + Whenever stock volatility rises above a threshold, suspend all market activity + The use of antitrust law to split companies that are preventing competition in a market + Estimate the importance of a decision in $$. When the value of the time you have already spent analyzing the decision approaches that value, make a snap decision. + Freeze the information that agents are allowed to use to achieve their goals. Press blackouts in the 48 hours before an election might fall under this category. One of the best understood *causes* of extreme overfitting is that the expressivity of the model being trained *too closely matches* the complexity of the proxy task. When the model is very weak, it can only make a little bit of progress on the task, and it doesn’t exhaust the similarity between the goal and the proxy. When the model is extremely strong and expressive, it can optimize the proxy objective in isolation, without inducing extreme behavior on other objectives. When the model's expressivity roughly matches the task complexity (e.g., the number of parameters is no more than a few orders of magnitude higher or lower than the number of training examples), then it can only do well on the proxy task by doing *extreme things everywhere else*. See Figure [capacity] for a demonstration of this idea on a simple task. This cause of overfitting motivates two final, diametrically opposed, methods for mitigating the strong version of Goodhart’s law. + **Mitigation: Restrict capabilities / capacity.** In machine learning, this is often achieved by making the model so small that it's incapable of overfitting. In the broader world, we could similarly limit the capacity of organizations or agents. Examples include: + Campaign finance limits + Set a maximum number of people that can work in companies of a given type. e.g. allow only 10 people to work in any lobbying group + Set the maximum number of parameters, or training compute, that any AI system can use. + **Mitigation: Increase capabilities / capacity.** In machine learning, if a model is made very big, it often has enough capacity to overfit to the training data without making performance on the test data worse. In the broader world, this would correspond to developing capabilities that are so great that there is no longer any tradeoff required between performance on the goal and the proxy. Examples include: + Obliterate all privacy, and make all the information about all people, governments, and other organizations available to everyone all the time, so that everyone can have perfect trust of everyone else. This could be achieved by legislating that every database be publicly accessible, and by putting cameras in every building. (to be clear -- from my value system, this would be a dystopian scenario) + Invest in basic research in clean energy + Develop as many complex, inscrutable, and diverse market trading instruments as possible, vesting on as many timescales as possible. (In nature, more complex ecosystems are more stable. Maybe there is a parallel for markets?) + Use the largest, most compute and data intensive, AI model possible in every scenario 😮[^gobig] This last mitigation of just continuing to increase capabilities works surprisingly well in machine learning. It is also a path of least resistance. Trying to fix our institutions by blindly making them better at pursuing misaligned goals is a terrible idea though. Parting thoughts ========================== The strong version of Goodhart's law underlies most of my personal fears around AI (expect a future blog post about my AI fears!). If there is one thing AI will enable, it is greater efficiency, on almost all tasks, over a very short time period. We are going to need to simultaneously deal with massive numbers of diverse unwanted side effects, just as our ability to collaborate on solutions is also disrupted. There's a lot of opportunity to *research* solutions to this problem. If you are a scientist looking for research ideas which are pro-social, and have the potential to create a whole new field, you should consider building formal (mathematical) bridges between results on overfitting in machine learning, and problems in economics, political science, management science, operations research, and elsewhere[^researchideas]. This is a goldmine waiting to be tapped. (I might actually be suggesting here that we should invent the field of [psychohistory](https://en.wikipedia.org/wiki/Psychohistory), and that overfitting phenomena will have a big role in that field.) The more our social systems break due to the strong version of Goodhart's law, the less we will be able to take the concerted rational action required to fix them. Hopefully naming, and better understanding, the phenomenon will help push in the opposite direction. ![Figure [capacity]: **Models often suffer from the strong version of Goodhart's law, and overfit catastrophically, when their complexity is well matched to the complexity of the proxy task.** If a model is instead much more or much less capable than required, it will overfit less. Here, models are trained to map from a one-dimensional input $x$ to a one-dimensional output $y$. All models are trained on the same 10 datapoints, in red. The model with 4 parameters is too weak to exactly fit the datapoints, but it smoothly approximates them. The model with 10,000 parameters is strong enough to easily fit all the datapoints, and also smoothly interpolate between them. The model with 10 parameters is exactly strong enough to fit the datapoints, but it can only contort itself to do so by behaving in extreme ways away from the training data. If asked to predict $y$ for a new value of $x$, the 10 parameter model would perform extremely poorly. For details of this toy experiment, which uses linear random feature models, see this [colab notebook](https://colab.research.google.com/drive/1mAqCsCE-6biiFxQu8swlc5MygmI9lMJA?usp=sharing).](/assets/size-mitigation.png width="290px" border="1") [^accuracytarget]: Accuracy is not differentiable, which makes it impossible to target by naive gradient descent training. It is usually replaced during training by a proxy of softmax-cross-entropy loss, which is differentiable. There are blackbox training methods which can directly target accuracy, but they are inefficient and rarely used. [^strathern]: This modern phrasing is due to Marilyn Strathern. Goodhart originally phrased the observation as the more clunky *any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes*. [^overfittinggenerality]: This glosses over a lot of variation. For instance, there is an entire subfield which studies the qualitative differences in overfitting in underparameterized, critically parameterized, and overparameterized models. Despite this variation, the core observation -- that when we train on a proxy our target gets better for a while, but then grows worse -- holds broadly. [^notoverfitting]: It's not simply overfitting. Overfitting refers to the proxy becoming better than the goal, not to the goal growing worse in an absolute sense. There are other related, but not identical, concepts -- for instance [perverse incentives](https://en.wikipedia.org/wiki/Perverse_incentive), [Campbell's law](https://en.wikipedia.org/wiki/Campbell%27s_law), the [Streisand effect](https://en.wikipedia.org/wiki/Streisand_effect), the [law of unintended consequences](https://en.wikipedia.org/wiki/Unintended_consequences), [Jevons paradox](https://en.m.wikipedia.org/wiki/Jevons_paradox), and the concept of [negative externalities](https://en.m.wikipedia.org/wiki/Externality#Negative). [Goodhart's curse](https://arbital.com/p/goodharts_curse/) is perhaps the closest. However, the definition of Goodhart's curse incorporates not only the phenomenon, but also a specific mechanism, and the mechanism is incorrect[^Goodhartcurse]. *Edit 2022/11/9: Andrew Hundt [suggests](https://twitter.com/athundt/status/1589591738792177664) that similar observations that optimization isn't always desirable have been made in the social sciences, and gives specific examples of "The New Jim Code" and "[Weapons of Math Destruction](https://en.m.wikipedia.org/wiki/Weapons_of_Math_Destruction)". Kiran Vodrahalli [points out](https://mathstodon.xyz/@kiranvodrahalli/109300676096306738) connections to robust optimization and the "[price of robustness](https://www.robustopt.com/references/Price%20of%20Robustness.pdf)." [Leo Gao](https://bmk.sh/) points me at a [recent paper](https://arxiv.org/abs/2210.10760) which uses the descriptive term "overoptimization" for this phenomenon, which I think is good.* [^strongunintended]: I also considered calling it the strong law of unintended consequences -- it's not just that there are unexpected side effects, but that that the more effectively you accomplish your task, the more those side effects will act against your original goal. [^gobig]: Note that for suficiently strong AI, limitations on its capabilities might be determined by the laws of physics, rather than by its compute scale or training dataset size. So if you're worried about misaligned AGI, this mitigation may offer no comfort. [^researchideas]: For instance, take PAC Bayes bounds from statistical learning theory, and use them to predict the optimal amount of power unions should have, in order to maximize the wealth of workers in an industry. Or, estimate the spectrum of candidate-controllable and uncontrollable variables in political contests, to predict points of political breakdown. (I'm blithely suggesting these examples as if they would be easy, and are well formed in their description. Of course, neither is true -- actually doing this would require hard work and brilliance in some ratio.) [^Goodhartcurse]: The [definition of Goodhart's curse](https://arbital.com/p/goodharts_curse/) includes [the optimizer's curse](https://www.semanticscholar.org/paper/The-Optimizer's-Curse%3A-Skepticism-and-Postdecision-Smith-Winkler/28cfed594544215673db802dce79b8c12d3ab5ab) as its causal mechanism. This is where the word 'curse' comes from in its name. If an objective $u$ is an imperfect proxy for a goal objective $v$, the optimizer's curse explains why optimizing $u$ finds an anomalously good $u$, and makes the *gap* between $u$ and $v$ grow large. It doesn't explain why optimizing $u$ makes $v$ grow worse in an absolute sense. That is, the optimizer's curse provides motivation for why Goodhart's law occurs. It does not provide motivation for why the strong version of Goodhart's law occurs. (As I briefly discuss elsewhere in the post, one common causal mechanism for $v$ growing worse is that it's expressivity is too closely matched to the complexity of the task it is performing. This is a very active research area though, and our understanding is both incomplete and actively changing.) body{visibility:hidden;white-space:pre;font-family:monospace} window.markdeepOptions = {mode: 'html', tocStyle: 'medium'}; window.alreadyProcessedMarkdeep||(document.body.style.visibility="visible")
More in AI
In a previous post I made the point that having a weak manager - a manager without political clout - is really bad news if you’re an…
After the positive reception of my cards article “Kelly can’t fail” I decided to share more of the methods used to characterize card counting. So, I’d like to share my new article on the statistics of drawing cards. This note relates the distribution of draw cards (which can seem scare) […]
Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboCup German Open: 12–16 March 2025, NUREMBERG, GERMANY German Robotics Conference: 13–15 March 2025, NUREMBERG, GERMANY European Robotics Forum: 25–27 March 2025, STUTTGART, GERMANY RoboSoft 2025: 23–26 April 2025, LAUSANNE, SWITZERLAND ICUAS 2025: 14–17 May 2025, CHARLOTTE, NC ICRA 2025: 19–23 May 2025, ATLANTA, GA London Humanoids Summit: 29–30 May 2025, LONDON IEEE RCAR 2025: 1–6 June 2025, TOYAMA, JAPAN 2025 Energy Drone & Robotics Summit: 16–18 June 2025, HOUSTON, TX RSS 2025: 21–25 June 2025, LOS ANGELES ETH Robotics Summer School: 21–27 June 2025, GENEVA IAS 2025: 30 June–4 July 2025, GENOA, ITALY ICRES 2025: 3–4 July 2025, PORTO, PORTUGAL IEEE World Haptics: 8–11 July 2025, SUWON, KOREA IFAC Symposium on Robotics: 15–18 July 2025, PARIS RoboCup 2025: 15–21 July 2025, BAHIA, BRAZIL Enjoy today’s videos! We’re introducing Helix, a generalist Vision-Language-Action (VLA) model that unifies perception, language understanding, and learned control to overcome multiple longstanding challenges in robotics. This is moderately impressive; my favorite part is probably the hand-offs and that extra little bit of HRI with what we’d call eye contact if these robots had faces. But keep in mind that you’re looking at close to best case for robotic manipulation, and that if the robots had been given the bag instead of well-spaced objects on a single color background, or if the fridge had a normal human amount of stuff in it, they might be having a much different time of it. Also, is it just me, or is the sound on this video very weird? Like, some things make noise, some things don’t, and the robots themselves occasionally sound more like someone just added in some ‘soft actuator sound’ or something. Also also, I’m of a suspicious nature, and when there is an abrupt cut between ‘robot grasps door’ and ‘robot opens door,’ I assume the worst. [ Figure ] Researchers at EPFL have developed a highly agile flat swimming robot. This robot is smaller than a credit card, and propels on the water surface using a pair of undulating soft fins. The fins are driven at resonance by artificial muscles, allowing the robot to perform complex maneuvers. In the future, this robot can be used for monitoring water quality or help with measuring fertilizer concentrations in rice fields [ Paper ] via [ Science Robotics ] I don’t know about you, but I always dance better when getting beaten with a stick. [ Unitree Robotics ] This is big news, people: Sweet Bite Ham Ham, one of the greatest and most useless robots of all time, has a new treat. All yours for about $100, overseas shipping included. [ Ham Ham ] via [ Robotstart ] MagicLab has announced the launch of its first generation self-developed dexterous hand product, the MagicHand S01. The MagicHand S01 has 11 degrees of freedom in a single hand. The MagicHand S01 has a hand load capacity of up to 5 kilograms, and in work environments, can carry loads of over 20 kilograms. [ MagicLab ] Thanks, Ni Tao! No, I’m not creeped out at all, why? [ Clone Robotics ] Happy 40th Birthday to the MIT Media Lab! Since 1985, the MIT Media Lab has provided a home for interdisciplinary research, transformative technologies, and innovative approaches to solving some of humanity’s greatest challenges. As we celebrate our 40th anniversary year, we’re looking ahead to decades more of imagining, designing, and inventing a future in which everyone has the opportunity to flourish. [ MIT Media Lab ] While most soft pneumatic grippers that operate with a single control parameter (such as pressure or airflow) are limited to a single grasping modality, this article introduces a new method for incorporating multiple grasping modalities into vacuum-driven soft grippers. This is achieved by combining stiffness manipulation with a bistable mechanism. Adjusting the airflow tunes the energy barrier of the bistable mechanism, enabling changes in triggering sensitivity and allowing swift transitions between grasping modes. This results in an exceptional versatile gripper, capable of handling a diverse range of objects with varying sizes, shapes, stiffness, and roughness, controlled by a single parameter, airflow, and its interaction with objects. [ Paper ] via [ BruBotics ] Thanks, Bram! In this article, we present a design concept, in which a monolithic soft body is incorporated with a vibration-driven mechanism, called Leafbot. This proposed investigation aims to build a foundation for further terradynamics study of vibration-driven soft robots in a more complicated and confined environment, with potential applications in inspection tasks. [ Paper ] via [ IEEE Transactions on Robots ] We present a hybrid aerial-ground robot that combines the versatility of a quadcopter with enhanced terrestrial mobility. The vehicle features a passive, reconfigurable single wheeled leg, enabling seamless transitions between flight and two ground modes: a stable stance and a dynamic cruising configuration. [ Robotics and Intelligent Systems Laboratory ] I’m not sure I’ve ever seen this trick performed by a robot with soft fingers before. [ Paper ] There are a lot of robots involved in car manufacturing. Like, a lot. [ Kawasaki Robotics ] Steve Willits shows us some recent autonomous drone work being done at the AirLab at CMU’s Robotics Institute. [ Carnegie Mellon University Robotics Institute ] Somebody’s got to test all those luxury handbags and purses. And by somebody, I mean somerobot. [ Qb Robotics ] Do not trust people named Evan. [ Tufts University Human-Robot Interaction Lab ] Meet the Mind: MIT Professor Andreea Bobu. [ MIT ]